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GLOBAL MULTI-H6LDER ESTIMATE OF 
SOLUTIONS TO ELLIPTIC EQUATIONS 

OF HIGHER ORDER

Ch e n  Sh u x in g  (P&'fe'ff)* * * 

uy Abstract

In this paper the global multi-Holder estimate of solutions to general boundary value 
problem of elliptic equations of higher order is discussed. Let м be the solution of Pu—f  of 
m-th order elliptic equation with Dirichlet conditions

: - • lDsnu=g},

where/ €  Gy,i(Q), д}£Ст~**у‘й(дО) with {0<у<1, б€ B1} or {y=0, d > l}  or {y = l, 
6<0}. Then m€ Cm*™, where (?, 6) =  (y, 8) if 0 < y < la n d  deR 1, (у, 3) =  (y, 6 -1 )  if 
у =0, 6>1 or у =1; 6<0. Moreover, in the case у —0 and 0<6<1, u€. .

In  this paper; wo will discuss the global multi-Holder estimate of solutions to 
general boundary value problems of elliptic equations of higher order. The m ulti- 
Holder norm of a continuous function /  in  a given domain Q is defined as

(1)l l / I U - l l / l o + 'S  |a .- s , |n i (+ [ l f k - y |  I ) -
where 0 < y < l ,  8 £  -Й1, and 8 < 0  if у =1, 8> 0  if 7 = 0, For any integer m,

II/IU+7.S= 2  l & f h *  •]ai«sm
Correspondingly, we denote by Oy,s(Q) the set of functions with finite normf • Jr,4, 
it forms a Banach space equipped with this norm. If P  is an elliptic operator of 
mth order on domain Q, then it is proved in [1] that P ti= f£ C y,&(Q) implies 
u £  a M+7’s(Q'), where Q 'czdQ  and

r( y , 8), if 0< у < 1, д £ & ,
Ху, S—1 ), if 7  = 0, 8> 1 , or 7  = 1, 8< 0.

The aim of this paper is to extend this estimate to boundary value problems. More 
precisely, we will prove the following theorem.

Theorem 1. Let P (x, D )be an elliptic operator with O'* coefficients on domain 
Q, whose bounda/ry 8Q is smooth. Function и  satisfies

0 J ) 00.
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Р(Я5, Р)М =/, 

D{u=gh
(3)

■ If/€< ?Y’a(&)> д}€ С т-}4Г'*(дй), and { 0 < 7 < 1 , S £ lP }  or {7= 0 , 8> 1} or {7=- 
1, 8< 0), then u ^ O m̂ ,~6(Q'), where (7, S) is determihed aooording to (2).

•' • . ... c ,

§ 1. Estimate of Singularities of Fundamental Solutions 
to Elliptic Equations of Higher Order

Since the proof of Theorem 1 can be localized and the boundary can be flattened 
for a bounded domain, we may assume that Q is the upper half plane and the support

coefficients by means of freezing coefficients, and the lower order oaln be omitted. 
Then we may also assume that P  iS an elliptic operator of homogeneuos order m 
with constant cpeffieients.

The solution (4) is not suitable to giving boundary estimates of solutions to
boundary value problems. Instead, we will use Green's function----- the fundamental
solution satisfying Diriehlet boundary conditions. Besides, by increasing the number 
of variables we may assume that n is large enough such that Q(sr) in  (4) can be 
regarded as 0. This treatment can save us much trouble, it will be explained in 
more detailes in  the end of section 3 (see also [7]).

