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THE NONLINEAR INITIAL-BOUNDARY VALUE 
PROBLEM AND THE EXISTENCE OF MULTI­

DIMENSIONAL SHOCK WAVE FOR 
QUASILINEAR HYPERBOLIC- 

PARABOLIC COUPLED 
SYSTEMS

L iD E m re

A b strac t

For the quasilinear hyperbolie-parabolio coupled system, the nonlinear initial-
boundary value problem and the shook wave free boundary problem are considered. By

linear iteration, the existence and uniqueness of the local H m (m >  solution

are obtained under the assumption that for the fixed boundary problem, the boundary 
conditions are uniformly Lopatinski well-posed with respect to the hyperbolic and 
parabolic part, and for the free boundary problem, there exists a linear stable shock front 
structure. In  particular, the local existence of the isothermal shock wave solution for 
radiative hydrodynamic eqations is proved.

§ 1. Introduction

In  physical application, one often meets the following conservation law:

8tF 0 (u, 4>)+j>] («* * *, u, v )=  0,
«

dtG0(v) ®)=o,
( l . i )

where и , F } are ^p-dimensional vectors, v, Gj are ^-dimensional vectors, and F h G(} 
are smooth functions of their arguments. We write w —(u, v) in  the following. 

W rite
f P q —duFo(u, v), Р ц —d^F j(£, u, v) , A 0—dvFo(u} v), Qo=8vGq(v) ,
1 Zj^dvFjtun, u, v), v), S j= 8uGj(u, v) (i, j = l ,  •••—, N ).

Then P 0, Qo are positively definite for the considered w, and (1 .1) can be written 
as a quasilinear hyperbolic-parabolic coupled system:
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(1 .3)

(1.4)

f U, ъ)иХ1ХЗ+А}(иХ! и, v)vz3+ f 1(u(C,u! v) = 0,
1  vt+Q,j(u, v)v№j+ B j (u! v)uej+ f s(u, v) = 0.

Here, the operators satisfy the following condition:

' dt+Pijdm^ is 2-order Petrovsky parabolic operator,
. dt+Qidtcj is 1-order Kreiss hyperbolic operator, 

where P i}= P 0~1P ij) Q,-= Qo^Qi, and the explicit form of A3> Bh f±, / 2 are of no 
consequence and are omitted. And the Kreiss’ hyperbolic operator is defined as in 
[8, 11]. In  particular, strictly hyperbolic operators and symmetric hyperbolio 
operators often met in  physics are Kreiss’ hyperbolic.

For example, we consider the equations of radiative hydrodynamics M: 

p t+ V * (p tt)-0 , .

(puOt+V- (рщи) +  (вР T +  — - T^  =0 ( $ -1 ,2 ,3 ) ,

16(7
2 r Z

1 4o* yA
G I\

1 <1 c <1 "T
4

T * ) ) -

) .+ v - ( 1 ом2 У - 
2 PU + у - 1

РВТ-
Зс

и
(1 .6)

where В , с, cr, I, у  are positive functions or constants.
The first four equations constitute a quasilinear Kreiss hyperbolic system of (p, 

if), which is also quasilinear of T. Using the first four equations to rewrite the fifth, 
we get a second order quasilinear parabolic equation of T, which is quasilinear of 
(p, if) either1-33-1. I t  is easily verified that (1.6) is of the form (1.1) and satisfies
(1.4).

Another example is the system of equations of compressible heatconductive 
viscous fluids:

■pt+V*(pii)=0,
4 (p^Otd- (рЩЩ+рду <yii)e,s=fi (® 1» 2, 3), (1.6)
. pT(8t+ (u -4 )8 )  = 7 iA ^ + V -  («VI7), 

where the viscous tensor
2

Ун — V +  8 XiUj — -g- B^Uhbij) + 1 Ъцдч и ь.

The fifth equation in  (1.6) can be rew ritten as

S',---- A T+ Ibip , u , T ) - 0 ,pbv

w here—̂ - > 0, L x is a first order differential operator in space variables, and
pC'v

linear in Vp. The first equation in  (1.6) is hyperbolio with p, the last four equations 
form a Petrovsky parabolic system of (if, T ). So (1.6) is of the form (1.3), satisfying
(1.4).
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In  this paper, for the system (1, 3), we discuss the nonlinear general initial­
boundary value problem and the Oauchy problem with discontinuous in itial data, 
the latter is connected with the shock wave solution of conservation law (1 .1 ).

First, we consider the initial-boundary value, problem (1.3) which does not 
necessarily originate from (1.1) in  a cylinder Q X (0, oo), where Q c R N has smooth 
boundary dQ, noncharacteristic to (1 .4 ). Let fl — (n1} • •*, n f)  be the inner unit

N
vector normal to dQ, and 2  Qjn3 bas q~ negative eigenvalues. For (1.3), we consider

fhe following boundary conditions on dQ x R+:
J i(u a, w, x, 0  = 0, J 2(w, x, t) =0, J&(w, x, t) =0, (1.7)

where J lt J 2, / 8 are b, p —b, q~ relations respectively, in  which we assume
0*7a(O, ®, 0) = 0. (1.8)

For simplicity, we consider the zero initial condition
w(x, 0 )= 0 . , (1.9)

Denote

’8(J:l(£, Щ x, 0 |® = о,и  =  ̂ (® . <)j
• duJ 2(w, x, 0 \w=q= J I(x, t), (1.Ю)

dvJ 3(w, x, t) | w===Jn3(x, t).

Let Tc >j~ ^ 2 ^ ] + 4 . Then one of our main results is the following theorem.

