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Abstract

For the quasili#ear hyperbolic—parabolic coupled system, the nonlinear initial-
boundary value problem and the shock wave free boundary problem are considered. By

linear iteration, the existence and uniqueness of the local H= (m> [y—g;l]+4) golution

are obtained under the assumption that for the fixed boundary problem, the boundary
conditions are uniformly Lopatinski well-posed with respecf to the hyperbolic and
parabolic part, and for the fres boundary problem, there exists a linear stable shock front
structure. In "particular, the local existence of the isothermal shock wave solution for
radiative hydrodynamic eqations is proved.

§ 1. Introduction

In physical application, one often meets the following conservation law:

N
6,Fo(u, 'v) +2 aa:j-Fj(uw; U, ”) =O)
; (1.1)

8,Go(v) -nﬁ 00,65 (u, ) =0,

where u, F; are p~dimensional vectors, v, @; are g-dimensional vectors, and F;, G4
are smooth functions of their arguments. We write w= (4, v) in the following.

Write
{?0=9¢,F0<'U/, "U), -Ph';':'aﬁFi(fy U, ’D), Zo=auFo<% 'D); QO=60GO<Q’>) (1 2)
Z;=6,,F,-(uw, U, 'D); Qj=3qu<u, '”)J Ei———augi(’u’: Q’) ('?/; j=1) """ ’ N)~ .

Then P, @ are positively definite for the considered w, and (1.1) can be written
as a quasilinear hyperbolic—parabolic coupled system:
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{ut+P£i(uw) u) ’U)uwsmfl"Ai(um u; ’2)) 'vw,-"*‘fi(ua:)u) Q)) =,0)

Lo+Qs(u, v)ve,+ B, (, v)Us,+ fa(u, v) =0, 9
Here, the operators satisfy the following condition:
_ {3t+P¢,-6w‘wj iy 2-order Petrovsky parabolic operator, (1.4
0;+Q;0,, is 1~order Kreiss hyperbolic operator, )

where Py=P, 1P, Q;=8,*Q;, and the explicit form of 4;, B;, f1, fa are of no
consequence and are omitted. And the Kreiss’ hyperbolic operator is defined as in
[8, 11]. In particular, strictly hyperbelic operators and symmetric hyperbolic
operators often mef in physics are Kreiss’ hyperbolic.

For example, we consider the equations of radiative‘hydrodynami@s el
¢ oV (ow) =0, |
(o) s+« (puate) -+ <RpT 20 T4) —0 (i=1,2, 8),

]

V(1 o, pRT | 40 1 % 180 4 (1.5)
(-é—pu-i—y 1+ ~ T> +V-<2pu+7 1pRT+ 3, T>

L -V (g EE)-o

where R, ¢, o, I, v are positive functions or constants.

The first four equations congtitute a quasilinear Kreiss hyperholic system of (p,
@), whioh is also quasilinear of T'. Using the first four equations to rewrite the fifth,
we get a second order quasilinear parabolic equation of 7', whioh is quasilinear of
(p, #) either™, Tt is easily verified that (1.5) is of the form (1.1) and satisfies
(1.4).

Another example is the system of equations of compressible heatconductive
viscous fluids:

ps+V+(pte) =0, ' '
(pui)‘t'{' (Pusua +p86§ _"’.755) &= 0 (’1; = 1} 2) 3) b : (1 ° 6)
pT(St+ (u'V)S) =7,-,-3¢ju¢—l~V° (%VT),

where the viscous tensor

Y5 =" (aw du;—l—&,,,u,- - %- 3¢,.uh8¢j) -+ Z&ﬁ%u,,,
The fifth equation in (1.6) can be rewritten as
T~

u, T) =0,

%
1o

% space variables, and
p0s
linear in Vp. The first equation in (1.6) is hyperbolio with p, the last four equations
form a Petrovsky parabolic system of (@, T'). So (1.6) is of the form (1.8), satisfying

(1.4).
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In this paper, for the system (1, 8), we discuss the nonlinear general initial~

boundary value problem and the Qauchy problem with discontinuous initial data,
the latter is connected with the shock wave solution of conservation law (1.1).
First, we consider the initial-boundary value problem :(1.8) which does not
necessarily originate from (1.1) in a cylinder 2 x (0, o), where QCR" has smooth
boundary 00, noncharacteristic to (1.4). Let = (ny, ++, ny) be the inner unit

- . N
vector normal to 82, and D) @m; has ¢~ negative eigenvalues. For (1.8), we consider
’ c 1

fhe following boundary conditions on 2Q % R}:
v Jl(uw, w, @, t) =0, J.‘a(w: @, t)———'O, Ja(’“’, o, t) =0, | (1'7)
where J, Ja, Jg are b, p—b, ¢~ relations respectively, in which we assume

o/ 3(0, &, 0) =0. (1.8)
For simplicity, we consider the zero initial condition | '
w(w, 0) =0, . 1.9)
Denote . N
0 1(&, w, @, £) | p=0,e=0=J3(, 1),
o s(w, @, 1) |w-0=J2(2, 1), (1.10)
0T s (W, @, £) | w==J(a, ). - |
Let k& >[ N;— 1 ]—1—4. Then one of our main results ig the following theorem.

Theorem 1. For the problem (1.8), (1.7), (1.9), suppose
1°)  All functions have k+1-th order continuous derivatives of their arguments and

are zero order homogeneous of © for large |«
2°) filw=0, u=0 €EH*(QX RY), j=1, 2,
Ji| we0, u~0 € H¥(0Q X RY), j=1, 2, 8.
For bounded Q, 2° follows immediately from 1°.
8°) Zero compatiability condition of k—1-th order:
filw=o,u,=0(§=1, 2) and J ;| p0,u,=0(j=1, 2, 8) hawe zero traces at t=0 up to the
order k—1.
4°) The following two linear problems are well-posed at every point on the

boundary: . :
ut_ Ej:P{j(O, 0, w’ t)uw,ia;_,} =0, én QXR}.,

1y, .
JY (@, u,=0, J3(», t)u=0, on QX RY,
u(w, 0) =0,
{@t“ 21Q;(0; @, 1), =0, in QXRL,

J
JYx, H)v=0, on QX R}, v(z, 0)=0.

Then, there ewists t,>>0, such that in 2X (0, %), (1, 8), (1.7), (1.9) has a unique

solution w & H*(Qx (0, 1)), satisfying



No. 2 Li, D. N. NONLINEAR IBVP FOR HYPERBOLI(‘}-—PARABOLIO SYSTFMS 255

Illtﬁwlll w<oo, V{eOF(— to,ito)w
Here : ‘ :
lowllz,n= J?(llﬂ)ll%.ﬁll@“luwﬂ B+ ] .n+|0“‘1u¢lm B CREY

The study of the boundary value problems for quasﬂmear hyperbohe—parabollo
coupled systems is rather limited in the case of multi-dimen-sional space (of. [8,
13, 22]). Here we have advanced the existing results in following directions:

1% The form of systems: N>1, and there is no restriction on the number of the
parabolic or hyperbolic equations, The hyperbolic part need not be symmetrio, it
should only have a Krelss symmetrlhzer Besides, the coefficients of %" may depend
on Y, which is not permltted in [22]. '

2° The form of boundary . condition: i). The uniform Lopatinsky well-
posedness of the principal part of the problem includes the Diriehlet~Neumann
conditions Adu-+-uu =g as the special case. ii). The boundary conditions for
hyperbolic and parabolic variables v, u may be coupled. iii). The boundary
conditions are nonlinear in u,, « and v. o

3% The regularity of data is consnderably relaxed. For the space HY, ) is reduced

N +1

trom k2 [ X |+6 (. [8, 121) to h>[ XL

]+4, achieved mainly by employing the

techniques of Beals and Reed™.

4% Since the non-local operator .£~! is introduced in tne energy estima,te, a
more efficient and simpler scheme of linear iteration is adopted.