Lemma 1*. Suppose oi(i) is a positively homogeneous fmotion o f  degree 1 with

of и is bounded. . Moreover, the problem can be reduced to the case of constant

I t  is well known (e.g. see [8] )  that P  (D) has fundamental solutions E  with 
the following form

E = E 0-Q(j»)log\x\ (4)
where E 0 is a homogeneous function of degree m — n, of 0 ” in  P "\0, and Q is a 
polynomial, which vanishes in  the ease n> m , and

Therefore, we have the estimate in the neighborhood of origin as follows:

(5)

respect to £ £ R n, Re &>(£)< —c0|£ [ . Then

(6)

Proof Denote

* The author would like to thank Prof. A. Nagel, who led me to this simple proof.
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0„(») =  Je ^ e ia(d£, P„(m) - J 6“’

Then

V ( x ) -  - ®»y: n+l t
(®a +  у2) 2

where

0 . - 2M.V1  г  ( “ + 1 ) .

We have

|QaO) -P„(® ) ! =  | j (&«*«>-е~™')ё{*Ы£

=y~n | j ( e “(« -  e~'{l) $  d£

"У

.+

" ( I L  jl (е“(«--вн ,|)в #  Ц  I

f (еш«>- e~'{[) ^  dg\)
■. i '

Let ns estimate the terms inside the parentheses. If  \% \ ~^y, then 

the first term <  f y \ £ j dg =  G
J IU< TmT

У-n+l
\a> n+H

С —В 'll „,»+!
the second term  <  l (e_Colfl +e~^[)dg<;Oe 12,1 <  О r--r r .

. • * N " u
therefore,

I Q e ( » ) - P M \ < 0 - У Oy
fl+1

( M a +  2/2) 2
And if j<c| <=y, it is obvious that

|Q ,(* ) -P ,(» )  I < t r  |((«"<n- e - " 1) e ?  dg

ii+T"®

< y -n J (б“(л + e-* 1) dg<Oy™ < — ..- ....Gy

( M a + 2 / a)  2
whence the lemma.

L em m a %. I f  v is the solution to
(Dt~ U D *))v~ 0 ,

(7).v\t-_,o=gtXai>),

where k(£) has positive imaginary part, and is a positively homogeneous function o f

degree 1, \ди{ос)\<,0(1}1+\х\^)~а with ~ '^a '> 0 , then
A

o o )\< G ((t-toy + \ z \ * y a. (8)
Proof Denote a>(£)=iX(£). We have

v(t, x) -  J eiw(eî mgto(£)d£=Qt(v)*gh(x) «')*>'»
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which implies by Lemma, 1

\ v ( t ,  x )  | < 0 « J - t d%'
C *o+ l* -*T )e '

Next we estimate the integral (9) in  different cases;
i) If t0/2< t< 2fo , then

f t dx'
(t2+ |й5' | а) ^  Cfo+ |a> -a / | a)“

" le—;
f dx'

Я+1 /
ie-»'i>l|L -h i a?' ja) 2 Mto

j*
X 2\
2 >
dx'

\ f + \ x \ * ) ^  № - |® - ® T ) e
О tdx ' , G

r*i_l  | ~l ал® I в+Г"т ! n'H™<л>+и ; j (^-+1^1*)' 2 (*« +  \x\*)~^~
tpdx' ^  О

J <Л +  I « - * ' I a)e ^  (to +  N  2)° ’

which can be controlled by \aTT~rs\o in  view I * o | «о*

ii) If t< t0/2, then we can obtain

t dx' ^  G
1 .ie- e,(s>!|L (f2+ (a,'!2) - ^  (to +  k - « T ) °  ( ( t —to)s - f |®|а) л

as in  the case i ) . Moreover 

f ______ t____________ d x '_____
( f  -b|a>'|a)'2̂ i‘ (< o + l« -® T )e 

f dx'
" \er.—tr.'

t
n+1

(t3+  \x \a)~~Z~ (*o+|®“ -®'l*)*
GUq 20 Г г*"1 dr 

n+1 I ш_ (1 -ы 2) 0(fa+  (жI'2) 2 2 «о
Ottgи-2в \X\ G

(̂ 2 ̂  | Q, | s)~^“  to to® ( ( t—to)2+  |# |a)

| a? |”-2®
-ЙТ-! ‘ ^ --------L—L~

(ta + 1 a? |2) 2 J'<

if to >■ 2 ’

GUV** -f r n о

(9)

H
(4 « + |* |а) ^  " ( ( * - « а+ № ) * ’ “  *0<  2

in ) If t> 2 t0, we can discuss the cases |®| > t  and Joi| <{ separately. Then the 
Similar argument verifies (8).