T heorem  1. For the problem (1.3), (1.7), (1.9), suppose 
1°) All functions have Is+ 1-th order continuous derivatives o f their arguments and 

are zero order homogeneous o f x for large \ x \.
2°) fj\w=o, nx=oGJS1{(Q 'XR\), j —1 , 2,

J } | w=o, «ж=о €  S^^dQ X R \ ) , j —1, 2, 3.
For bounded Q, 2° follows immediately from  1°.

3°) Zero compatiability condition o f h—1-th order'.
/j-|«>=o,«*=o(j=l> 2) and «7*1 w=o, «*=<>( j= l>  2, 3) have zero traces at t = 0 up to the 

order h—1 .
4°) The following two linear problems are wellr-posed at every point on the 

boundary'.
<ut-  2 ^ « ( 0 ,  0, x, t)ueiaj —0, in Q x R \ ,

' J i(x , t)ua = 0, J%(x, t)u = 0, on d Q xR +,
.u(x, 0) = 0,

Г Щ— 2  Qj(0, x, t)vK}=0, in Q x  R1+,

1 J 3(x, t)v  =  0, on d Q x R \, v(x, 0 )= 0 .
Then, there exists £<>>0, such that in Q x  (0, to), (1, 3), (1.7), (1.9) has a unique 

solution w ^ H lc(Q x  (0, to)), satisfying
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IIIФМ\hn<°°, V0 €Oo (:- to, : to),
Here

IMIIfc.4e  V »7 (||wflfc,4+  ||<̂  +  |w ||,,+  \0~гиа\\,п. (1.11)
The study of the boundary value problems for quasilinear hyperbolie-parabolio 

coupled systems is rather limited in  the ease of multi-dimen-sional space (of. [8, 
18, 22] ). Here we have advanced the existing results in  following directions:

1°. The form of systems: 1, and there is no restriction on the number of the
parabolic or hyperbolic equations. The hyperbolic part need not be symmetric, it 
should only have a Kreiss symmetrilizer. Besides, the coefficients of um may depend 
on Щ, which is not permitted in  [22].

2°. The form of boundary condition: i). The uniform Lopatinsky well- 
posedness of the principal part of the problem includes the Diriehlet-Neumann 
conditions кдпи + 1ли =g as the special case. ii). The boundary conditions for 
hyperbolic and parabolic variables v, и may be coupled, iii). The boundary 
conditions are nonlinear in ux, и  and v.

8°. The regularity of data is considerably relaxed. For the space H 16, Jo is reduced 

from &>2 j  +6  (cf. [8,12] ) to j -f 4, achieved mainly by employing the

techniques of Beals and Reed1-23.
4°. Since the non-local operator is introduced in tne energy estimate, a 

more efficient and simpler scheme of linear iteration is adopted.
Nevertheless, here we deal only with noncharacteristic boundary, in  contrast 

with the case discussed in [13, 18].
Secondly, we consider for (1.1) the shock wave solution, i. e., the Cauchy 

problem with discontinuous initial data :..
Given a smooth surface So in  R N and smooth initial value Wo (») on two sides 

Q± of So, Wo ¥= Wo on So, one wants to find a surface S (t) and shook wave solution 
w±{(c, t) defined and satisfying (1 .1) on two sides Q±(t) of S (t) , such that on S(t) 
the Rankine-Hugoniot condition and p supplementary conditions hold:

nt(Fo(w+)-F o (w ~ )) w+)-Fj(Uv, w~)) =  0,
1 (1 .12)

nt(Go(v+) —Go(v~)) +  2  ni(@) (W+) -  (w )) = 0.

ГФ(И+, М- ) - 0, ft-184
\ w ( u i ,  ux, w+, w~) = 0,

where (щ, <n±,---,nN) is the normal vector of S (t) . And w±{x, 0) =  Wq (x)  , S (0) =So- 
Obviously, for given So, In order to have the shock wave solution, the traces of 

Wo (x) on So must satisfy certain compatibility conditions.
bet a be the parametric coordinate on So which has normal n =  (%,•••,«,#). Then



2 5 6 CHIN. ANN. OB' MATH. Vol. 8 Ser. В

from (1 .6), (1 .6), in  order to have the shook waye solution, one sees that: there 
exists a sufficiently smooth function X (a) defined on S 0 such that

and

-X (a)  (F0(w?)-F o (w 0))  +  ^  %(«) (F j (u&,w$)-Fj (uoe,w0))  ~0, 

-X (a) (Q-оЫ ) -  Go («о)) + ^ ] ni(a) (G}’(w $y-G }(Wo)') =0.
(1.14)'

Ф(и$, u^) =0, ?F(Mo®, Moi, Wo ,Wo) =0, (1.14)"
(X (a) , »i,*-*,№j) is uniformly nonoharaoteristio with respect

to the parabolic and hyperbolic systems in (1 .3). (1.15)
As a usual initial-boundary value problems, Wo (x) should also satisfy the 

comparability conditions of higher order. In  fact, (1.14) is the comparability 
condition of 0-order, which are 2p+ q  relations for 4 p + 2 g + l variables, viz., the 
traces of Wo, on So and the function X(a). As in [12] , the comparability 
conditions of higher order may be obtained by differentiating (1.12), (1.13) with 
respect to t. From (1.8), wf may be expressed by uA and v%. So the m-order 
comparability conditions are 2p+ q  relations for 2p+2q+X variables dfnt, dnnl+1Uo 
and d%Vo, where dn is the normal differentiation to So, and dfnt is to be determined 
by given Wo and d°tnt = X(a) with the help of comparability conditions.

"With /c> f— w— "1+4, we have another of our main results:

T heorem  2. For the Cauchy problem o f  (1 .1) with discontinuous initial data 
Wo (x) haring So as its jump surface, assume'.