Nevertheless, here we deal only with noncharacteristic boundary, in contrast
with the case disoussed in [138, 18]. |

Secondly, we consider for (1.1) the shock wave solution, i.e., the Cauchy
problem with discontinuous initial data:. ‘

Given a smooth surface So in RY and smooth mﬂual value w§ (#) on two sides
Q. of 8o, we#wy on Sy, one wants to find a surface ;S’(t) and shook wave solution

w* (@, 1) defined and satisfying (1.1) on two sides 2, (¢) of 8(#), such that on S (@)

the Rankine-Hugoniot condition and p su_pplemen_tary conditions hold:

(o (w*) = Fo@™)) + Sy (Fy(u, ) = Fy(us, w7)) =0,

¥ | (1.12)
n;: (G () — G (v7)) +§1] 15(Gy (w*) — G (w™)) =0,
@(u+, 'U/-) =O,
{W(u;f,'u;; wt, w™) =0, (1.18)

where (s, n4,+++,ny) is the normal veetor of §(¢). And w* (=, 0) =wi (#), 8(0) =8,.
Obviously, for given Sy, in order to have the shock wave solution, the traces of
wg (@) on Sy must satisfy certain compatibility conditions.
Let « be the parametrie coordinate on Sy which has normal #2= (ny,-+,ny). Then
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from (1.5), (1.6), in order to have the shock wave solufion, one sees that: there
exists a sufficiently smooth function A(a) defined on S, such that

~Aa) (Fo(au) = Po(wi)) + 3ny(a) (e, 0) — 7 (o 05)) =0,

‘ 1.14)'
N
—4(@) (Go(v3) — Go (v5)) +2 mj (@) (G (wd) =G (w5)) =0.
and o _ _
- . @(%3-, ug) ’=O: w(u&v, u(-)-m, ’w(-‘)l.)’wa.)=0, . (1.14) "
- (M@), ng,+++,ny) is uniformly noncharacteristic with respect |
o the parabolic and hyperbolic systems in 1.8). - © (1.18)

As a usual initial-boundary value problems, wg () should also saisisfy the
compatiability conditions of higher order. In fact, (1.14) is the compati‘ability
condition of 0—order, which are 2p+g relations for 4p+2¢+1 variables, viz., the
traces of w§, u3, on S, and the function A(a). As in [12], the compatiability
conditions of higher order may be obtained by differentiating (1.12), (1.18) with
respect to {. From (1.8), wi may be expressed by uy, and 7. So the m-order
compatiability conditions are 2p+g¢ relations for 2p-+2¢+1 variables 8Mn,, om+lus
and 970§, where 9, is the normal differentiation to S,, and 8/'n; is to be determined
by given ws and 9fn;=A (o) with the help of compatiability conditions.

N+1
2
Theorem 2. For the Cauchy problem of (1.1) with discontinuous initial data

With k> [ ]—}-4, we have another of our main resulis:
w§ (@) having Sy as its jump surface, assume:

1°) 8o s sufficiently smooth, dividing R info two parts: Q, and Q.. S, is a
hyperplane when || >1.

2°) wf € HE?(Q,), vi €EHY(Q.), the space HYy is defined as in [6]. wi are
constants in |&|>1. |

8°) da(w) € HEF? 9 (8y), §=0, 1,--;, m—1 such that (1.14), (1.15) and the
compatiability conditions up to the order k—1 are satis fled.

4°) At every o€ Sy, the frozen coefficient linearized problem of (1.1), (1.12),
(1.18) determined by (0,ud (&), wg (o), Aa)) is uniformly linear stable (¢f. [10]).

Then there ewists a to>>0 such that in [0, to] there s a hyper-surface S(£) which
belongs to HEF (So) as a function on Sy, and 8(0) =8,. S(£) divides R¥ x [0, t] into
two parts: 2, () and Q_(t). There ewist functions w*(w, t) = (u*, v*)E HiF*(Q.(8))
HY (Q,(t)) satisfying (1.1), (1.12), (1.18) and w*(w, 0) = wi (). Besides, such a
shock wave solution is uﬁ@que im the class of solutions with one shock fromt.

Remark. The method to get the uniqueness result here applies also to the
hyperbolic shock wave problem in [12], where only the existence result is mentioned.

Gorollary. For the equations of radiative hydrodynamics (1.5), the Oauchy
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problem with discontinuous initial data has a unique local isethermal shook wave solution
1f the conditions 1°~—8° in Theorem 2 are satisfied and at every point on So, the Law
inequality holds:

ut—a<a<u; —a, ' ' (1.16)

where uy are normal wvelooities on two sides of Sy with 0 pointing from 8_ to Q,
and @ is the isothermal sound speed™®,

This corollary comes directly from Theorem 2 and the stability results of shook
wave solutions in [10]. , _

In section 2, the problems (1.8), (1.7), (1.9) and (1.1), (1.12), (1.18) are
transformed into equivalent forms more suitable for linear iteration. In section 8,
we disouss tne dependency upon the coefficients of the energy estimate for linearized
problem, which is erueial for linear iteration. In section 4, the existence and unique-
ness results in Theorem 1 and Theorem 2 are proved. Section 5 is devoted to the
discussion of some properties for a elass of nonsmooth pseudo-differential operators,
which are used in section 2. _
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and their constant caring and encouragement in my preparation of the paper. And
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sent me the literature [17].

§ 2. Transformation of the Problem

We are going 1o solve the problems by linear iteration. As pointed/ out in [9],
our iteration must depend on the results obtained in [9, 10, 16] for the coupled
system. Since the energy estimates in [9, 10, 16] contain the nonlocal pseudo-
differential operators, it is difficult 1o use the usual method in iteration by estimating
the norms on ¢=17, or the method of Majda in [12] by adjusting % and 7' in the
hyperbolic—weighted norms. Here we will use the technique in [7], where all the
terms containing factors of w or its derivatives are iterated as the left side of the
equation. The advantage of the scheme lies not only on its simplicity, but also on
its applicability o the problem, where the estimate on t=T is not available, or the
estimates contain nonlocal operators. The method here may be used to simplify the
proofin [12]. '

- Using the Cauchy integral formula for the remainder, we may rewrite (1.8),
(1.7), (1.9) into the following equivalent form which will be our sbart point of

iteration:
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Us— 2 Py (U, Wy B, ) Upo,— 2 Aj(Uo, w, @, £)0p,+20; (s, W, ®, $)Us,
+O’u(fw @, Hw="Fy(x, t), A (2.1)
~2 Qs (w, @, t)vs,— 3 B;(w, @, t)u,,,+0’22(fw, @, t)w=Fy(z, £).
To (U, w, @, £)ts+Ts(w, o, )w=g;(, t),

T3<w: z, t)u+'g3('w> @, t)q)==g21(w, t)’ (2‘2)
Se(w, @, )v+Ty(w, o, t)u=gae, t). ’
w(e, 0)=0. (2.8)

From conditions 2°, 8° in Theorem 1, Py, Fa, g1, gas, g2 € .H", having zero traces

at =0 up to the order #—1. From (1.8) follows ' |

o 8:(0, #, 0) =0.
As proven in [9], the stability of linear problem is equivalent to the stability' of ity
adjoint problem when S5=0, and consequently the stability implies well-posedness.
But if the linear problem is well-posed for S5=0, then by continuous extension, one
knows that the problem remains well-posed for small |S]. Therefore we may
perform linear iteration for small |w|+ |£].

For the shock wave problem (1.1), (1.12), (1.18), we will first reduce it to a
common domain - of definition by performing a tra,nsforma“olon of variables which
depends on the unknown shock front.

Let & be the parame’ﬁrlc coordinate on 8;, and n(a) be the unit normal vector at

o E 8. Then for small |B]|, z(a, B) =a+Bn(x) parametrizes a tubular nelghborhood
of So. Thus for small ¢<#;<1, the shock front §(¢) may be expressed as

84 ={a-+B(a, Dn(a), «€8o}, B(a, 0)=0. @.4)

Let p(x) €O~(RY): for some 85> 0, p(z) =1, when d(z, §,) <—‘;—1—; p(z) =0,

When d(w So) >0y. Perform the transformation

z=0—p(2) B(a(®), H)n(a(@)), i=t. - @.5)
Then, #—>z will be a suffieiently smooth dlﬁeomorphmm R*->R* when '
sup  (|8(e, )|+ VB, DD<d,  (2.6)

aEBg, 0ty
where Vm denotes the gradient on Riemann manifold So.