L em m a 3. I f  v is the solution to

f (A -a ,(D e) > - / , #($, x),

M»~o- # .( » ) ,
where h and gu are the same as in Lemma 2, and

(10)
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then the estimate (8) still holds.
Proof Obviously, we may assume gfo= 0. In  order to obtain the desired estimate, 

we consider

X =  Jo j" Qt-а ® d x ’ d s = Jo *  ds.

When t0> t, we write

I = I 1+ I a= f24_t4 d s + r  *ds
JO J 2f—fo

(In  the case 2 t—t0< 0 , we take I i —O, I 2= I ) ,  where
G (t~ s)______________ da?'_______

( и )

i*i 4 ((<—s)a +  |a?'|a) 2 ((t0- s ) a +  j® -a?'|a) e+¥

< < ? [ (« - to) 3 +  M 2] -0^ .
Therefore

112! <  О (t - 10) C (t -  to) 3 +  | ® fa] <  0  [ (t - 10) 2 +  | a? | a] -e.
To estimate I lf we notice that s < 2t —10 and then t —s<to—s <  2(t —s). Hence 

the argument in  the case i) of Lemma 2 shows

I * | C(^o-s) 2 -h | a; | 2]
which implies

|I i | <  Q)o (#o-s) C(to-s)a4- H 3] -0-1^

< 0 [ ( to -s )2+ |a ) |a] - 0| r <”< 0'[ ( t0- t ) 2+ !a ;|2] - e.
pato-t ft

When t>fo, we may rewrite I  as г +1 and the similar consideration stillJ 0 J
works.

Lemma 4. I f  и satisfies
P +(D)m= 0,
8su
dts t=o“ «#.(»), j - 0 ,  - Л - 1 ,

(12)

m+
where the symbol P+ (v, ff) o f P (D ) has factorization П  (w—̂  )) and each X, (£) Aas

i-i
positive imaginary part, assume fo r  any pseudodifferential operator fii (A )  with 

positively homogeneous symbol o f degree l, andtX,a< ,-^(n~m ff),

I M .W |< o (fS + |al|a)-“-a+!>'*, (13)
then the solution и must satisfy

\u(t, a?)|< 0 [ ( f - t o) a+ |a? |a] - e.

Proof Set Mi= (A  -  ha ( A ) ) • • • (A  -  ( A ) ) w- Then Mi satisfies

(14)
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where

(A—Xt ( A) )ma = 0,
Ui\tr=o^hjtf

Л'?о==5г̂+ 1— —̂ + 'W ( A  ) ) gln̂~a -b«”e
+ (-1 )—% (A )-x mXD«)gl,

which implies ;

By virture of Lemma 2, we have
I ux(t, x) | < 0  l ( t -  toy +1 ® |a]

Moreover, we set щ — (Dt—Я8(A ))* ” (A -km +(A ))w , which satisfies
(A  -  К  (A )  ) Ma= Mi (t, <c),

where

(15)

(16)

t 2 „m+-2nu, — yu (**(A) + “‘*+̂ т+(̂ в))̂ П+”3+
and Дг20 satisfies

+  ( ~  1) m+"% ( A )  *' ( A )  y?e»

|Л и < а д + | а !| а) - в- (т- а)/2. ;
Using (16) and Lemma 3, we have

\u*(t, a5) | < a [ 0 - i 0) 2+ |c c |2] - ,t- (,”+- 2)/a. (17)
Successively proceed in  this way, (14) is obtained.

R em ark . If P (D ) can be factorized to P +(D )P^(D ), where P+(D) (P_(D )) 
has only roots with positive (negative) imaginary part, then и certainly satisfies 
P (D )m= 0. I t means that the solution to (12) also satisfies

fP(A>M=0,
8}u
8tr f=0

(18)

moreover, the solution is unique in  the class of bounded functions. Therefore, 
if we replace P+ (P) in  Lemma 4 by P  (D), then the estimate (14) remains 
valid.

