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GLOBAL MULTI-HOLDER ESTIMATE OF
SOLUTIONS TO ELLIPTIC EQUATIONS
OF HIGHER ORDER

CrEN Sﬂtxmé « pz'f;&g 7)™

S Abstraet ©
. In this paper the global multi-Holder estimate of solutions to g'enéi'al"b(')ﬂndary value
problem of elliptic equations of higher order is discussed. Let  be the’ golution of Pu=Ff of
| m~th order elliptic equation with Dirichlet conditions - . :
o Diu=g, 0<j<T—L,
where f € 0"%(Q), g;€ Om*7 "(3{.?) with {0<y<l, &€ R} or {y=0, 6>1} or {y=1,

K 8<0}. Then w€ Om+7:3, vhere (%, 8) = ('y, 6) if: 0<'y<1 and 8¢ R, (%, §)=(y, 8=-1) 1f
=0, 8>1 or y=1, 6<<0. Moreover, in the case y=0 and 0<<d<1, y€ Cm~D¥10-1 .. -

. In this paper:we will discuss _:the global multi-Holder estimate of solutions o
general boundary value problems of elliptic equations of higher order, The_ ‘multi-
Holder norm of a continuous function f in a given domain Q is defined as

o flok sup o M@SOL

Where 0<7<1 SER1 and d<0if y=1, §>0 1f7 0. For any mteger m,
| N N Flovoe |

Correspondingly, wé denote by C7*(Q) the sot of funotions with finite norm|.|,,s

it forms a Bamnach space equipped with this norm. If P is an elliptio operator of
m™ order on domain £, then it is proved in [1] that Pu—.f EO’“’"(.Q) implies
u€ O™HE(Q'), where Q' cQ and -
~ , 8, if 0<y<1, 3C€RY, -
( 8>={§7 5—1), if y=0, 8>1, or y=1, 5<0. @
The aim of this paper is to extend this estimate to boundary Value problems. More
preelsely, we will prove the following theorem.
. Theorem 1. Let P(x, D) be an elliptic operator with O coeﬁicrwnts on domain
Q fwhose boundary 8Q is smooth. Function u satisfies
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{P<w, Dyu=f, -

Diu=g;, 0<j <—g’——1.

CIf FEQT(R), g, €O (90), and {0<y<1, € R} or {y=0, §>1} or {y=
1, <0}, then u€ 0’”""7'3@2) , Where (¥, 8)-is determihed according to (2).

§ 1. Estimate of Singﬁlaritiés of Fﬁndamental Solutions
to Elliptic Equations of Higher Order

Since the proof of Theorem 1 can be localized and the boundary can be flattened
for a bounded domain, we may assume that Q ig the upper, half plane and the support
of u is bounded. Moreover,. the problem oan . be reduced to the case. of constant
coefficients by means of freezing coefficients, and the lower order can be omitted.

“Then we may also assume that P ig'an elliptic operator of homogeneuos order m
with constant coefficients. '

It is well known (e.g. see [3]) that P (D). has fundamental solutlons E Wlth
the followmg form- : Lo

E=E0—Q(w)10glwl, 4)

where H, is a homogeneous function of degree m—mn, -of 0= in R"\0, and'Q is a

pdlynomial, which vanishes in the case n>m, and

N — Liw, £ (2m) "
Qe )_Jlfl -1 P dg- (m—n)!"’

‘ Therefore we have the estimate in the nelghborhood of origin as follows:

o O(|a|™"1=), 1fm—’-n—{oal=ﬁ'0, -
lDlﬂl~{0(1<>g-lwl),? ©if m—n— |a| =0. (3)

‘The solution (4) is nob suitable to giving boundary estimates of solutions to

boundary value problems. Instead, we will use Green’s function——the fundamental
solution satisfying Dirichlet boundary conditions. Besides, by increasing the number
of variables we may assume that n ig large enough such that Q(¢) in (4) can he
regarded as 0. This treatment can save us much trouble, it will be explained in
more detailes in the end of section 8 (see also [71).