1 °) So is sufficiently smooth, dividing R N into two parts'. Q+ and So is a 
hyperplane when

2°) u$ Vo the space H kul is defined as in  [6] .  vj<j are
constants in  |® |» 1 .

3°) 3 Xj(a) £  (So), $=*0, l ,* ” , m — 1 such that (1.14), (1.15) and the
compatiability conditions up to the order к — 1 are satisfied.

4°) A t every a £ $ 0, the frozen coefficient linearized problem o f (1 .1), (1.12),
(1.13) determined by (8„Uo(a), w£(a), X(a) ) is uniformly linear stable (of. [10]).

Then there exists a i0>0  such that in  [0, to] there is a hyper-surface S (t) which 
belongs to НЦ1 (So) as a function on So, and S(0) — So. S(t) divides B N x [0, t0] into 
two parts: Q+(t) and Q_(t). There exist functions w±(x, t) =  (u*, v±)^ : I Iki'i (Q:t(t)) X 
B ti(Q ± (t)) satisfying (1.1), (1.12), (1.13) and w±(x, 0) = Wo(x). Besides, such a 
shock wave solution is unique in the class o f solutions with one shock front.

B e m a rk . The method to get the uniqueness result here applies also to the 
hyperbolic shock wave problem in [12] , where only the existence result is mentioned.

C orollary. For the equations o f radiative hydrodynamics (1.5), the Cauchy



'problem with discontinuous initial data has a unique local isothermal shock wave solution 
i f  the conditions 1 °—8° in Theorem 2 are satisfied and at every point on S0, the Laos 
inequality holds'.

u t  — a< h< u~ ~ a , (1.16)

where u% are normal velocities on two sides o f S 0 with tl pointing from  Q_ to Q+, 
and a is the isothermal sound speed™3.

This corollary comes directly from Theorem 2 and the stability results of shook 
wave solutions in  [10].

In  section 2, the problems (1.3), (1 .7), (1.9) and (1.1), (1.12), (1.13) are 
transformed into equivalent forms more suitable for linear iteration. In  section 3, 
we discuss tne dependency upon the coefficients of the energy estimate for linearized 
problem, which is crucial for linear iteration. In  section 4, the existence and unique­
ness results in  Theorem 1 and Theorem 2 are proved. Section 5 is devoted to the 
discussion of some properties for a class of nonsmooth pseudo-differential operators, 
which are used in  section 2.
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and their constant caring and encouragement in my preparation of the paper. And 
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No. 2 • U , D .  N.  NONLINEAR IBVP FOR HYPERBOLIC-PARABOLIC SYSTEMS 257

§2. Transformation of the Problem

We are going to solve the problems by linear iteration. As pointed out in  [9], 
our iteration must depend on the results obtained in  [9, 10, 16] for the coupled 
system. Since the energy estimates in  [9, 10, 16] contain the nonlocal pseudo­
differential operators, it is difficult to use the usual method in iteration by estimating 
the norms on t= 2 r, or the method of Majda in [12] by adjusting t? and T  in  the 
hyperbolic-weighted norms. Here we will use the technique in  [7], where all the 
terms containing factors of ад or its derivatives are iterated as the left side of the 
equation. The advantage of the scheme lies not only on its simplicity, but also on 
its applicability to the problem, where the estimate on is not available, or the 
estimates contain nonlocal operators. The method here may be used to simplify the 
proof in [12] .

Using the Oauchy integral formula for the remainder, we may rewrite (1.3),
(1.7), (1.9) into the following equivalent form which will be our start point of 
iteration:
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‘ut—2  Рц(ие, w, x, t)uataj—2  A j(ue, w, so, i ) <oeiJr'EOj{ua, w, so, t)uSj
+On (w, oo, i)w = Fi(se, t), (2 .1)

щ—2  Qj(w, so, t)v ej —2  Bj(w, so, t)u aj+Oaa(w, so, t)w —F a(so, i ) .
T0(ue, w, x, t)ux+ T 2(vj, x, t)w = gi(x, t),

« T 8(w, x, tf)w+$3(w, x, t)v = gal(x, t), (2.2)
8i(w , x, t)v+T±(w, x, t)u = g aa(x, i).

w (x ,0 )= 0 . (2.3)
From conditions 2°, 3° in  Theorem l , F lt F a, glt gat, gaa£ H k, haying zero traces 

at t = Q up to the order Те—1. From (1.8) follows
8з(0, x, 0) = 0.

As proven in  [9], the stability of linear problem is equivalent to the stability of its 
adjoint problem when 83—0, and consequently the stability implies well-posedness. 
But if the linear problem is well-posed for 83= 0, then by continuous extension, one 
knows that the problem remains well-posed for small |$ 3|.  Therefore we may 
perform linear iteration for small | w | +  | f | .

For the shock wave problem (1.1), (1.12), (1.13), w;e will first reduce it to a 
common domain of definition by performing a transformation of variables which 
depends on the unknown shock front.