Lemma 5. I f  G is the Green’s function at x0 o f real elliptic operator P(JD) of 

order m in R n, satisfying conditions 83WnG=0 (^j=0, •••, ~  — 1  ̂on xn=0, then the

estimate
\DaG(x, % )|< < 7 |ж- я0|т"”н<*1 (19)

holds, where n is large according to the meaning in the beginning o f this section.
Proof Let x0,i =  ••• =a)0in- i = 0, and E  be a fundamental solution at x0 of P (D ), 

determined by (4), when « is large,;we have
| xfnE | < 0 1 ж - a)0| m~n~l, (20)

where ipi is a pseudodifferential operator. With positively homogeneous symbol of 
degree l. Now we denote xnb j  t, and define
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9u 0 )
&F
8i} f=0

*1
on t —0. Then gi0 satisfy (13) with <z = —(n— m ). Let F  be the solution to

A
f P +(Z ) ) P -  0,
’ &F  I _  } (21)

then F  satisfies

| P | < 0 |a ;-a5o|w"n.
As for the estimate of derivatives of F , it oan also be deduced from (21), the 
conditions for gsh and Lemma 4. Finally, taking Cf=E — F, we obtain the lemma.

§ 2. Estimate of Solution to Homogeneous 
Dirichlet Problems

The solution to P(D ) ==/ in  {<cn >  0} with homogeneous boundary conditions 

— 1 )̂ can be expressed by Green’s function in  Lemma 5, that is

w(®)-f G(a>, y ) f  (y)dy. (22)
J Vn>0

Now we are going to deduce the conclusion м £  Om+i?,s from f £ O y,s by means of the 
estimate (19).

L em m a 6. Denote by Bh(x) the ball in BP with center at x and radius h(h<. 1). 
I f  (7 , 5) satisfies

0< 7 < 1 , SGJR1; or 7 = 0, 8>1; or 7  = 1, 8<0, (23)

f \x —2/ |Y_" ( l+  IIxxIcc—y \\)~ sdy<;Ohfi(±-ln ft)-3, (24)J Bh(a>) 1 1

f J m—2/1 Y~n-1 (1 -f I In  I x —у  11) ̂ d y ^ O h f”1 (1 —In h) ~ъ, (25)

then

where (7 , b) is determined by (2).
Proof Remove the origin to се and use spherical coordinates, the left hand sides 

of (24), (25) can be reduced to

6>n_i f fY_1( l  — l h t ) -ddt, £*>„_if iY_2( l —In t) ~s dt.Jo Jft
i) For the first integral, if 7 > 0, S<0, take h ^ h 2, then

[ iY_1( l  —ln£) _adtf< ( t ^ 1 t 2( l —ln t)~ sdt +  f iY_1( l —Inhf)~*dtJo Jo J hi

<  О (ЛГ*+ (1 -- In h) -dhy)<Ohv (1 -  In  h)
if  7 > 0, 8> 0, then
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f  t7' 1 (1 -  In  f) -* d t < ( l -  In  h) ~a f  t7-1 di^O h7 (1 -  In  h) ~a; 
Jo Jo

if 7 = 0, 5 > 1 , then

( t-1( l —1п£)~а<й5=-^Ц-(1—In /j) -(a-1)o 
Jo o — l

ii) For the second integral, if y < l ,  8< 0, then

f  t7~a (1 -  In  t) ~B dt<  f1 t7~a dt (1 -  In  h) ~5< Oh7' 1 (1 -  In h) ~а{

if 7 < 1, 8> 0, then
Г1 fV7~ f  1
\ t7-aO . - l n t y adt=\ t7~a(1- I n  t)~adt + \ J 7~a( l - l n t y adt
J h J h J Vft