After the transformation, the equation (1.1), or .equivalently (1. 3), becomes
(we denote again the independent variables by (w, £) ):
in Q,%(0, &):
ui+PEus, wt, Bsy B)Uie,+Af (us, w*, By B)vE
+f1(us, w*, Beas Bos Bry B) =0, 2.7
v +Qf (w*, Bay Bi, B)va+Bi (w*, By Bua+fif (w*, Bi, Br,B) =0,
where , : :
Pji=Py(uz, w*) — Py (uz, w*) (0Bns) e, — Pui(t 5, w*) (0Bs)s,
— Py (uz, w*) » (0Bm:) 0, (081;) s
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, Qf = Qs(w*) — pnyB;— Qs (w*) (0B1;) s
while A¥, B, f¥, fi are determined similarly, the explicit forms of which are
omitted because of no consequence here. '
In new coordinates, the boundary conditions (1.12), (1.18) become
{ﬁ, [Fo(w) — Fo(w™)]— [v(a) — (1+Bw) VimB] « [F (u, w*) — F(uz, w=)] =0,
B:[Go(v*) — Go(v™)] — [n(a) — (1+Bw) VBl « [ (w*) —G(w™)] =0,
- (2.8)
{@(w" w)=0, (2.9)
T (ut, uy, wt, w™)=0, :
where & (@) is the Weingarten map: T'4(8o) T, (So). -
Evidently, for sufficiently smooth local soiutions, the Qauchy problem (1.1)
(1.12), (1.18) with discontinuous initial data is equivalent to the problem (2.7)—
(2.9) with the initial condition: _
w*(z, 0) =w§ (z), B(a, 0) =0. (2.10)
Next, we will reduce (2.7)—(2.10) to the case of zero initial data. From the
eompati’bility condition in Theorem 2 and the fact that for |#|>1, 8, is a hyperplane
and w§ are constants, we can construct (*u*, *o*, ¥8) € H2(Q. % (0, t)) X H*(Q,
% (0, 1)) x H%?(Syx (0, 1)) such that the new unknown functions W*=w*—*yp*
and ¢ =B — *#B satisfy the following problem with homogeneous initial condition:
(in Q. % (0, #): .
Ui +*P5(Uz, W*, ay $)Usie,+* 45Uz, W *, day )V 3,
+*0F Uz, W*, $us, boy b1, $)Us
+H¥CHW*, Gooy Prs bay B+ (W™, pdoo, pbay o1, pP)*=fi (2,1), (2.11)
EH*QF W, by bay IV, +*BF (W, dry oy $)Us
+H*CH (W™, i, ba, ) (W, pdy, pdoy pp)*=fi (2, ),
rTg (U;: W+: ¢t, qsdn ¢)U;—T(T (U;) W—) ¢t; ¢a:; ¢)U;
+T (W, W=, ¢, o, @)~ (W, W™, ¢, oy $)=gu:(z, 1),
T3:(U3, Uz, W*, W=, o, $)+ (U3, Uz |
+Tux(W*, W, o, @) (W, W™, o, $)P=g1a(2, 1),
3T(U* U ) (U, U)o =gai(m, ©), (2.12)
[Go(¥o* +0*) —Go(*v™+07) I+ [G (Fu™ +WH) — G (Fw~+W7)]
(L4 B+ P)m) Wianp+#B: [Go (VHVE—#Qo(V)V ]
— [n(a@) — A+ (*B+P)mw (@) Vim*Bl « FF(WH)V* —*G(W)V ]
. +T22(U+: U_: 95) ® (U+: U—: (}S)t"g“?ﬂ‘(w: t)’
| W (@, 0) =0, ¢(w, 0) =0. (2.18)
Here fi, f# € H*(Q.% (0, ¢1) ), g1= (911, 912), ga= (a1, gaa) € H* (8o (0, #1)), and
(f, g) have zero traces at t=0 up to the order k—1. All the coefficients in (2.11),
(2.12) are sufficiently smooth in W#, U%, ¢us, Pa, P1, P, and belong to Hi; in (o, £).
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Straigh‘ufoi"ward oaloulation gives their explicit forms by substituting w* =%*w*+W*
and B=*B4-¢ into (2.11), (2.12) and using the Cauchy formula for remainders.
Hence, by the above procedure, the proof of Theorem 2 is reduced to the proof of
the following Theorem 2’ for the problem (2.11)—(2.18):
Theorem 2. If, for W*=0, ¢=0 in the coefficients of (2.11)—(2.18), the
resulted linear problem is well-posed in the sense of [10]at every posnt € Sy,

N+1
h=| 5 |+4,
and (f, 9) are as described above, then 3ty>>0, such that in (0, to), 2. 11) —(2.18) has

a ungque solution (W*, ¢) satisfying
m (ll"W_y lpﬁb) mlo,n<°°y Vl,b E O(O)c( - tO) to), (2 . 14)

whére
liCw, )T =Nl s+ | | Essne
In the following, we. will iterate (2.1)—(2.8) and (2. 11) (2.18) fo prove
Theorem 1. and Theorem 2'.

§3 The Dependency of the Energy Estimate
upon the Coefficients

1) In order to make use of the linear results in[9, 10] o iterate the nonlinear
problem (2.1)—(2.8) and (2.11)—(2.18), it is essential to know the dependency
of the energy estimate for linearized problem wupon its coefficients. Because of the
localized deduction of the energy estimates, we need only to analyse the dependency
in local coordinates. Thus. we may rewrite (2.1)—(2.8) as

in Q= {(z, y);2>0, y& R¥*}:

{ Us — Pothos — P1jUhoy,— Paspyy, — Aove— A0y, Coip+ Oy, + 011'w Fy, 3.1)
0~ Qove— Qyy,— Botte— Bitty,~+Caqw = Fs, '
T oue+T1juy,+Tow = g4,
Tgu+ S50 = gay, on =0, ' (3.2)
T+ 8= gaa,
w(z, 0) =0, (3.8)

Our main theorem about the dependenoy of the energy estimate for (8.1)—(3.3)
upon its coefficients is the following theorem. |

Theorem 3.1. Under the conditions of Theorem 1, fiwing W= (U, V) €C(Q %
(0, 1)) i the coefficients of (3.1)—(8.8), if the resulted linearived problem is well~

N+1
2

posed, and Iv>[ ]+4, then Gts solution w satisfies the following estimate

Lo llz, <Ol (F; 9 lesrs ' (3.4)
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where

WCF, DNin=E"Fs|3,y+ | Falfnt | & 2g1] fent |92l fons
and the constant Cy,, in (3.4) depends on W only by |[Wx, or consequently depends on
W 5, and 2. -
Slmﬂarly, in looal coordmate after the reﬂectlon s—>—g in <0, (2. 11)—»
(2.18) can be written as the following problem for w= (W*, W) and ¢
in >0, {>0:
W — Poltge— Pajttey,— Pogjtty g, — Agvs— Ajvy, +Cotte+ Oy, S
+C 1w+ Haiybyy, + Bijby,+ Brops + Bsp=F(w, g, £); (8.5)
0t — Qoo — Qvy, — Bty — Bty + Oayw+ Hyyeby,
+ Hsohs -+ Hap=Fa(a, y, t),
on =0, {>0:
T oo +-T'sjity, +Tsw+ Raops+ Rujby, + Rap= 01 (y, ),
Tou= g (y, 1),
bohs + b5y, +Sev+T s+ Racp = 922@/: ), ;
w(z, y, 0) =0, ¢(y, 0) =0, (8.1
where Py, Py;, Py, Ao, A; depend on (Vu, w, ¢y, ¢); Ty, T's;'depend on (Vu, w, ¢, ¢y,
$); Oo, O; depend on (Y, w, ¢, by, by, $); Cus, Hay, By, By depend on (w, ¢y, Py,
by, &); Qo, Qs, Bo, By, Osy, Hyy, Hao, Bay T3, Rio, Ryj, Ry depend on (w, ¢y, by, $); T
=T3(u); bo=bo(v); byj, Ss T4 Rydependon (w, ¢). And every ¢ in (8.5) is
accompanied by a smooth factor with compact supporf in g,
Then for the problem (8.5)—(8.7), we have the following theorem.
Theorem 8.2. If, for fized
(w, $) = (wn, $u) EOF(Q % (0, 1)) X 05 (8o (0, 1))
in the coeff.cients of (8.8)—(8.7), the resulted linear problem is well-posed,

k>[N;1]+4,

and (F, g) € H*(Qx RY) x H*(8y X RY), having zero traces at t=0 up to the order
k—1, then the solution (Wny1, Puyz) Of the linear problem satisfies the estimate:
s, o) i<l (7, ) s i (3.8)
where the constant Cy,, depends on (w,, ¢.) only by the norm ||| (Wny @n) 5,9
2) First, let us discuss a class of pseudo-difierential operators, the symbols of
which have nonsmooth coeffcients and are n-weighted.
Lot z=(y, t), its dual variables § (w, %), and 8=n-+iz. Write

& =€+,

63-65'

then we define _
Definition 8.3. a(z, &, n) €87Y, if )
<€, py ™18 DEDEDIA(z, &, m) €HY1, ¥ Bi+By=R, |al <k (8.9
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If, in (3.9), H**l ig replaced by H¥ 1% (cf. Kato [4]), then we have the
symbols in §™*¥*D, Corresponding to the symbol a(z, &, 1) € Si+* (or Si*D) | we
may define a pseudo-differential operator a(z, D, n) with parameter n:. - A

| 4l D, () = [o"a(e, & Wi, M.
We write then a(z, D, n) E8P*(or SP-*u),

With another weight funetion <&, .= (|eo|?+|7] +1;)7 we have as in [12]
and in Definition 3.8 ‘
Definition 3.4; . b(z, &, n) €S™F if -