Let a be the parametric coordinate on 80, and n (a) be the unit normal vector at 
o;£$o- Then for small |/3 |, x(a, ft) =a+ ftn(a) parametrizes a tubular neighborhood 
of 80. Thus for small i<£i^Cl, the shook front 8 (f) may be expressed as

8 (t) = {a+ ft(a , t)n(a), а £ $ 0}, ft (a, 0) = 0. (2.4)

Let p(x) £0°°(RN): for some S i> 0 , p(x) = 1, when d(x, 8o)<-^r-; p(os) =  0,
A

when d(x, 80) > 81. Perform the transformation
x = x —p (x)ft(a (x ), t)n (a (x)), t~ t .  (2 .6)

Then, x\->x will be a sufficiently smooth diffeomorphism B N->RN when
sup ( I ft (a, t) I +  I Vtan/3 (a, t) I) <дй) (2 .6)as8a,0<t<h

where Vtan denotes the gradient on Riemann manifold $0.
After the transformation, the equation (1.1), or equivalently (1.3), becomes 

(we denote again the independent variables by (x, t) ): 
in  Q± X (0, ti) :

’ u f + P t f u f  w±, ftx, ft)u±Xj+ A f ( u f  w±, /3e, ft) v%
+ fi(u £ , w*, /3,5(5, ftcs, ftt, /3)=0, (2.7)

,v t+ Q f(w ±, ftx, ftt, ft) V^JrB f(w ±, ftx, ftt, ftx, ft) = 0,
where

P ti^P isiu t, w f - P i f u f  W*) (pftn})xH-P k j(u  x, W*) (pftnftvt
- P h f u f  w*) • (pftnftxfpftnft^,
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Q t  **■ -  pnsf i t~  Qi (*»*) (p f in p  ao
while A f, Вf ,  f t ,  f i  are determined similarly, the explicit forms of which are 
omitted because of no consequence here.

In  new coordinates, the boundary conditions (1.12), (1.13) become 
Г BtLF0(.w+) - F 0(w -)l -  |> (a) -  ( l + y S ^ V t ^ ]  . [^(м*, w+) - F ( ^ ,  « г ) ] - 0,
1 M<?o(o+) - W ]  -  [«(a) -  (l+ yS ^V tW S ] . [(?(w+) -<?(«/")] = 0,

(2 .8)

J Ф(и , и ) —0, .(2 .9)
l W(ui, Us, w'b, w~) =0, 

where %(a) is the Weingarten map: Ta(So)->Ta(So).
Evidently, for sufficiently smooth local solutions, the Cauchy problem (1.1)

(1.12) , (1.13) with discontinuous initial data is equivalent to the problem (2.7)—
(2.9) with the initial condition:

w*^®, 0) =Wo(oo), fi(a, 0) =0.  (2.10)
Next, we will reduce (2 .7 )— (2.10) to the case of zero initial data. From the 

compatibility condition in  Theorem 2 and the fact that for \®\ » 1 , $0 is a hyperplane 
and Wo are constants, we can construct (%*, *v±, #/3) £  X (0, t%)) X H it1
X (0, it)) xE T (SoX  (0, tj))  such that the new unknown functions W±—w± — *w* 
and ф = ft — *fi satisfy the following problem with homogeneous initial condition:

■ in  X (0, t i ) :
U}+*P$(JJ*, W*, ф„ ф)и±а,+ * А Г т ,  w  *, ф» ф)Г*

+ W*-, фаа, фа, Фь Ф)и%
+ #GS(W±, фж, фь Фа, Ф) , {W±, рфаа, рфе, рфь рФУ=Й(®, t), (2.11)

Vt+*Qt(W*, фь фа, ф)¥±, +  *ВГ(1У*, фь Фа, Ф)Щ 
+ *Of2(W±, Фь фа, ф)‘ ( ^ ±> рфь рфа,-рфУ^Й(%, t),

ГП( Щ,  W+, фь Фа, ф)Щ -То(и;,  W~, фь Фа, ФУ7а
+ T0i(W+, W~, фь Фа, W-, фь Фа, ФУ = ди(*, *),

Tn(Ut, 17;, Ж+, W-, фа, ф) • {Щ, и;У 
+T13(W+, W-, фа, Ф)(№+, W~, ф„, фу-д*{т, t),

* Тл (0+, U-) . (Г7+, U -y -g * (* ,  t), (2.12)

[0o(*v+ + v*)-G o(*v-+ v~W t+ [(7(%>++TF+)-<?(*«r+ T F -)]

-  [»(«) -  (1 +  (*fi +  ф) on (a) ) - 1VtaQ#/3] . [#G(W+)V+-#G(W -)V~]
L • + T 23(JJ+, U-, Ф)-(Р+, TJ-, фУ-*д*(т, t),

W±{®, 0) = 0, ф(®, 0) = 0. (2.13)
H e re /f ,  f i£ H * ( Q ±x  (0, tt) ), = (g11} g12), g2= (g21, g22) £H * (S0x  (P, O ) ,  arL(1
( / , g) have zero traces at t =  0 up to the order h— 1. All the coefficients in (2.11),
(2 .12) are sufficiently smooth in  W±, TJt, фаа, фа, фь, Ф, and belong to Я „1 in (®, 0»
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Straightforward calculation gives their explicit forms by substituting w* — ̂ w*+W* 
and /3= #/3+ <jS into (2 .11), (2 . 12) and using the Oauchy formula for remainders.

Hence, by the above procedure, the proof of Theorem 2 is reduced to the proof of 
the following Theorem 2' for the problem (2.11)—(2.13):

Theorem I f ,  fo r  W ± = О, ф —0 in the coefficients o f  (2.11)—(2.13), the 
resulted Umar problem is well-posed in  the sense o f  [10] at every point a So,

N + l
2

and ( / ,  g) are as described above, then 3£0> 0 , such that in  (0, to), (2.11)—(2.13) has 
a unique solution (PF*, ф) satisfying

f (ffiW=, ФФЖ,ч<°°, У ф £О о(-10, to), (2.14)
where

I(w, | 0 |!+l,e.
In  the following, we. will iterate (2 .1 )—(2.3) and (2.11)—(2.13) to prove 

Theorem 1 and Theorem 2'.