Lemma 1* Suppose (&) is a positively homogeneous ﬁmct@on of degree 1 with
respect to € R*, Re w(§) < —oo| €|, Then

Je"“’“’e“”" dfl (I l iy )n+1" y>0. ' | (6)
]+

Proof Denote

{ ¥ The author would like to thank Prof. A. Nagel, who led me to this simple proof, .
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Q,(a) = |e"®Ogietqs, P (o) = f ¢ VElgge,

Then o
O,y
P(‘”) -‘-‘*—"‘"—.—\.y;—nr»
@ +y?) T
where
— On 1 w1
O”""ZW 2 T( 2 )u’
We have

%o =F ® = ’ I (¢"® 456*”".')4;*#.; dsé l

--==y"'< Jm & (ew@) ‘w%y dé[

l-’Dl
o “’ m(e)__ e"“*)e - dfl)
¢ i§1 >,7,;|-' §

Let us estimate the terms inside the parentheses If |w| >:1/, ‘nhen

the first term < L{ iﬂdf oY £ In+1: . R

the second term < y (e‘°°‘f‘+e Y dE<0e m <C lg{:f“
. ifl .
therefore, 4 , S
@@~ Py@)| <0 l,,ﬂ W
lwl”+y”) E
And if || <y, it is obvious that
|9(0) = Py(@) | <y~ | [0 o) o7 g
Cy

<y™ J(ew(f) _l_e-ls'l) d§‘<0y-n < T
| » (Jo|?+yD7%
whence the lemma,
Lemma 2. If v és the solution o

D;—A(Ds))v=0 :
{Spr et ™
‘ v I‘t::O =Gt (w)’ . o
where x(g)‘ has positive imaginary part, and is a positively homogeneous function of
degree 1, | g, () | <C 85+ |2|®) ~® with —%—>a>0 then .*
lo(t, @) | <O((t— to)”+|wl“’)‘° o - ®
Proof Denote w(€) =M (£). We have

v(t, ®) = J MO, (£)dE = Qy(#) *!Ito (2) = th (@) gi.(2—2")do,
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which implies by Lemma 1

| do’_ |
s o ©

Nexit we estimate the integral (9) in different cases:
i) If £o/2<<t<2%,, then

J ] do’
(o oy "5 Gotlo=al)"

] - do’
<I,,_w,l>m (t”-l-lw’l") o ((t2+_J_)

+J Ot da’
le—a’| s'lﬁl' (t9+|€vl9) 22 (Bt ]e—a']%)T v
<(t2+|0w|2)uj L EE A ¢ AT
o (t”+lw’l2>~% (# + |o]%)2
lm——c’l<-’!‘— (t0+‘w wllg)d (t2+lw|2)" ’
which can be controlled by = to)? TTa] 2)0 in view of It to] < To.
ii) If t<ty/2, then we can obtain - :
lo (to+]w 7T (G- to)2+]1v|-’)"

le—e’l> 5 (t9+ la;’l2) 2

as in the case i). Moreover

j' t do’
16—a?| <5t (t? —I—lfv,lﬁ)‘njfl' G+ |o—a'|%)°

DRI S
<t2+lwlﬂ)-"—“§l lo—ari< 2L B+ [w=a'1%)°

< Oty j ' ™t dp
-+ 2|27 5 r<ﬂ’i(1+"‘2)°
Oty z C
@+ o] E Itﬁl < N (GEAEErDL 1ft°>'
<
Oty - Ot]w|m2e 2
- _iaf oIS - SG=—w 2)'"1“°<“"'
GEAVIDRERRES ~ LGIEIDEN e (C=0) '+ [a]

11.1) If $>24,, we can disouss the cases |¢|>% and ]w] <t separately Then the
similar argument verifies (8). : ' '
Lemma 8. Ifwisthe solution to
| {(D» M(De))v=Fut 2),
’Ult—o—gto(f”):
where A and g,,, are the same as in Lemma 2, and

- (10)
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(s, @) | <CL(— to)2+[m[2]'“‘ n—1 - =0,

"hen the estimate (8) still holds.
Proof Obviously, we may assume g;,=0. In order to obtain the desired estimarte,
we consider

¢ ) ' ¢
I=[ [ Qi) futs, a~oao’ ds= »ds. (11)
. : * Be e
" When to=>t, we write _
: 2 ¢=to 1
I=I1+I2=Io *ds+[ % ds