So is defined
) b, D, n) ESPEE.
Slmllarly Skl and SPmFD are defined,

In particular, £€8PLLN S’P1 0D £-1 e §PrLkebn SP_?' ""‘1’ VEEZ*,

. For the Lz—boundedness of the above opera,tors and their commuta’oors, we have
the following proposmon
Propos1t10n 3.5. _
) Ifat, £ n) €82 or 822, w7,
la(z, D, )u(@) [,<Clul,, Yu€L*(BY, n);
1) et a(s, &, m) €S2 (or S35, B>, thon
laz, D, Du) |, <Clul, YucL*(BY, 1);
i) Lot P(z €, 1) €8TE (or ,s*f-"‘+1<"1>), B >£V- then
[&, P(z,D, n)] ESP".’é(oa' SPyED);
iv) . If P(z, D, n) ESPLE** (or SPYEHY), k>—— then

&3, P(z, D, n)] €SPYE(or SPYEMD),

then

We will need some Banach algebra propertles of H "(70>‘Z)
. Proposmon 3.6. Let
min k.- +7t7;,, (h—1) (—2‘M +l>=fr>0.

ish<sm
Jisw<fy .

Then we have

) HII w7, <Ol ne IIllucﬂ

) [ II ) EOAS Cr M N LA

<&, oz m*F'BID‘?*D"ﬂD“b(z, £, n)eH"-l“l VBi+Ba B, Ial<7ﬁ (3.10)
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i) (67 (ol <Ol lunk TT

The proof of Propositions 8.5 and 3.6 will be pos"t‘poned 11 section b.
Corollary 8.7. Let F (U) be a function sufficiently smooth. Then for

- gl
|3 (U0) [5a<OUET 1)+ ki

Proof D"(F Y (u) is the finite linear combination with contmuous coeﬂiments

of the terms such as (D T)-- (DWU) (D). Sinoe for & >[1§V.] +2, VhEZ*, kot o
+h<k i-mplies
(-t Db (h+1) = Chortoooorlt) +1—- ([ 3] +1)>0,

then Proposition 3.6 gives the desired ineqvality.
3) Now we are going. to prove Theorem 3,1.
Oonsider firgt the k-times tangential enlarged system of (8.1)—(8.8). - °
Denoting w=uy, D'uy = &* ((D"), -+ P5*4o (D)), where. D= (&, '9,), then,
from (8.1), we ean deduce the following equations of D*w= (D*uy, D*us, D*):
(D*uy) =& (D us) — P54 (D*w), . (8.11)
(Dg) o =& P5* (8~ Pyyjdyy,) (D'ts) — P Py (DVus)y,
+[E7, P50 Padya,)] (D's) + P3Py, Py Ao (D%)
~[&3, Py 1P1j@“’6,,j]cf 1(Dluy) o~ & Pyt 4;(DMv)y, '
— &P 4o) s (D’“fu) &Py 1D"(Oou¢+0’,uy,+ o))
— EPFD F = &P 51[DP, Poduo-+ P1jOuy;+ Paisy ] u
= EPHDY, Adet A0, - (8.192)
(D¥) o= Qoi(Dk”)t Q(D*v),,~ Q5*Bo& (Dus) +Q51By Py 4o (D)
o7 B (D*us)y,— Qy 1Dk(022’w) Qo [D*, QodntQidy, v

; —QJIED" B2yt B; ay,]u Q'DFy. .. . - (3.18)
Or briefly P |
(D’wa) —JV’D"fw—l—f—i—F o . ..(8.14)
where A is a firsh order pseudo—dlfferentlal operator with the symbol
0 Lo )
N'(s, 0) =] P (s+Py(w))o™  —iPi*Prrd . . 0 .
B @ Gi0: w) |-
with | | ‘ | . |
Py(w) = g Pm.a'wt@a', Pieow ?12 Py, - Qeor= 2 Qowb w= g Bjwse

F (O el ' lP() 1.DkF1, Qo"ikaQ) t, .
while F = (%1, Fa, F3)' is defined by (3.11)-(3.14).
Let (s, ») be the symmetrilizer consirueted in [17] (There are mistakes



264 . OHIN. ANN. OF MATH. Vol. 8 Ser. B

there when treating the case of \}ariable: coefficients.). It is not difficult to cheok that
for [TV, -<o0, 90, @) €83

N--1

For the terms of lower order we have, for B >[ 5

J+4,

|20, ) F <O (|wlky+ | € e ft 02| S FslE b2 Fal ). (8.15)

Here and in the following, C) will denote the constant depending on [|W],, but
being uniform of . ' -

~ To prove (3.15), by Proposition 8.5, iv), we need only to estimate |F |,.

1% By Sobolev imbedding theorem, k>[ N;_ 1 ]+4, 0

| | Z112= | P5*4o(DM0) [3<O4| Do
90 To estimate Fy: (see (3.18)). '
From Propositions 3.5 and 3.6, we have
Q5" BoP5" 4o (D") | ,<Ci| D*v],, [Q5*D*(Caaw) Hn<0w I %
Since Qy, B; are independent of Vu, and [D* @Q,0,], [D", B,;o,] are k-order
tangenfial operators, we have
15D, @2,001,<Oul s [Q5CD" B2, Julu<Crluln
. Beocause of

ot [-D,'7 Boaw]u QO 1( 2 Ola (DMBO) (Dkaaa:u) Boa¢D )’

its estimate is reduced to the estimation of Qo (D*By) (D"0u), ky+ka=F, loa <k.
Since Q52(D"By) (D*0,u) =Qs*(D"By) (616 D"0,u), we have
@5 (DM Bo) (DM0) |y <Ol €t
Similarly :
[D¥, Qudslv= > (D¥Qo) (D"3pv) —Qo[0:, D"]w.

Ky tko=To,ka<k
It remains 0 estimate (D"Qy) (D"v,), ki+ka=F5, ka<<k. The fact that Q, is nonde-
generate implies v,=Q5*(v,— Qvy,— Bott,— Bjuy,— Casw— Fy). Hence we geb
| (D"Qo) (D¥vo} [ 3<Cu(| D¥w |3+ | &7 DPuo |7+~ F a3, )
To sum up, we get
[ Fali<Ou(|wlf, o+ 16 s w072 Falfin) -
8% To estimate F,: (see (3.12)).
From Propositions 8.5, 8.6 and Corollary 3.7, one has
[ {6, P5*(8:— Padyy,)] (D'u) |a+ | (€7, P5'Py60,18* (D u)als
<O([D*ul s+ €7 (D) o] ),
[ P57+ P110y,6 P35t Ao (D*v) |+ |67 P51 4,0,,( D) [,
+ [£74(P5*40) o (D*) | <O D0},
| P5*D*(O13w) [, <Chlwsvn,
[&2P5* D" (Cotio+ Ostty,) | 1< O (| € et [0+ [ 5] 1,
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The estimate of & *Py*[D", A¢0,+ 4;0,,]v can be carried out, in a similar way
as the corresponding terms in #;. The only difference is that 4,, A; may depend
on VU. By Proposition 3.6, it is estimated after the action of &~ that

|&*P5 D", Ao+ A2y 10 [7<Ou([w(f, 0+ | Ualfn 072 FalZ,n) -
Since

Trtle=F, ka<k
» __'éd—iP ) 1P 267: [@wm Dk] U,
&Py 1 [Dk,‘ P 15331‘,-30:] u=&"1P 0 1k +k2 o<k (Dk‘Pu) (Dk"a,w ,.u)
1 s =W, K3<

~& PG5 Py, [Oay,s D¥lu,

("@~1P61 [Dk) P26Jaﬂd/5] Y= g—in—i 2 (‘DklPﬂﬁ) (Dkzaﬂdlju)

| and

.Proposition 3.6 again implies ,
|&2P5AD?, P1jay,+ Paii@uoy 0], <Cu( [t |6 alt,n) -
Finally, since
EPGH[D¥, Pdoulu=8"*Pg* 3 (D"Po) (D*utys)

Toytlg=l,ka<l
— & [O40, D¥]u,
noticing that [8,,, D*]u is the linear combination of terms of the form D*u,,, and
using the parabolic equation to express ., its estimation is reduced to the cases
treated before. Hence ,
|6-2PG*[D¥, Podeoluli<Ci([wlint |6 ue|ntn7| 6 FaR,0)
To sum up, we have C _
| Z <O ([0l | el 2,02 STl
Combining the estimates for Z,, F,, F3, we get (3.15).
4) Next, consider the k—times tangential enlarged boundary condition of
(8.2). For D'w=(D*u;, D*uy, D*v), we have:
ToD¥ug+T1;6718,,(D*u) =& 2D¥gy — &2 [DF, To0p+T1;0,,]u
~ED¥(Taw) — [67%, T4;0,, £16Duy
— [, ToE?1E 2 Do+ T8 2Pyt Do, (8.16)
Ts(D¥s).+Ss(D*v) = D¥gqey — [ D¥, Tylu— [D¥, Sslo,
T o(D*u) +8s(D¥w) = D¥gaa— [D*, T'Ju— [D¥, Ss]w.