<(7(1-1п&)"а*7“1|£'1 +о' f1 t7~adtJvF
< < 7 ( l- ln  h y ^ ^ + O h ^ ^ G  ( 1 - ln  h )-ah7S

if 7 = 1, 8< 0, then

f1Г 1 (1 -  In  t ) ' a d t= rr^-jr (1 -  In  t) |  R t f (1 -  In h) -<•-«
Jh 1 — 0

Thus the proof is complete.
Lemma 7. Let B t= B b(0) fl {®«>0}, f £ 0 7’s(B t) . Then 

W= f  G { x -y ) f( y )d y £ O m*7 ~a(B \),

where G is the Green’s function given in Lemma 5.
Proof Since (PGQjo—y) has only weak singularity \ x - y \ m~n~M, we have

d% (n{x)^\ dlG{oa-y)f{y)dy, | a j < m - l .  (26)
J П+

Its derivatives of wth order can be written as

д^д*оу(х) =  [ dKj8%G(x-y) ( f ( y )  - f ( x ) ) d y  
J R+

- / ( * )  dlG (x-y)oo$(y, yi)dy, \ a \= m - l .  (27)

Here we have assumed j< n , hence there is no integral on y„ = 0 in  the second term 
on the right hand side. К ееа11/£07,а and (7 , 8) satisfies (23), we affirm that the 
first integral on the right hand side is convergent.

For x, x £ B i ,  writing A= \ х —х \ , £ =-^-(ж4-ж), we obtain
Ja

eeidZw(x)-daj8Zw(x) —f(x) f (8%G(x-y) - 8%G(x-y))cos(v, y,)dy
J3B%

+ (/(»)-/(«)) f 8%G(x-y)<so8(v,yi)dy+ f da$,G (x-y)  (/(sc) - f (y) )dy
•'SB* f)
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+ f dt& & (x -y )  ( f ( y ) - f ( x ) ) d y +  f dej8%Gf(x-y)ty(f(x)  - / ( » )
3 BinBtio 3в1\вао

+f (0.да(»-») - 0.де(«-у))(/(5) -/(у))#
-I-x+ Is+ Is+ I i+ I 5-{-lQ.

Obviously, | / i |< a |» . - 5 | ,  |1 а| <<71#—i | r ( l +  [In 1 ж—x\ | ) “4. Using (24) in  Lemma 
6, we have

Н з |< о [  |a?—2̂ | |a?—̂ |1'(1 +  IIrt 1 ж—ж| | ) _4% < 0d r(H - | l n d | ) -4.
J baa(s) 1

The estimate for I 4 is the same. Since ihe integrand in  I s is bounded, we have
| l e |< 0 |<r—ж|7(1+ [In|as—£| | ) -4.

Finally, by the mean value theorem, we have

| I e|< U j f  \ х - у \ - п- Ц х - у \ у( ± + \1 п \ х ~ у \ \ у Ы у ,

where x is a point on xx. By v irtu re  of the equivalence of x —y  and x —y in  \ y —f  | 
>A, 1161 < 0^ ( 1 +  |ln d |) - s can be obtained from (26) immediately.

The remainder is to estimate d%nw. Noting P (D )w =f ,  we have

dZw== S  ba&*w+f,
|a |=nt,O n<m

bu t each term on the right hand side is of (Р ,г, then so is 8fnw, hence w G Ofm+<*f'3 and 
the lemma is proved.

Up to now we have completed the main procedure to prove Theorem 1 with 
homogeneous Diriohlet conditions. The remainder work is to “glue” these local 
conclusions and then to pass from the case of constant coefficients to the case of 
variable coefficients by pertubation. This process can go in the standard way, and 
we omit it here.

§ 3. The Case of Inhomogeneous Boundary Conditions

Let us go back to the case of flattened boundary. We have the following lemma. 
L em m a 8. I f  и  satisfies

’ P +( j j )M- 0,
8hu 

■ 8th Ы0 -* (» )> (28)
8*u 

. 8P
0< j< m +—l, j -фЗо,

where P+(D) is an operator as in Lemma 4, then
|u(t, x) I < 0 (fa+  IX12) t> 0.