3. The Dependency of the Energy Estimate 
upon the Coefficients

1) In  order to make use of the linear results in  [9, 10] to iterate the nonlinear 
problem (2 .1)—(2.3) and (2.11)— (2.13), it is essential to know the dependency 
of the energy estimate for linearized problem upon its coefficients. Because of the 
localized deduction of the energy estimates, we need only to analyse the dependency 
in  local coordinates. Thus, we may rewrite (2 .1) — (2.3) as 

in  Q -  {(x , у) ;« > 0, у  £  R*-1}:
U% P qU%$ P P j  Â-oVfB -AjVpj~{~(sQU(g + UjUy, F±,
vt -  QovB -  Q}VVj—B0ua -  BjUVj+ C22w =*F 2,

’T 0ua+TxjUy,+T2w =g±,
■ T bu + S sv= gai, ona>=°0,

T w + S iV -g * ,

(3.1)

(3.2)

w(x, 0) = 0. (3 .3)
Our main theorem about the dependency of the energy estimate for (3 .1)—(3.3) 

upon its coefficients is the following theorem.
Theorem 3.1. Under the conditions o f Theorem Infixing W  = (U, V ) ^ 0 " ( f lx  

(0, if)) in the coefficients o f (3 .1)— (3.3), i f  the resulted linearized problem is well-

posed, and N + l
2 J+ 4 , then its solution w satisfies the following estimate

2Jc,w (3.4)
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where ;

!<Ж, 9 ) 4 , - I ^ I L +  K 'V i l L +  ы и
and the constant 0*,., in  (3,4) depends on W  only Ъу ЦЖЦ», or consequently depends on
IW l^ m d r ) .

Similarly, in. local coordinate, after the reflection ал-»—x in x < 0, (2 .11)—
(2.13) can be written as the following problem for w = (W+, W~) and ф: 

in x> 0, t>0:
U t - P 0uae> ~  PljUay, — P2iju yty} ~  AoVa ~  AjVVj - f  Сф1а +  OjUy,

+ O-xxW 4- E 2цфУ(У,+ E XjfiVj+ Еюф(+ Е хф==Fi(®> У, i) f (3 .6)
r>t — Qov a — Q,jVy3 — B qUx — BjUyj +  C 21W +  ]$2}фу}

+ E 20fit+ Е 2ф =F 2(x, y, t),
' on x —0, t> 0:

T 0M<c + T ijU y j+ T x W  + P r o fit +  Р ц ф у 1 + В Хф  — ffl (y, t ) f  . у
T su= gal(y ,i ) ,
Ъофь+ ЬцФуз+ S iV+TiU+Пуф—g?,2(y, t),

w(oo, у, 0) = 0, ф(у, 0) = 0, (3.7)
where P0, P l3, P 2ih A 0, А,- depend on (Vu, w , фу, ф); T 0, T Xj depend on (Vw, w, фь фу, 
ф); Oo, Oj depend on (Vw, w , фь фуу, фу, ф); Оп , E aij, Ец, Е х depend on (w, ф(, фуу, 
фу, Ф)', Qo, Qh Во, В}, Оах, Е а1, Е 2о, Е 2, Т 1} В 10, Bxj, Вх depend on (w, фь фу, ф); Т& 
==Г8(м); bo = bo(v); bxj, Si, Ti, В2 depend on (w, ф). And every ф in  (3.6) is 
accompanied by a smooth factor with compact support in  x.

Then for the problem (3.5)—(3.7), we have the following theorem.
Theorem 3.2. I f ,  fo r fixed

(w, ф) =  (wn, фп) €  Oo (Q X (0, t f )) X Go (So X (0, tO ) 
in the coefficients o f (3 .6 )—(3.7), the resulted linear problem is well-posed,

and (F , g) £!!*(&  x B \)  X H lt(So X B \) ,  having zero traces at t — 0 up to the order 
Jo—1, then the solution (wn+x, ф„+х) o f the linear problem satisfies the estimate'.

!(* W , фпц)11у< О кЖ Е ,  g)\H„ (3.8)
where the constant Gftl, depends on (w„, ф„) only by the norm ||| (wn, ф„) |||ft(4.

2) First, let us discuss a class of pseudo-difierential operators, the symbols of 
which have nonsmooth eoeffcients and are ^-weighted.

Let 2= (у, t ), its dual variables £ — (to, t) , and s~r]+ it. W rite

<£, » ? > = ( |£ |a+»?2) ^
then we define

Definition 3.3. a(z, £, rj) ,й, i f
<£, £  V) 1-1, V \a \< h  (3.9)
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If, in (3.9), H h~ 1*1 is replaced by j9^l|cel(cf. Kato [4]), then we have the 
symbols in S f ,]c(ulK Corresponding to the symbol a(z, r\) 6 Spl,k (or /S>,8K<d)), we 
may define a pseudo-differential operator a(z, D, rf) with parameter 17: .

«(2, A  »?)«(*) - J e we(e, I ,  ч)«(1 , чШ*

We write then «(2, D, rj) ^ S P f ’k (or SPpMul}).
1

W ith another weight function <(£, ф а— ( |ca |2+  |у | +rj)^, we have as in  [12] 
and in  Definition 3.3

Definition 3.4. b(z, £, rj)eSZ’f  i f
<i, £, v) €Л*-т, v A + A - A  |«| (3.10)

So is defined
b ( z ,D ,v)€ S P № .

Similarly S ™£t-i>1; and S P ^ 'T 1* are defined,

In  particular, g ^ S P ^ T 1'( )S P \’{m, ^ € S P lb 4ul)П8 Р ^ 'Ми1\
У ’ 2

For the L2-boundedness of the aboye operators and their commutators, we have 
the following proposition.