Or briefly |
Here - T(D'w)=G@+9. ' (8.17)
ToD¥ug+T'1;6 20y, D¥uy
T (D*w) = T3 D¥uy + 8 D% ,
o T D¥us+ 8. D¥v

G = (&1D%gy, D¥¢sy, D¥9as)’, and & is defined by (3.16), (3.17).
For 9= (9,, 9s, ¥)’, one have evidently
| @a|24 | %s|2= | [D¥, Tolu+ [D¥ Ss]v|3+|[D", Telu+[D", Siv|3
<Oun™?|w| % | '
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Since |& D (Taw) +T8*Ps*4eD* ;< Cwt|w|3,,, we have
| (874, T8, 816 DPuy |2+ | [62, To&21E2D" w|2
<O 2(|w|2, 4+ | U |2, 0) .
[D¥, T8, is a k~order tangential operator, therefore
|30, Tad, Jul? <Owr*|uli.n

Since . S
EDY, TodJu= 3 Oy, €7H(DHHT) (D40) ~ 67T [2s, D¥l,
and [d,, D¥]u can also be expressed in the form D¥*, by Proposition 3.6 éind
Oorollary 3.7 we have "

| EEID, Tobalul2<Cun | & |2, e
Consequently we get | % |2<Cun™ (||} 0+ | € s | F0n)e
To sum up, we have
|Z1<0n™ (Jw|i+ |6 ulE0). (8.18)
5) To prove Theorem 8.1, we still need the following sharp Gardlng mequahty,
_; the proof of which we postpone 11 section 5.

Propos1t10n 3. 8 Let %» (z, §, 97) be the symmetmlwzw constructed [17]:

'%11 e%21
e & 1) = 6 1) - [’” ]

L ' :@2_1 Ras
where .9?1165’2;5("1) gfﬂ’ Ry €8 i)
Define the Hermite symeol H (z, &, n):

Hy H
Hs, ¢, ) =[ i ]=Re B, &, )N e, £, 1),
L : . L Hie H.,__zs '
where Hi € Ste*P NS, Hasy Hay €STHT.
If i,
Is,.
H(’a‘, g} 97)>0%l:0-0 % }7 With GO=R9 g,
, & n); " |

then 3N, o (0 magj’ollepeviﬁ:-dn A), such that Nn=n,, the following inequality holds:
Re (@,'%(z, D, n) N (¢, D, n)w,=>0s Re(w, & u),+Cum|v|2, (3.19)
where w= (&, v), U, v are OF vector functions of 2p and g dimensions. -
"', Applying the preeedmg results, we oan. prove the following tangential version
of dependency theorem. ‘ '

Lemma 3.9. Foo* lo>[ Nl ] + 4, the solutsons of the well-posed linearized

. 2
problem (8.1)— (3 8) satisfy the Sfollowing wstwma,te o . R
Re (D'u, &D*),+Re(D¥u,, &1D",), +97I|D”'v[|2+|w|k,,,+|ca@“1uw]k,,,
<0k(|l|(1*" ON w6750 e (3.20)

Proo f For simplicity, we drop A in Z%,, From the. construction of Z (z, &, 7)
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{1'7], we know

i) Re Z(a, y, t, 8, 0) N (2, y, ¢, s, co)>0'o diag (oo Lap, an), .

1) Wh(z, y, b, 8, 0)W=0L(K |wt (s, 0) |2— | (s, w)|?).
Here; =" +%" is the decomposition of & with regard to the generalized eigenspaces
of matrix 470, y, 1, 8, ») (Re $>0), corresponding %o the eigenvalues with positive
and negative real parts respectively. As pointed out in [8], taking the localized
neighborhood sufficiently small, the decomposition may be practised with (0,
Yo, to, 8, ®), here (y, t,) is a fixed point in the considered neighborhood.

From (8.14) we have- -

Re(D"w, %(z, D, n)D"w.,),, Re(D*w, %(z, D, n) AN (2, D, n) D'w), -
+Re(D*w, #(z, D, n) F),+Re(D'w, #(z, D, n).F),.

Integrating by parts the left side, since Z (z, &, n) is Hermitian, we have

(0¥, Az, D, ) (O*5)) = = <0V, (e, D, ) DV, +O( DV,
By Proposition 8.5, (8.15) and Proposition 3.8, we have . | |
5 (D"w % (2, D, n) D*w),+0y Re (D*w, & D"fw),,—l—O'mH Dty |[2 : }
<C(IDB 12+ | BF 12+ | BF|2) |

<CW(1 D03+ | €7 F s 0+ | Fald o0 | n [ 6 e E,0) (8.21)
Let T o= (3o, to). Fourier-Laplace transform gives R |
To(D'w) =T ¢ (D'w*) + T 5 (D'w)-=G+9. (8.22)

From the well-posedness, det 7 ¢ # 0 uniformly, therefore

|DB) <0647+ DD
From the condition ii) satisfied by %(z, £, ), we get fo;' B>1,

~ : ~ > R U
D'w, R(z, D, n) D*wy, = {D*w, (%, £, n) D'w)-+¢| D*w|*
_ - ~ ’
>0, j | (D)t |2 — | (D*0)~|)dw deo— 8|Dkw-|2

> O j | D*w |2 dv deo— O”j|G+§fl2dv dw 3|D”w[2
>0 D'w|2—C3|Q|2- 04| 9|2 ' - (3.23)
Sinoe .7 is an operator of 0-order, the operator norm of .7 —7, may be taken
-sufficiently small, depending only on|W |, by shrinking the localized neighborhood.
_.From (8.17)—(8.18), we have :
' <Dk’w %z, D, n)D"w),,/O'”Iw|k,,, Ci([ €2 g1)5nt | 92l %0
+n7| D'w|}) — 8| D'w|3, (3.24)
“where & may be faken sufﬁclently small.
Letting p3>1 in (8.21) and (3. 24), one gets (3.20), since Dfw ~ (D’“u, Dy,
E1D%,).
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Now it is easy to prove Theorem 3.1.

By Lemma 3.9, it remains fo estimate the normal derivatives. We can proceed
as in [8]. Differentiating the parabolic and hyperbolic equations in the normal
direction k-1 times, we get the estimates of mormal derivatives by tangential
derivatives. Hvidently this does not make stronger the dependency upon the
coefficients. From (8.20) it follows that

N (wlt o+ 18wl ) + [ F 0+ | € w3,
<OWUE, DUt [0t |6l tn w7t | 62, ). (3.25)
Keeping in mind that Oy is independent of , taking #>>1, we have
- Nellt, <Ol (F, @Iz, Where Cy=Cr(|W1)- - (3.26)

Since the support of W in ¢ is contained in the compet set [0, #], the norms
W lx,, and ||W{l; are equivalent for fixed 7, and the equivalent constant depends
on 7. Thus :

O’»(ﬂlWlﬂu) =Cy,,(IW1] 7am> O'k,m
Substituting them into (8.26) gives (3.4). e

6) Now we turn to the proof of Theorem 8.2.

Let e(y, ¢, s, ) = 8bp+4byw;. For a fixed point (y,, %) in the localized
neighborhood, construct a pair. of projection operators IT; (s, w)and IT,(s, w) as
follows: |

I ey SR lietnbo) o, 4, 4, o), T-I-1
Let II,(D;+%, D,) act on the last boundary condition in (3.6). We get

- a(Ds+mn, Dy)e(yo, to, Dit+n, Dy) +HaSsw+1I5(Ro+e(y, ¢, Di+n, Dy)
—¢(Yo, to, De+n, Dy))d+I1T
~H2(54”+Rz¢+T4M+@(% % Dt+77: Dy)p~e(yo, to, Di+mn, Dy)¢p)
= Il 5¢fa. (8.27)
Substituting (8.27) for the last equation in (3 6), we will denote by (38.6") the
resulted boundary condition.