Proof By Fourier transform with respect to x, we have

(29)
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П(Д-^(£)М*, £>«o,2=1
dhu
dt3°
tiu
dt3

- 1 ,4=0

4=0

(30)

= 0 , j + j o.

Assume that A*, 
as

i

with cft satisfying

•, Хж+ are different from each other .first, then и may be expressed

■ (31)

2 <ь (£)(А*(£))#—0, 0< ) < m +- l ,  j+jo, 
^ s( i ) ( i ( i ) ) ^ = i .

(32)

Since det | (^*(£)), U=i,•••,»»+ ¥> 0, Ci (£), •••, cm+ (£) can be'determined uniquely.
^==0>*"#W+-pl . (

Furtherm ore, we have
all сй(£) are homogeneous of .(—jo )th degree.

By Fourier inverse transform we obtain
m* C- -

w(f, ж) =  2  Cfe(£)eiM*ĉ e<e* d£. (33)
ft=l J

When i+  | ж | ^O, the integral is continuous with respect to t and ж. Moreover, 
и (t,x) is homogeneous of degree — м + / with respect to 2, a?, thus it implies (29). 

Now if  P+ (ж, £) has m ultiple roots, then the solution to (30) is of form

u(t, £) =  Equity £)еиыо
K=1

(34)

where A.*, •••, h  are different from each other, Afc is a root of P +(v, £) with
l mt—1

m ultip lic ity -?%, 2  ть =  w +> <?»(£, I)  =  2  9Vs (£)is- Noticing that the coefficients
f t= l  s= 0

determinant of the linear algebraic equation satisfied by (frc,s(£) is nothing but a 
derivative of Vandermonde determinant, we may also determine gfc,s(£) uniquely 
as a homogeneous function of degree ( — jo+s). Substituting them into (34), we 
come to the same conclusion (29) readily.

Remark. As in the rem ark after Lemma 4, we may replace P+(D) bу  P(D ),  
and additionally ask и to be bounded, then the estimate (31) is still true.

Now let us complete the proof of Theorem 1 .
By v irtu re  of the linearity of the problem and the conclusion in  § 2, we only 

need to discuss
' P(JD)w*= 0,
83°w
dx{° <v„=0
8sw . . . .

8Pn «»=0 =0 Q + jo ) .

(35)



Here we have come back to the space (ccx, •••, xn). Therefore, when we apply Lemma. 
8, n must be replaced by » —1: Denoting by H ( x 1, xn)the solution to (36) with 8{x') 
replacing gsfx'),  we obtain .

w(x', жи) = | я ( a / - y', xn).gh(y')dy', (36)

which is just the integral studied in  Lemma 7. In  view of

13“Я | <<7[ |a '- y'\*+ xll
g h ^ .^m~3a+y’8) it is easy:to obtain w'^G m~u'hh+ŷ = o m+y,z by the,same way as that in 
Lemma 7. Furthermore, noticing the remark in the end of last section, we can 
transfer the result to elliptic equations with variable coefficients in  a genaral 
domain.

Remark. The above proof is proceeded under the assumption that n is large.
■ . H+fc

Otherwise we may consider P = P  +  2  an-fi replace problem (3) by
,‘=n+1

P(x,  D ) u —f ,  in  Q x D

Diu—gt, on dQ X D, ^

where D is a periodic domain in (xn+1, •••, xn+lc) , and и is a periodic function in 
these variables. Since the theory on elliptic boundary problems is applicable to 
(37) and the conditions on 8Q X D are still of Diriohlet’s type, we may confirm that 
any solution to corresponding homogeneous problem for P  in Q x D is in  G". Noting 
that if we regard any function / (%, •••, xn) in  Oy,s as a function of xi, •••, x„, xn+1, •••, 
Xn+ic, it is still in  the class with the same indices. Therefore, the desired property of 
u(x1} •••, xn) can be deduced from the property of solutions to (37), and the later 
has been established.
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§ 4. The Case 7 = 0 , S<1