: 2¢~to
(In the case 2t—£,<<0, we take I;=0, I=I), where

I*I<J' 0(#"8) da’
Skl s
(E=92+ [|¢'|")7F ((fo—8) + |o—a'|?) " F
<O[(t— o) + o517 F

Therefore

11| <OGi—t) [(~ o) + 0]~ 2 <O’[(t t0)?+ o] 1.
To estimate I, we notice that s<< 2t—4, and then t s<to < 2(¢—s). Henoe
the argument in the case i) of Lemma 2 shows

. |#| <O[(fo— s)ﬂ+iwlﬂ]""‘“
which implies

|13 < Of jt_% (bo—8) [(fo—8)?+|o|?] "2 ds -
<O[(fo—8)2+ |0]2] 0|3 +<O[(fo—1)+|w|*] ™.

2#0"‘
When ¢>1,, we may rewrite I asj +j‘ S ‘and the similar consideration still
2 (2]

works
Lemma 4. If u satisfies
.P+<D)u=0)
. . (12)
Jl‘é%‘ t=o=gij¢(m)r j=0, -+ ,m,—1,

where the sg/mbol P,(z, &) of P(D) has factorization ﬁ(w%(f)) and each \; (€) ha's
posisive omagonafry part, assume for any - pseudodoﬁemntoal operator in (D) wotk

posotrbfvely homogeneous symbol of degree 1, and 0<a\—— (n~m,),

| g (@) | <O(B+ || +-0+0%, - (3
then the solutoon w must satisfy - o
ulh, )| <Ot + a1 (14)

Proof Seb uy=(D;—Aa(Dy))*** (D~ (Do) )u. Then u, satisfies
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Dy —71(Dy))us =0,
{( t 21(.1‘»))“.1 . (15)
Uz | s0=Pi,y
where
| B= g — (Ma(Dy) Aot hy, (D)) g2 4eeo
+ (=)™ (D) Ao (D) g2
which implies : '. C ‘

R | <O+ |w]2)o-m-vr2, '
By virture of Lemama 2, we have | G
lug (3, @) | <O~ to)?+ || 2] ~o-tme-0r2, (16)
Moreover, we set us= (D;—As(Dq) ) +++ (Dy—Am,(D,) )u, which satisfies
(Di—1a(De))ta=us (4, @),

g
Ua ' t=0=N to
where :

=gt — (A (Dg) 2+ A, (De) ) g7~ 2 oo+ (= 1)™ g (D) ++ An, (Do) g9
and A7, satisfies
|8, <O(83+ |w|2) -o-tm-2/2,
Using (16) and Lemma 8, we have _
a3, ©)| <OL(t=0)*+ || 1 emeos (17)
Successively proceed in this way, (14) is obtained. L
Remark. If P(D) can be factorized to P, (D)P_(D), where P,(D)(P_(D))
has only roots with positive (negative) imaginary part, then u certainly satisfies
P(D)u=0. It moans that the solution to (12) also satisfies

P(D)u=0,
iy | ' (18)
{%{;— _ =g @),

moreover, the solution k’is unique in the class of bounded functions. Therefore,
if we replace P,(D) in Lemma 4 by P (D), then the estimate (14) remains
valid. ,

Lemma §. If @ is the Green’s function af o of real elliptic operator P(D) of

order m G R", satisfying conditions 84,G=0 ( §=0, <, —727—"~—1) on @,=0, then the
estimate - B
}D“G‘(w, @) | <O|@w—2o | ™% - - (19)
holds, where n is large accwdmg to the meaning in the beginning of this section.
Proof Let ag,q="1+ =, ,._1-—0 and E be a fundamental solution at @, of P (D),
determined by (4), when n is large, We have ' . :
[l | <O|o—mo| ™Y, ' S (20)

where i, is a pseudodiffereritial operator, with: positively homogeneous symbol of
degree I. Now we'denote ,. by ¢, and define. e
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&
H =2
[N (w) 8_04 £=0

on ¢=0. Then ¢{, satisfy (18) with a-—=—%~(n~— m). Let F be the solution to

P.(D)F=0, ,
or\ _ | (21)
3t =0 gto’

then F satisfies :
| | 7| <O|o~ao| "

As for the estimate of derivatives. of F, it can also be deduced from (21), the
conditions for g{ and Lemma 4. Finally, takmg G=E—F, we obtain the lemma.