Fixing (w, ¢) = (W, ¢,) ECT(Q % (0,#)) XOF(So % (0, £,)), we may treat (3.5),

(8.6"), (8.7) as an initial-boundary value problem for hyperbolic—parabolic

coupled system we have discussed in Theorem 3.1, and the dependency of its
energy estimate upon its coefficients may be analysed in the same way as above,
except that two new features need careful examination.

First, the coefficients of w,, and its derivatives in (38.5), (3 6') depend upon
¢n, Orps and Oih,, the terms &3¢, appearing only in the coefficients of the parabolic

part of (3.5) and only in the coefficients of the terms which is of lower order with -

regard 0 Ottns1, VUniy and Vo,,4. From the proof of Theorem 3.1, we see that the
constant in the 4-order energy estimate depends on Ju, in the coefficients of



No.2 Li, D N. NONLINEAR IBVP FOR HYPERBOLIC-PARABOLIC SYSTEMS 269

parabolic system only in the form |&~*6,u,|r. Consequently, our dependency om
0, here is of the form |&05pa|, < C|Ps|ss1- The dependency upon ¢,, P, and
8, in the coefficients of hyperbolic or parabolic part is evidently of the order
| n |x41. Therefore, in the energy estimate of k—order for the problem (8.5), (8.6'),
(8.7), the constant depends only. on | (w,, ¢.) Tl

Secondly, as terms of lower order, (8.5), (8.6') contains the terms g1, Sihny,
OyPnir and Opny1, With Oida.a appearing only in the parabolic part of (3.5).
Noticing the proof of Theorem 8.1, and |£“18§¢”+1{k,q<01¢n+1[k+1,,,r we get

Nwnyallz, , <Co (N (F, IIE, 0+ 7 I¢'»+1| ktden 4
+ IM2¢n+1lkm+£,¢n+1Ik+im): ; (3 28)
where the last terms on the right side come from the two terms in (3. 27),containing
¢. Taking the localized neighborhood small enough, we may make & as small as we
wish, while the operator norm of M; may increase correspondingly. The constant
Oy in (8.28) depends on [ (w,, ¢,) T, and is independent of .
For well-posed problem, ¢(3, y, s, ®)#0, so from (3.6) one may solve OPusa

‘and Oynyq in term of wyyy, Puss and gaa. Thus, the Proposition 8.6 implies

|¢n+1 |242,0<O%(| W41} kon | gas %) (8.29)

where the constnn‘s c; depends on | (Wny D) mk, and is independent of n.
Adding (3 29), multiplied by small positive, upon (3.28) and taking the
localized nelghborhood sufficiently small to make s«1, then making >>1, we have

| l[(nsss o) I <Ol (T, DI2r (8.80)
where the constant O depends on [ (w,, ba) flr, and is independent of 7. Asin the

proof of Theorem 3.1, O’k(m_(fw,., ) ) < s, »,,(m('w,., qS,,)mk,,,), therefore we get (3.8).

§ 4. The Existence and Uniqueness of Local Solution

Here, we will use the resulis of Theorems 3.1 and 3.2 to prove Theorems 1
and 2' by linear iteration. We only give the proof of Theorem 1. The proof of
Theorem 2’ can he done gimilarly, and is omitted here.

1% Existence:

Denote (2.1)—(2.8) briefly by

[(w—Pu—Av=F
{“’ AV QxR (2.1
_Q’U—‘Bu=Fg,
Tou+Tuy,+T1w= g1, Tow=ga, on 02X RY, (2.2)
w(w, 0) =0. ' ‘ (8.3)

For >0, let ¢, (%) €O0*(RY): 0<pr<l; gp,(t) =1 when {<-L ,q),(t) 0 when {>¢.
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We formulate the following new initial-boundary value problem from (2.1")—
2.8);

| %—PM-Z'U=F1, o
~ QxR 4.1)
{ve—Qv—Fu—'——Fa, " " (
Toste+Tyguy,+~Tsw=g1, Taw=gs, on 8Q% R, (4.2)
w(w, 0) =0, : (4.8)

Where 13 is obtained by multiplying all arguments in the coefficients of P by ¢, (2);.
B, Q, Ty, Ty, Ty, Ts are defined in the same way; and (¥, g) =9, (F, ¢) with
ta<<ty. |
Write
B (e, t1) ={w; supp w=Bx [0 ti), Illwlllk,,,<s, wa|,_ =0, j=0, 1., 5—1.}.
For small & and t1, after substituting any W € # (s, oo) into the coefﬁments of (4.1)
—(4. 3), the resulted linear problem is well-posed everywhere on Q% RL. On
account of Theorem 4.1 in [9] and T‘heorem 8.1 of section 8 in this paper the
linearized problem has a solution w, satlsfymg .
ool <Gl (Fy )y o (4.4)
Since (F, g) has zero traces up to the order k—1 at £=0, we have || (F, ) lls,.—~
0 as ;0. Fixing v, and taking #,<1, we may make the right side of (4. 4) smaller
than . Denote the linearized iteration operator of (4 1) (4 3) by . ’I‘hen L w
—>w maps &(s, o0) into B(s, o).
Taking any weE % (s, o0), we construct 'w;+1=dfw;( §=0, 1,eeec+s), Define W,
=wW;41—W;. Then W;,4 satisfies
{@ U= P ) Upsa— A () V g0 = (P (wy) — P (wy_a) Yes~+ (A (wy) — A (wss) ) 0y,
oV 131— Q W)V g1~ B (ws) Ui+1 = (Q (ws) — Q (wj-1)) 04+ (E (wy) — B (wy-1) )y,

(4.5)
1 T (w5) 26U 41+ T 130 03,U 11+ T (W) W gz = (To (wjos) — To(wy) ) 0as
+ (P (wp1) — T (w)) 0+ (Ta(wy-s) — Ty (wy) Yoy, (4.6)
i ('wi) W sia= (Ta(wi-s) — Ta(wy) Ywy,
Wi (e, 0)=0. : : (4.7)

From Proposmon 3.6, the right sides of (4.5) and (4.6) can be estimated as
follows :
|672(P (03) = P (ws-1) Yty 10-2,0 < * s 1, * A W sl -2+ | €T D sl1-2,),
|6 (205) — Z ()-1) Y03 -3, 1< Otr* [V3l1s0* AW sli=2,1+ | 2T oll-201),
l‘ (@ () — Q(’wa'_-i) Yo+ (B (ws) — B (wy-y) DU -2,1<Cn* [ 1,0° [W s,

' |&* (To (Wj—1) — To(wy))ogus+& _1(711»(%—1) ~T (w3)) 0y,
+ & (P 1 (ws-1) — T2 (w3) 03] -9,y <O, (|23 1,
+ [ 60| 1,3) (| Wil 1-2,n+ | E72(UD e 1-2,n) 5 |
| (Tz(’wm) - Tz(’wi))wilk-z,n<0’k.nl'wflza.q' |W|u-z,,,-
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Applymg the (k—2)-order energy 1nequa11ty for well-posed problem (4.5)-
“. 7), we have .
| IW sslcs < OMW s, B0l | (4.8)
Where the constant 0, depends on 7, but is independent of #,<1. Take #;<K1

such that s«1 and hence C,||wix,, <%—. .Thus (8.8) implies that {w;} is a

Cauchy sequence in the norm [|«|j;-a, * Since w; € Z (8, ), we see that w;—>w €
% (&, ©o)by Banach-Saks Theorem, and w is the fixed point of .27, i.e., the solution of
" (4.1)—(4.8). But (4.1)—(4.8) is identical with (2.1)—(2.8) in (o,

o= —;— ta, we have the solution w of (2.1)—(2.8') in (0, %0).

—-21—- tg). Taking
. 2% Uniqueness: : .
. Let w, w' are two solutions of (2. 1') —(2.8') in (0, t,) and (0, #})respectively:
w€ H¥ Q% (0, 10)): Ipwly,, <0, Vib €7 (o, to);
W €HPQ% (0, 18)): Ip'a/ll, <00, Vi EOF(—th, h).

Let #h=min (i, t,). We want to prove w=aw' in (0, ).