As a complement of Theorem 1, we discuss the case y —0} 8<1 . The 
corresponding proposition is:

T heorem  2. Under the same assumptions in  Theorem 1, but replacing by {7 — 
0, 0< S< 1} the other restrictions on (7 , 8), гие hme

M£Cro»-i)+i,e-i(0 ) . (38)

Proof The technique to prove Theorem 2 is similar to that in  Theorem 1 . 
W hat we have to do is to find the analogue of Lemma 7, which should be read as 
follows.

L em m a 9. Let 0) f ] K > 0}, (0< 8< 1). Then

«0= f e ( . c c - y ) f ( y ) d y £ 0 ^ ^ * - H i n ) ,
J Bt
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where G is the Green’s function.
Certainly, if Lemma 9 is true, then the whole procedure in proving Theorem 1 

can be translated to the case 7  =  0, 8<1. Hence (38) holds.
The proof o f Lemma 9. Noting that cPG(x—y) with |a | — m —1 has weak 

Singularity 0 (|a>—y j_n+1) at »=«/, the proposition is then reduced to verifyng

J p)f(p)dp  £ G0+1,a'1
if / £ 0°,a and g{po—y) —0 { \ x —y\ ~n+1) . As in Lemma 7, taking x, %(~Bi and writing 

A — \ x—x\,  £ we have

I g ( v - y ) f ( . y ) d y - \  g ( x - y ) f ( y ) d y
} в\ J Bt

< | f  ( g ( . ^ ~ p ) - ( g ( x - y ) ) ( f ( y ) - f ( x ) ) d y

+  g ( . o } - y ) - g ( x - y ) ) d y f ( x )
]JBt

+  f ( \ g( . x-p) \  + \ g ( ® - y ) \ ) ( \ f & ) \  + \ f@)\ )dy  
J Bs(f)

- I i + I .+ J e .
Since J 2 amounts to the corresponding integral for the solution to P(7 ))m= const., 
which is smooth, we have 112| . The estimate | I 3| < Oj ®— is also
obvious. As for I lt by the mean value theorem

l x< 0 \ x - x \ ^ - j y | . - ( l+  | 1п|аз— y \ \ )~ 4y .

Using spherical coordinates the integral on the right hand side can be estimated by

o  f  ^ . ( H - l l n t D ^ d ^ O C l + l l n d l ) - ^ - 1).
J A t

Combining these estimates together, we have
| * (1 +  | In [as—m | I)-»"1»,

which implies Lemma 9 immediately.
R em ark . The special case m —2, 8 = 0 is considered also by T. Kato in [8]. 
Summerizing our conclusion we may define a smoothness gain map on the plane 

(7, 8). Let B% be the right half plane 7 > 0 , Г  be the set {(Is, 1)} with integer h. 
Then every point on P £ \P  corresponds to a class of function with given m ulti- 
Holder index under the convention:

<7 , 8)-»OW+(Y- W)>s, if уФ [7 ] or 7 =  [7], 8>0,
(7 , if  7  = [ 7 ] , 8< 0.

The smoothness gain map M  on В + \Г  is difined as
(7 , S )-» (m + 7 , $),

where
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’ > U r , * - i ) ,  t f r - M -
Obviously, according to Theorems 1 and 2, the map M  corresponds to the smoothness 
gain of solutions to the boundary problem under above convention. This map has 
jump at a ll vertical line y — [7 ] , and the domain of M  has holes Г  on B%. Comparing 
with the case of classical Holder estimate, the smoothness gain map is defined on 
B l\N ,  where N  represents the set of all natural numbers, and Ж* corresponds to 
the classical result Pm £  Cy=$u £  Om+y. Obviously, the map Ж is a refinement of the 
map M1} and the appearance of the holes offer us the room to refine the result 
further.
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