Proposition 3.5.

i) I fa ( z ,  g, n) €S$tl6(or S°P'%), b> ~ ,them

!«(*, D , ■»?)*«(*) V u € L 3(RN, rj)°,

ii) Let a(e, £, rj) £Sp,Kul)(or S tT ali)} To>~,them

I a (2, D, q)w(ss) | ,< a |w l„  VwGDa(-R ,̂ rj);

iii) Let P (2, £, v y e S l ’P ^ o r  S l T 1 W ) ,  b > ~ ,  them

w , p m  v )i  e m ,K o r  s p i t »)*,

iy) . I f  P(«, D, ri) €  S P I T 2{or S P I T 2W ) , & > f ,  them 

l# ~ \ P(«, -o, 7?)] e s p ^ A o r  s p i z ™).

We will need some Banach algebra properties of И к\1в>-^у 

Proposition 3.6. Let

min йд4-*” +#дк— (h ~ l ) ( ^ - + l ) = r > O e

Them we ham
m

1Н Ц « * | ^ < а Ы 8* г Ц М &w

II) K ' N I m. |! „ < ;0 |« f - 4 I ! „ , ,n |u . |f c
> 1 i+j
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W
ill) П  l » i l

The proof of Propositions 3.5 and 3.6 will be postponed till section 5»
Corollary 3.7. Let F  (17) be a function sufficiently smooth. Then fo r

\\£ -\F (JJu)  и , < 0 ( | ^ 4 7 | , )  • |u |M.
Proof B*(F(]J (u) is the finite linear combination with continuous coefficients 

of the terms such as (IP1 TJ)’" (B %iU) (B Ku ). Since for Те > j ^ J + 2, #o+ •••■

+hh^To implies
ч

(Л +1) Tc- (h+ 1) -  0 o + •••+ h )  + 1  -  A ( [ j ] + 1) > 0,

then Proposition 3.6 gives the desired ineqvality.
3) Now we are going.to prove Theorem 3,1.
Consider first the й-times tangential enlarged system of (3 .1)— (3.3), T
Denoting и ^Ut, ТРщ =  <о~г ((1Рм)в +  РоАА  (IP^)), where D = (dt, 0̂ ), then, 

from (3 .1), we can deduce the following equations of IPw =  (В^щ, В ъщ, B hv):
( Р Ч ) л =  ̂ (-О Ч ) - P o ^ o ( P ^ ) ,  (3.11)

(2) Ч ) в- ^ Р о Ч ^ г Р ^ ( 1 ) Ч ) - Р о 1Р « ( Л 3) , ,
+  D ^1, P i T H ^ - P ^ ) ]  ( Р Ч )  + Р о 1Р 1Л / - 1Ро1Л ( Р ^ )

■ -  iSa- \  P ^ P t / f d y ^ - K D ^ . - S - ^ A f f B ^
-  (Г -Ч Р о ^ о М Р М  -  ̂ р ^ р ч ^ + о^ ч- a 31w)
- S’- ' P o ^ F t - ^ P  01 [IP, P o 4 + P i A #J+ P ^ M >
- ^ P o 1^ ,  A0da+ A sdyjlv.

( P M e= Q o 4 ^ ) t - Q i ( ^ ) w,-Q o ;1Po^(:P 4 ) + Q o 1PoPo1̂ o (P M  
— Qo *1  ̂i.T^uf)Vj —■ Qo 1B lc{0S2'w') — Qo1 [Pfc> 4Qô a,"b ®
-Q o 1^ ,  ш а д « - е д а 3. , . ^  .

Or briefly
(Jffw)a = jrB *w + 3F + F ,

where j V* is a first order pseudo-differential operator with the symbol
0 tr 0

*/f~(s, со) = Po1( s+ P a(co))cr_:l —iP ^ P l ’Oi . 0
—iQifB'Oi — Qo 1P°(T Qoa(s—»Q°co)_

with
P 2 (со) — ’S  P 2faCO{CO,-, P i • CO — P  1,-COj, Q • CO — 2  QjCO,', P»CO= ^  PjCOj.

p = (o ,  ■- 6a 'P7fB*F1, :
while ĉ *== ( # i ,  «̂ ~2, J^)*  is defined by: (3 .11)—(3.14).

Let ^ ( s ,  со) be the symmetrilizer constructed in  [17] (There are mistakes

(3.12)

(3.13)

(3.14)
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there when treating the case of variably coefficients.). I t is not difficult to check that 
for |||Ж ||кч< о о ,  0t<t, со)

For the terms of lower order, we have, for Ъ > Г-— 1+4,

1^(0 , v ) ^ n < O k(\\w\\lv+  IK-4111,4+»7-3||̂ -1F 1||i4+ r?-2[|Fa|i,4). (3.15)
Here and in  the following, Ok will denote the constant depending on ЦРГЦ*,, but 
being uniform of 77.

To prove (3.15), by Proposition 3.5, iv), we need only to estimate

1°. By Sobolev imbedding theorem, Л> Г17+1 
-  2 so

wp^ aoCd ^ )
2°. To estimate ^"3: (see (3.13)).
From Propositions 3.5 and 3.6, we have

||Qo1-B0Po14 ( I > ^ ) l , < ^ I K ^ |4, IQ o ^ iO ^ w ) | I w I #,
Since Qh Bj are independent of Vw, and [IP, Q4 J , [IP, BjdyJ are Л-order 

tangential operators, we have

IIQ o W
; Because of

Qo1[IP, B ^ u-Qa K 2  Gk(D^B0) (D ^u)~B odaD \) ,kl+Ha=k
its estimate is reduced to the estimation of Qo (ZP\B0) (Dk‘dau), hx+ Ла= Л, Ла<Л. 