Because the set of all t€ [0, tg) for which w=w' is closed, it remains to prove
it to be open, i.e., Vre<i;, if w=w' in [0, ro], then 33>0, 7o+3<Vi(, such that
w=aw' in [0, ro-+3]. Without loss of generality, we may assume ry= '

Since w, w'=0 for <0, we see that V&>0, Tri<t), such that |w|,,.,<s,
9 |4ynyr<e. Let (F, 9)=0.0)(F, g), where ¢, is defined as in 1°. Similarly
choosing ¢y and ra, we consider (4.1)—(4.8). |

Tt is evident that when r<1, s<k1, (4.1)—(4.3) is Well—posed for any we
%(8, ). As in 1°, for ry<<r1, 791, the linearized iteration operator ./ of (4.1)—
(4.8) maps #(s, o) to .%‘(8, o). And for <1, .7 is contracted in the norm
Il e Nlx—g,,- Since Z(s, o) is convex and closed in the Hilbert space with norm |-,
by Banach~Saks Theorem, it is closed in the topology with the norm ||lz-z,,. From
the contraction of .o7, we know that the fixed point of .o/ is unique in (s, <0).

Substituting w, w’ into the coefficients of (4.1)—(4.8), we have the well-posed
linearized problem, so there are solutions wy, w} in Z (s, o), therefore the iteration
may proceed.: " 4' |

Wip1 =L W), Wjpr =AW}, J=1, 2o,

As in 1°, for r,<1, the sequences {w;} and {w}} converge to w* and w™ € % (s,

o0), respectively, w*, w™ being the fixed point of .o7. But the fixed point of &7 is

unique, so w* =",
Because of (4.1)—(4.3) is identical with (2.1’)~—(2.3’)__ in <O, —%-m), and w, w’

are solutions of (2; 1’)——62:.3’) in <0, rz),_ from the uniquengs.s:'t’hepi'em for linear

1
2"
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problem in [97, it follows that w=—aws, w = w) 'i'n‘<0,-%-/r2),' ie., 'wi,v w) are

solutions of (2.1)—(2.3) in (O, %—m). In the same way, we can prove wy=ws=-.+=

&

w*, w)=wp=+--=o'" in (O, %Tg). But w*=w"", thus w=w' in (O,-%—’rg), and—é— 5 can

be taken as the desired §. "

§5. The'Rel.evant PrOperties of n—Weighted
Pseudo-differential Operators

In this section, we disouss .the properties of a class of pseudo-differential
operators whose symbols have only H¥ regularity and are n-weighted. We will
give the proof for Propositions 3.5, 3.6, and 3.8. Our approach of proof follows
Beals—Reed™ and changes the corresponding proof for smooth coefficients in [17].
Compared with the result of Majda in [11, 12], the requirement on the regularity
of the coefficient is considerably relaxed.

I) The Proof of Proposition 3.5.

First we eite a useful lemma (of. Lemma 1.4, [2]):

Lemma 65.1. Suppose

C; =sgpjl9(§’> §) |*d€’ <o,

0%=Sgpf |G (&, &) |2a¢ <oo.
Then ' |
| VAELARY), (Th) (&) = [6(¢, 9(¢'~¢ HBOEEL(RY),
and |Th|p<OyCc|h| .
Using this lemma, we now prove Proposition 2.4:
i) Since

i@ Dmu (&, n) =3¢ —&, & M mag
—[c—erme-era@-¢ & niEm,

where @ denotes the Fourier transform of @ with the argument ¢, all the rest of “A”
denote Fourier-Laplace transform.

Lot G(€, &) =<'~ &, g(&, &) =&V (&, £, n). Since k>-L- N, from Lemma

. 2
B.1 it follows that

la(z, D, mu@ o= aGDmul, ) |<OlaE, 7] =Clul,
ii) We need only to show that Yu, v&€ L*(R", n),
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| (a(z, D, mu, v),| <C|v|,]o]
We can choose {g;} such that 1=23g,(2), where gv,(z) o (z— z,) with some %,
and p €05, Let ;;(2) =y (2—2), $EOCF, =1 on supp p. Henoe '

| @, D, Du@, v@),|
- |fate & wi Mo@errratal

= <3| (h) (s & mei¢, mage™ () () del

<Sllowlo-| o (ha) &, & M€, il

But (0) €ESS¥, so from 4), (Ya) (2, D, n) is a uniformly bounded operator in
L*(R", n) and its norm is independent of j, by the make-up of i; and the definition
of H,. Therefore

|€a(z, D, n)u, 0),| < O Zlowlalul,<Olul,| ]
iii) Let #(z, D, n) =[&, P(z, D, n)]. Then

FGDmuE, m) =[7E=L & Wi N,

where

6 tm = B 0 ottt matDPE, T w).

Since &fo ({+1t£, n) is uniformly bounded for |a| =1, and {{, n);™<{&H* @ (¢,
¢, ) is a uniformly bounded set in L?(RY) for all {, m we have r(z, {, n) ESPE

iv) From iii),

& 1P(z, D, n)=P(z, D, n)E1+&[P(, D, n), £16™
=P(2, D, n)E*+E (2, D, 1),

where »4(z, D, n) € SPLE,

Similarly, €% (2, D, n) =ri(2, D, 9)&*+Era(z, D, m), where ra(2, D, n) &
SP¢E. Bvidently, ry(2, D, n) &2 €S8P, so [£72, P(z, D, n)] €SP,

IT) The Proof of Proposition 3.6.

i) The proof may proceed in the same way as in [15], one needs only to

substitute the n—weighted norms for the usual ones.

ii) We have only fo show that .
67 0) la,n <016l ol F>5-
Following [15], we have

& HoUB(E, M) =<, HoTE, 1) j<§', WHE = F (€ Mg -E)ag,

where f(&, 1) =<&, D% (&, 1), g(&) =L (€). The notation “A” means the Fourier-
Laplace transform or Fourier transform according to whether the expression
containing n or not. Thus
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@wore @=L+ JE-oeE mem
. 1#1<F1¢1 11> 31l '

L&, MHE, MpTRE - ETf(E, ma(E, n)~*dE'. - S (5.1)
When |¢'| < -%—Ié’ |, we have |&'—¢&|~|&]. Expan'ding"‘thhe terms <&, n)* in the

above relation, we can estimate each term in turn:
<€, myE, My 2 O,y KOTENT,

o2&, Mo (&, m)<E, MKE, ny ™ -EHTF< 2076'<§>k'
KENTHLEY O™,
‘When l§'|> |1,
e (@, D)<, Do, ﬁ) KE
is uniformly bounded, because of the monotonous decrease of ¢ (§, 1) &, n>~* about

|£]. Since <¢'—&>€ LA (BE), o7 (€, Mo (¢, m)<E, mKE, 97>'”<§’ §> ¥ i8 a uni-
formly bounded set in L2(R}) for all £ and 1. . P

Combining the estimates for || < -§—|§ | and |&'] >7i§ |, and applying Lemma
5.1 %0 (5.1), we get the desired estimate.
iif) Weo procoed as in 1). For|&'| <-L1¢),L[¢<|¢<2]¢] amd |&]>2¢],

we estimate separately the integration in (5 1) and arrive at the desired inequality,
details omitted. :

IIT) The Proof of Proposition 8.8 (Sharp Garding Inequahty)

The proof consists of the following steps: _

1% For the composition of the operators %, (z, D, n) and A" (2, D, n);

Lemma 5.2. Under the condition of Proposition 8.8, (%..4°) (2, D, 1) — X, (2,
D, p)o AN (2, D, n) is a bounded operator im L*(RY, ).

Proof Because of the block structure of %,, 4", we need only to considerthe
composition of the corresponding blocks. a
AN BN 11+ RBos N 51 9?31‘/1/22] :

BN = .
’ [ RoaN 11+ RoaN 01 RaaN aa ]

Denote by <D, n> the operator with symbol (|¢[2+%%) %. As in [2], making use
of the Cauchy integral formula for remainders of i-order Taylor expansion, we
have 7 (3, D, 1) =[N (2, D, 1), <D, n)] €SP}**, and

Ras(2, D, m)<{D, nyoNsa(2, D)XD, np~*= (922@/1/22) (2, D, ) +r1(z, D: "7)9
where ¢4(2, D, n) € SPY*1, Thus
Raso N 29=Rago N 920D, np<D, ny~* S
=Kl D, myo N 22D, )+ Ragor (2, D, n)<D, n)~*
= (RaaN 33) 2, D, m) +11(2, D, m) +Rasor(z, D, n)<{D; nd74,



No. 2 Li, D. N. NONLINEAR IBVP FOR HYPERBOLIC-PA BABOLIC SYSTEMS 278

where 7y (2, D, n) +%esor (2, D, n)<D, n)>~* is bounded in L*(R¥, 7).

Ry1N 22 may be treated similarly.

The rest four terms in %,.4#" may be discussed in the same way, if we change
<D, p) by &. » ,

2% For the conjugate of the operator, we have the following lemma.