§ 2. Estimate of Sohition to Homogenebus
Dirichlet Problems

The solution ’to"P(D) =f in {®,>0} with homogeneous boundéry conditions

D} u=0 (O< i< E——- l) can be expressed by Green’s funection in. Lemma 5, that is

u(@)={ &G, 5 @) [e2)
Now we are going to deduce the oonclusmn u € O™%E from FEOY* by means of the
estimate (19).
Lemma 6. Denote by Bu(w) the ball in R" with center a,t @ and radius h(h<1).

If (v, 8) satisfies :
0<y<1, 8ERY or y=0, 3>1; or y=1, §<<0, (28)

then - |
L( | le—gr |In|o—y| |)dy<OrT(1~1n )~ (24)

—y|r "t —y| e ¥-1(1 — -3 \

L‘m\m) lo—y|7 (1+lln[fv y| ) dy<OR¥1(1—1n h)3, (25)

where (7, 8) is determined by (2).
Proof Remove the origin 0 & and use spherical coordinates, the left hand sides
of (24), (25) can be reduced 1o '

h i 1 :
. j 11— 1n6) - &, m,._ifh £1-2(1—Int) = di.
]
i) For the first integral, if >0, 5<<0, take hy=A?, then
Jt‘/‘i(l Int) 6dt<j 5 (- 1nt>—6dt+[’ 11— Inhy) "0 d

< O (B4 (1—1n h) ~K7) <O (1—In h) %
if y>0, >0, then ' :
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j Z 7-1(1—1n §) P di< (1—1n k) —aj: 71 Qi< OR (1~ In )%
if y=0, 3>1, then ‘ |
IZ 1(1~Tng)?di =1 (1-In B) 0",
ii) For the second integral, if y< 1, §<0, then
J : 1 (1-Tn ) di< f 1 7235 (1—1n ) ~*<OR"1(1—1n )"
if y<1, 6>0, then ‘ A
ﬁ #1751~ In 8) 0 db= :"—h-ﬂ (1=Tn 5y ds-+ :ﬁt”’fg(l——ln D-tdt

<O(1—Iln k)= ¢-1|y +0 f_tv-ﬂ s
, Vi
<O(1—1n b)Y 14+-ORY-V3 O (1—1n b) K74
if =1, 8<<0, then . ‘
1
S Jh t"i(l-'-ln t) -8 dt=1t1_-7o\-(1—1n t)i—a l ;1,<0’(1—1n h) —(0—1).

Thus the proof is complete.
Lemma 7. Let Bi =B,(0) N {x,>0}, f€O"*(B}). Then

w= L;G<m—y>f<y>dyeom+ﬁ<m>,

where G is the Green's function given in Lemma 5.
Proof Since &G (w—y) has only weak singularity |z—y!™"'* we have
Go@=| oG@-9fW)d, |a|<m-1. ()

Its derivatives of m'™® order can be written as

0,80(a) = 0.056 =) (F4) ~F @)y

~f@|  a6(e—v)e0s(v, y)dy, o] =m~1. @)

5B}
Here we have agsumed j<n, hence there is no integral on y,=0 in the second term

on the right hand side. Recall f €0V'% and (7, 8) satisfies (28), we affirm that the
first integral on the right hand side is convergent.

For », o € B}, writing 4= |_m—5|,§=—:2[-(m+5), weo obtain

aaua:w (E) ‘-%,af;fw (m) =f(m)‘|. + (%G(m_y) _%G (E'—'?/) )608(”: yi) dy

+(F@—1@) |

9B}

&6 G—g)eos(rydy+|  0,20G0—9) (F @ ~F @)y

BinB4LH
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+IB+OB . 0,056 (2 —y) (f(?/) “'f@))dy—i—j‘ 0,226 (w—g) dy (f (@) — £ (7))

Bi\BA($)
+IB"\B - (a%agg(w_ ?/) - a@ja;G(E - y)) (f(;?) —f(g/))dy

=11+Ig+13+14+15+16.