Since Q o4P fclPo) (D^dzii) =Qo1(DfcsB0) К ^ с Г Т Р а д , we have 
\\Qo\D^B0)(D*>dau) ||,<afc|K"4IU„.

SimTarly
[IP, Q o№ = 2  (PfclQo) (Ds4 * )  -Qo[0e, IP > .

I t remains to estimate (Dk,Q0) (£ * 4 ) ,  h±+hA = b, Ла<Л. The fact that Q0 is nonde­
generate implies = Qo1 {щ—Q,^yj ~  B0ua—Bjuyi—Oa2w—F s), Hence we get 

II (DfciQ0) ( Н Ч ) ||?<0fc(||iPw|l?+ |K_1-D4!l3+ ^ aIKa||I,4).
To sum up, we get

8°. To estimate «0^: (see (3.12)).
From Propositions 3.5, 3.6 and Corollary 3.7, one has

1 i< f-\ Р ^ Й - Р А » , ) ]  (№u) 1, + 1 W A U ' W . I ,  

fPi>PJf%/-1Pibtll(Dh<>) I .+  l^P^A&SDV) (,

К - 'Р о '^ Ч О ц * )  | , « 7 t |w |b „
К - 1р„-1л*(а„и»+аЛ ()| ,< о ,(К -Ч 1 ,.,+ 1 « Ь „ ) .
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and

The estimate of S’̂ P o 1 [Р7с, A 0dx+AjdyJ v oan be earned out, in  a similar way 
as the corresponding terms in  The only difference is that A0, A}- may depend 
on VU. By Proposition 3.6, it is estimated after the action of that

l ^ P ^ U P ,  AQd^+Asdyj2 v ll^ O k(\\w\\ln+ \ \ ^ - 4 4 ln+ v~ 4 F 4 lr ,)‘
Since

fti+fca=fc,fc8<ft
- s a- ^ p m \dWi, m u ,

s  (2m,)CDfca*wo
fci+fcj=fc,fca<fc

-  6д~гРъгР ц [dccyi, Щ и,
Proposition 3.6 again implies

1 ̂ _1Po1 PljdeVi+Psiljd^Vil U! ,« ?» (1M(I fc,4+ II 1K, „).
Finally, since

• ^ P o 1^ ,  P o ^ w ^ - i P o 1 2  (D*Po)(2>**0kt+k l̂c,k3<k

Щ щ
noticing that ['dxx, Dfc]w is the linear combination of terms of the form ТРгихе, and 
using the parabolic equation to express uxx, its estimation is reduced to the oases 
treated before. Hence

[l<rip 0- i [i)fc, Р о а д м | |к ^ ( 1к 11. , + 1К " Ч | |1.ч+г?- 2||^ -1р 1ц ,ч).
To sum up, we have

Combining the estimates for Щ , J ^ ,  ^~з, we get (3.15).
4) Next, consider the &-times tangential enlarged boundary condition of

(3.2). For Dliw= (DlcUi, Dku2, 2)%), we have:
ТоЕЬь+ Тц& -% £]?и) Тодх+ Т М и

- ^ - t j p ( T 2w) -  [ёЩ Т^ду,
-  l&~\ ТоЩ  <?~2Dkux+ T ^ P ^ A J P v . (3.16)

T z(D*u) + S 3(D*v) = Z ) V -  ID \ T sl u -  ID \ S d v ,
• Ть(Вки) +& (Л*«) =П*да2 -  \D \  r j w -  [2) \

Or briefly
Here ^ (2 P w )= < ? + ^ .

’ T 0D1<suaJrT 1jS’~1dyjDlcui ’
°T(TPw) =

{?= (# _1Р Й̂1, PVai, D % аУ, and ^ i s  defined by (3.16), (3.17).
For ( ^ a, ^ 2, &гУ, one have evidently

I З Д +  | З Д -  11Щ Ts]u+  [Dfc, № |? + 1  U>\ 2V1« +  №fc, № 1?
< o fc77- a | w | i „ .

(3.17)
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Since \S  1Dk(T2w) + T 0S  1Pe1A()Dlev | 1\w \lt7j} we have 
| [S~\ |»+ 1[S~ \ | |

<(7 V 1 ( I w 11,4 +  | | i  4) .
[IP, Tydyj} is a b o rd er tangential operator, therefore

T & M l  C ^ M S .
Since v

^ [ D \  Todx] u -  2  0 M i ^ ( D ^ T o )  D ^u ,
—fc“l

and [0a, IP]u can also be expressed in the form 2)й_1мв, by Proposition 3.6 and 
Corollary 3.7 we have

|S’”1 [B \  2У У t*1■ ■< ОьГ11* “4 \ l v
Consequently we get | ^  | ( |w 1g,, + 1 1f ,„).

To sum up, we have
(3 . i 8)

5) To prove Theorem 3.1, we stffl need the following sharp Garding inequality, 
the proof of which we postpone till section 5.

P roposition  3.8. Let @%(z, £, p) be the symmetrilizer constructed in  [17]:
X@ n @ h '

U s , £ , v ) - « ; ( * ,  f ,  4) -
@ 21 @%2 .

where @ u £ S bd (ul),
Define the Bermite symcol В  (z, £, rf)

H n  Я м "
в  («> £> v) =

В  *!2 В 22
==Re @%{z, £, n)s

where B n e S ^ n S l ^ ,  B 12, Я а2€£1’й(и1).