Lemma 5.3. Assume the conditions in Proposition 8.8. Then (%N")*(z, D, 1)

— (%, N")'(2, D, 1) is a bounded operator in L?(RY, u).

~ Proof Since - -

(BN (2, D, n)u() = je“”“""”e"" By (2, &, n)u()de d,

we have
@ h Ve, m) =TI (e, & it mal.
But | '
TV 1, & m) = (T E=L, & 1)
1 T
+ 310 [ o8, oAy €~ Lt =), Mt €D,

G e, 1) = GV, m+[PE=1, L M, W,

where ' '

A 1 P |
| MLm= 0[BT E L, mas g,

Evidently, <€>*7(&, {, ) is a uniformly bounded set in L2(RY) for all ¢, n
Hence Proposition 8.5 implies that = (z, 'D, n) is bdunded_.

8% By Lemmas 5.2 and 5.8, the proof of Proposition 3.8 is reduced to the
proof of the following inequality ;

Re (w, H(z, D, n)w),=>Cy Re(®, & u),+Cinfjo[2 (.2
Let

Gz, & n) =Ro(ZN) _00[ oLz . ]_ 1) [Re_%mo 0]

“Ro(@t)—a ] 6.9

We shall prove the following Lemmas.
Lemma 5.4. Reo(u, %A 11(z, D, n)u),=>0 Re (4, &),

Lemma 5.5. Ro(@, Q(z, D, 0)%),=— 1| EFu]? csfv[2.
Suppose that these two lemmas are proved. Then we have
Re(w, BV W) y=Re(w, Gz, D, n)w),+co Re(y, & ),
| +oolol3+ (A —1)e Re(y, £1),
= ((\—1)o+co—e1) Re(®, & u),+ (con—o1) ]2
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Taking A>>1, n>>1 leads to (5.2).

4% The proof of Lemma 5.4.

As in [2], denote Hi(z, &, n) =Re 9?11/1/' 112, &, m). From the structure of %y,
in [17], we know H,(z, &, n)=ccolsp. .

Let Q(z, &, n) =Hi(2, & ) —cooolsp Q2 &, 1) € Si 59, and Q=0.

As in [20], let ¢(D, 2, D, n) be the Friedrichg symmetrilization of Q:

0@, 1, & M) =[F. (€, { MG & Mo L mL, (5.4
where |

-1 1
Folt, L) =<&, ma + o (&, 2L 9)), (5.5)
with @ being a smooth even function of compact support, supp o {£ERY, |£| <1},

and f P*(&)dé =1.

Let (2, D, n) =q(D, 2, D, 1) —Q(z, D, n). Since ¢(D, #, D, n) is nonnegative,
@, ¢(D, 2, D, n)u),=0, it remains o show r(z, &, n) € SLL-2wD, :

Since

FBDMu(E, m) = [F(€~¢, & Wi, i, (5.6)
FE, & my=Forin = [Po@+E § ) IQE, & W —QE. & MIFLE, L, mal

H[IRo@E &) —Fo6, L IRE, & DFE L dt. (.7)

Tor brevity, we will denote by g (§, & 1) or ¢(&, & {, n) the functions in
I2(R}), uniformly bounded for the parameters §,{, n. We should prove '

EPVHE, € m) €ELA(RY, uniformly in§, 9. 6.9)
D €&, e
On supp P, [§~L| <<, nE. And
a¢ L -0¢ &
= 31.0. [ D80, Lt s(E=1), o it ¢ -0

lal=1

—ENHE, mEg(E £ L M),

80

Fem <8, DI [Fo@+E L Do, & g€, £ 8 mdl
=& MEEE, & u);

Fa=Q, & D[P @+E & W —Fo& b, MIToE, L, il
=<, 77>cr<§,> g <§'r 3 "7) .
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Therefore, (5. s) is valid on <& >é2E <&, 1E.
i), L=+ <§, nE.
Now we have & +Ic§’, 'n>¢~<§, e, (0<k<<1). From [17] it follows tha.t

DiF. (€, {, ) =<§, 97>'Z %Em w,ba,,g,_y(fm)wl)ﬁﬁ(;b), (6.9
where '

-1 Lis~yi-lal,
p=(E=0<E We® Po,87ESTs °
Therefore

Q& L m-Q¢, & = 3 #QE, & M-
+ 3 [ oA, Lt1C—8), Mam (A=) (C—8)°
= 3 0(E, & ) G-+ L~ E1XEYKE+RU—8), wT9(E, & L, ).
| | | (5.10)
Fo@+6 &) —Fol6, b m = 3 Ot G+, L, mE"

2 0. <§+7‘7§,, n * 2 ll’l 8y 7(5’*‘]‘75,’ "7) ¢(ﬁ)s ' (5-11)

—~—V'

where

= <§+k§?—c><§+k§', ST (E+E, L m)—Fo (&, L, m)
= 31,058, 58" 31 a7 Dip()

+ S0, e S dan( K W@ (5.19)

Noticing that F2(¢, {, ) {—§&)* is 0dd in ({—¢) when |«| =1, from (5.10)
(5.11), we have ' '

fim 31 [[Pa€+E b M= Fol6 L, mIRCE, £ ) (=8P (&, T, L

+ 3 [0, @+8, L | 206, £+10C-8), N C-DBA-OFE, L, L
=<§’>1"‘IZ £l 31, buayE+E, Mg, & m) |
+[¢- 5[2<e'> KEHC—), 15M9(E, & m)  Clox LEsupp F.)
=<8, EEY SR, mET g€, & )
=Yg, & ). | | (5.18)
fu= 3 08" [02F. (6, & AEE MEE L

+j0(|§’|23?Fw(E+k£” ¢ WQE, & nF.E ¢ il
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= 3 0u" <& I Y€ Dwlp (0QE, & DELE L, DL

y<B<l
+[0C1&/176, 157 o, -+, ) i72lp )RE, & M Fo &, L, ML,
| | (5.14)
For y<B, 8,0 ?y,) is odd in w, so the first integral in the ahove expression is
gzero. For y=3, 1,4,4ESTL", then
ru=<EM g (&, &, 1) +<LEVHE, nYolEAkE, W)7g(E, £ 1)
=L g (€, €, ). (5.15)
Combining (5.14) and (5.15), we know (5.8) holds for <'> <_§L &, .
5% The Proof of Lemma 5.5. |

Let b(D, z, D, 5) be the usual Friedrichs symmetrilizaition of @&, D, n) with
parameter . i.e., in (6.4) and (5.5), F, is substituted by

F=<g, 8 p(<g, B 3L~

~Asin 4°, let (2, D, ) =b(D, 2, D, ) —Q(z, D, 7). Since Gy, G253 €ESP}¥, we may

Show 791, 13 € SP$*2 gimilarly as in 4°. Thus, the proof of Lemma 5.5 is reduced o
~.proving the following inequality;

o~ ~ ’-LN
_ Re(u, r11 (2, D, n)u),<0|&%u|2. (5.16)
In the following, we will briefly write £=rys and G=@G4. As in 4° ((5.7)), we
have

FE, & m) = Feria=[FE+8 1, D I6E, L ) —6E, & MIFE L ML
+HFEre 4 -FE L DI6E, & MFE L. B.17)

. .
When <& >—:2[—<§ , mpZ%, noting that in the proof of Lemma 5.4 we have at most

once differentiated @, we proceed here in the same way to have <& %r (&, & n)
uniformly bounded in L?(RY), for all &, 1.

1 A
‘When {¢'> <—%—<§, n»%, the estimate of ry i similar to (5.14). Hence we have

similar estimate as (5.15). In the expression for 71 (similar to (5.18)), the first
integrand contains only the first derivatives of Q about &, therefore we can estimate
it as in 4°. Nevertheless, the second integral must be considered anew. Now we
have

frevet mf| 3,006, Ert@-0), Mans(L-DAA—FE L, ML
= L= 1% E0RE+RL—8), M€ €, 77) (for {; Esupp F)
=&y Ke g, & ). (5.18)



No.2 ILi, D.N. NONLINEAR IBNP FOR HYPERBOLIC-PARABOLIC SYSTEMS 279

Oombining it with the estimate in {¢’ >>—21f- ¢, 67)"ji gives

EWE I, ) (5.19)

ig uniformly hounded in L?(RY) for all &, 9.

and
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~ ! ~ ~ 1 —~12-~
(Z&, ””11(5, D, 77)“)7)':(“’ 9"11(2, D, 97)5?5 u),,
1, 1.
= (@@?u) 'l°11(?’«, ’ 'r))éa iéa‘zu)ﬂ_{_ (’M, [”’11) 59_]6 u 9
-jé- —%— k~3 ~ ~ -%»~ 2
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