Obviously, |I;|<O|e—%|, | Ia| <O|o—5|"(1+|In|o—z||) . Using (24) in Lemma
6, we have

IIal<ofM - lo—y|*o—y|"(1+|In|s~z||) *dy<O4r (1+ |In 4]) 2.
v 4

The estimate for I, is the same. Since ihe integrand in I; is bounded, we have
| Is| <O|o—=|"(1+ |1n|w—.f7;| I)"°
Finally, by the mean value theorem, we have

IIeI<04_[ Ja—y| ™z yl”’(1+l1nlw y| D dy,

where « is a point on o%. By virture of the equivalence of z—y and z—y in |y— § |
>4, |Is| <047(1+ |Ind|) ~® can be obtained from (25) immediately.
The remainder is to estimate 87 w. Noting P(D)w=f, we have

pw= D b,,@"‘fw—i-f,v

: Lol =1 0ty <imt
but each term on the right hand side is of 073, then so is 9%w, hence w€ On+%:3 and
the lemma is proved.

Up to now we have completed the main procedure to prove Theorem 1 with
homogeneous Dirichlet conditions. The remainder work is to “glue” these local
conclusions and then to pass from the case of constant coefficienis to the case of
variable coefficients by pertubation. This process can go in the standard way, and
we omit it here,

§8. The Case of Inhomogeneous Boundary Conditions

Let us go back to the case of flattened boundary. We have the following lemma.
Lemma 8, If u satisfies |

“ P, (D)uﬁo,
o _
B 1o~ (28)
u -0 0<j<mt—1, joki ‘
_a'ij— t=0— ’ J<sm 1, J#J0s
where P, (D) is an operator as in Lemma 4, then v
lu(t, @) | <O+ |o|)-20-®, >0, (29)

Proof By Fourier transform with respect to o, we have
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M A .

fi—n@)ic, &=,
dﬂ'o&\ ‘
dt® |1=0
dj& __O O< 9< + 1 | !# ¢
G e~ USISMIL, Jo:

Agsuine thab Ay, -+, X, are different from each other first, then w may be expressed

- (80)

=1,

as , o .

SR i O = Ra@ee (@D
: P . . |

with e, satisfying ‘

N Eok(f) (?\‘k(f))’—"o Q<.7<m+ 1, ]%70,

(82)
J0,(&) (@) 4 =1. R 3
Since det l(?\:k(&))ilk=1,m'm+ . # O, 01 (5), ses, Op, (£) 0an be’ determined uniquely.

Furthermore, we have
. all ¢,(¢) are homogeneous of (—j,)t" degree
By Fourier inverse transform we obtain

ulh @) = 3 fos(@ et dg. e
When ¢+ || #0, the mtegral is continuous with respect 0 # and . Moreover,

 (t,%) ‘is homogeneous of degree —mn—+4 with respect o %, #, thus it implies (29).
Now if P, (#, £) has multiple roots, then the solution to (80) is of form

i@, &)= qu(t il | (34)
where Ay, -+, A; are different from each other, h,, is a root of P+(17, &) wﬂsh
multiplicity my, E my =My, @(t, &) = 2 Qurs (£) 1. Noticing that the coefficients

8=0

determinant of the linear algebraic equation satisfied by gy,s(§) i$ nothing but a
derivative of Vandermonde determinant, we may also determine gy,(§) uniquely
as a homogeneous function of degree (—fo+s). Substituting them into (84), we
come to the same conclusion (29) readily.

Remark. Asin the remark after Lemma 4, we may replaee P.(D) by P(D),
and additionally ask » to be bounded, then the estimate (31) is still true.

Now let us complete the proof of Theorem 1. | |

By virture of the linearity of the problem and the conclusion in §2, we only
need to discuss o

"P(D)w=0,

3j°fw I I
awjo gio(m )) (35)
%"Jwe%x
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Here we have come back to the space (@, -+, @,). Therefore, when we apply Lemmia,

8, n must be replaced by n—1: Denotmg by H (', ,)the solution to (35) with 3(a')
replacmg 95 (2"), we obtain .+

o, =IO,
which is just the integral stadied in Lemma 7. In view of ' -
L i i
laaﬂl<0[lw,—y;lg+wtﬁ] 7(” 1_ Fo—1 |)’

935, € O™ 91708 i ig easy. t0 obtain wCOm—iotiet? 5= Om+¥%:8 by the samé way as that in
Lemma 7. Furthermore, noticing the remark in the end of last section, we can
transfer the result to elliptic equations with varlable coefficients in a genaral
domain. , o

Remark. The above proof is proceeded under the assumption that n is large.

Otherwise we may consider P=P + 1 2 Dp and replace probl_em (8) by

{P(m, Dyu=f, in QxD.

_ | 87
Dju=y;, 0\]\—?——-1 onanD (87)

where D is a periodic domain in (@1, ***, Zwin), and % i a pOI'IOdIO function in
these variables. Since the theory on elliptic boundary problems is applicable to
(87) and the conditions on Q% D are still of Dirichlet’s type, we may confirm that
any solution o corresponding homogeneous problem for P in 2x D is in C*. Noting
that if we regard any function f (w4, -+, ,) in 07*® as a funection of @y, *++, Ty, Vpeq, *+,
Tosp, 1b 18 811l in the class with the same indices. Therefore, the desired property of
w(@y, +++, ©,) can be deduced from the property of solutions to (87), and the later

has been established.

3 4. The Case y=0, 6<1

As a complement of Theorem 1, we discuss the case ¥=0, 8<1. The
corresponding proposition is:
- Theorem 2. Under the same assumptions in Theorem 1, but replacing by {y=
0, 0<<d< 1} the other restrictions on (v, 6), we have
: u EO(m—1)+1 9-1(Q), (38)
Proo f The technique to prove Theorem 2 is similar to that in Theorem 1.
‘What we have fo do is to find the analogue of Lemma, 7, which should be read as
follows.
Lemma 9. Let B*=B;(0) N{w.>0}, JFEO"(B3), (0<0<1). Then

'w=,[ Glo—)f(y)dy €O+ (BY),
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where @ is the Qreen’s function. .

Certainly, if Lemma 9 is true, then the whole procedure in provmg Theorem 1
can be translated to the case y=0, 8<1. Hence (38) holds.

The proof of Lemma 9. Noting that *G(s—y) with |a|=m—1 has weak
singularity O(|o—y| ™) at x=y, the proposition is then reduced to verifyng

Jy(ww)f (y)aycoo+tit
if fE€0% and g(o—y) = O(lm y| ™). Asin Lemma, 7, takmg , a;EB and writing

d=|o—1z], §————(w+w), we have

fmy(ww)f (y>dy—f34y(i—y)f (y)dy

J

+

< (9659~ (9G=9)) (S@) ~F @) a|

Bi\Ba($)

| 90 -gG-)iv-i@)

+f 2t (l9(a— y>|+|g<m :l/)l)(lf(f”)|+[f(m)])d/y

=I,4+Ia+I.
Sinee I, amounts to the corresponding integral for the solution to P(D)u=const.,
which is smooth, we have |I;|<O|w—=|. The estimate |I;}|<O|z—=| is also
obvious. As for I, by the mean value theorem

Using spherical coordinates the integral on the right hand side can be estimated by
2 n—1 .
o L Fo(+ I 8]) 2 @<0(L+ 1o 4])¢-).

Combining these estimates together, we have
| 11+Ig+13<01w—5[-(1+]lnlcv—.ff:] [y-e-D,
which implies Lemma 9 immediately.
Remark. The special case m=2, 3=0 is considered also by T. Kato in [8]
Summerizing our conclusion we may define a smoothness gain map on the plane
(7, 3). Let R: be the right half plane y>0, I" be the set {(k, 1)} with integer k.
Then every point on RZ\I' corresponds to a class of function with given multi-
Holder index under the convention:
(7, B)—=>OUH@=LD2 - if yok [y] or y=[7], 30,
(7, 8)_90(‘Y~1)+1,8 if v=101, 8<0. |
The smoothness gain map M on R\I is difined as

(7, 3)—>(m+7, ),
where
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(v, 8, if y+[7],

. 0 ={(7, & —1), if y=[y].

Obviously, according to Theorems 1 and 2, the map M corresponds to the smoothness
gain of solutions to the boundary problem under above convention. This map has
jump at all vertical line y=[y], and the domain of M has holes I" on RZ. Comparing
with the case of classical Holder estimate, the smoothness gain map M, is defined on
RI\N, where N represents the set of all natural nun;bers, and M corresponds 1o
the classical result Pu€ O=5uE O™+, Obviously, the map M is a refinement of the
map M;, and the appearance. of the holes offer us the room to refine the result
further.
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