V

M ( n , £ , v ) > O i
O' oI2p

PA)
, with cr0=Re cr,

йетг ЭЯ., poOpo may depend on X), such that o, the following inequality holds:
Re (w,-@,fz, D, rj)BS{z, D, rf)wv>O0 Re(w, S u ) 4+Otfi\v\ v> (3.19)

where w = (u, v), u, v a/re О о vector functions o f 2p  and q dimensions.
■ ■■■ Applying the preceding results, we can prove the following tangential version 
of dependency theorem.

L em m a 3.9. For —] +  4, the solutions o f the well-posed linearized

problem (3 .1)—(3.3) satisfy the following istimate
Re ( D \  £D*M),+Re(.D4, S ^ D h tf)v+ v \\D4\\2n+ \w \l.v+ \S ~ 4 a\t,n

; : -  (8 . 20)

Proof For simplicity, we drop X in @%, From the construction of @ (z, £, p)
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£17], we know
i) Re ®(x, y, t, s, со)Ж(я>, у, t, s, co)>O0 diag (cr0 I 2p, rjla);
ii) Ф ®(ф, у, t, s, oj) w^ G \ ( K  \w+ (s, со) J2—■ |w~(s, со) | a).

Here, is the decomposition of ^  with regard to the generalized eigenspaces
of matrix «Ж(0, у, t, s, со) (Re s >  0), corresponding to the eigenvalues with positive 
and negative real parts respectively. As pointed out in [8], taking the localized 
neighborhood sufficiently small, the decomposition may be practised with .Ж*(0, 
yQ, to, s, со), here (y0, t0) is a fixed point in the considered neighborhood.

From (3.14) we have
Re(Dfcw, ®(z, D, 4)Z)fcwe!) , - R e ( Z ) 4  ®{z, В , v)^T (z , D, rj)Bbw )n 

+Re(Dfcw, ®(z, D, rj) # " ) ,+ Re (Bkw, ®(z, D, y )F )n.
Integrating by parts the left side, since ® (z, g, rj) is Hermitian, we have

( D 4  ® ( z, D, V)  {Gbw )x) =  -± -< G llw, ®(z, D, v)Duw>v+0(\\Dkw\\l),
v A

By Proposition 3.5, (3.15) and Proposition 3 .8, we have

-i- <D4w, ®(z, D, rj)D^>„+Oo Re (B^w, S  2>»w), + Z)fc® *
A

<о„(|л«1;+1̂ 12,+11» 1Э
< 0» ([D « ||!,+  |K -1J?1l i , +  | |f t | | i ,+ 1 « ||J , ,+  |K -% .II,,). (3.21)

Let ^ o — to)- Fourier-Laplace transform gives

iT0 ( $ Я )  = ^ + ( ^ +) +  ®~o (Dlc'w)~ = 6r ■+■Ф. (3.22)
From the well-posedness, det &~o =£ 0 uniformly, therefore . ■

\ ( ^ ) ~ \ < 0  ( \G + ^ \ + \ ( $ w ) * \) ,  1
From the condition ii) satisfied by ®{z, g, rj), wo get for 1,

<Dfcw, ®(z, B, rj) Dfcw \  =  <Bfcw, ®(z0, g , rj) + s | B bw |3

>C?4 j(#  | (B^w) f  |a — | (JFw) ~ | a)dv dco— s | B*v) | \

>(7j j*\B bw \s dvdco—0 2̂ \G + ^ \advdco—8\B lcw \l

>G l\D lcw \^ -0 'l \G \2~ 0 l\& \l.  ■ (3.23)
Since ST is an operator of О-order, the operator norm of о may be taken

sufficiently small, depending only опЦРГЦй, by shrinking the localized neighborhood. 
F rom  (3.17)—(3.18), we have

<Dfcw, ®{z, D, rj)D*w>v> O l\w \lv~G lc( \£ -1g i \ l n+ \g 2\ l n
+rj~1\Blew \l)~ 8 \B lcw \ l  (3.24)

where S may be taken sufficiently small.
Letting rj> l in  (3.21) and (3.24), one gets (3.20), since ( B \  &<o,
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Now it is easy to prove Theorem 3.1.
By Lemma 3.9, it remains to estimate the normal derivatives. We oan proceed 

as in  [8] . Differentiating the parabolic and hyperbolic equations in  the normal 
direction jfe-l times, we get the estimates of normal derivatives by tangential 
derivatives. Evidently this does not make stronger the dependency upon the 
coefficients. From (3.20) it follows that

V » T (I» R .+  IK-:4 | | J„ )+ M f„ +
< o « ( I ( J ' , s ) B , .+  IW *,.+  i ^ 4 1 i , + 4 - 1l» l? .,+ 4 -1K -4 | ? „ ) .  (8.25)

Keeping in  mind that Ok is independent of rj, taking rj> 1, we have
- IMIi,,<Cy||(F, g)III!,,, where C ,=C ft(l|W||U). ' (3.26)

Since the support of Ж in t is contained in the compot set [0, £J, the norms 
1TFIIU.4 and 1Ж Ий are equivalent for fixed rj, and the equivalent constant depends 
on r). Thus

а д ж |о -а л,(|жй)-о».,.’ '
Substituting them into (3.26) gives (3 .4).

6) Now we tu rn  to the proof of Theorem 3.2.
Let e(y, t, s, oi) =  sbo+ibycoj. For a fixed point (y0, t0) in the localized 

neighborhood, construct a pair, of projection operators II t (s, oi) and Я 3 (s, со) as 
follows:

<<P, e(yp, to, s, со) у 
\e{y0, to, s, <o) Is е(Уо, to, s, o>), n&=i~nt.

Let Яа(Д +»7, B y) act on the last boundary condition in  (3.6). We get
n s{Bt+r}, В у)в{уо, to, B t+7}, By) t, B t+r), B y)

— е(г/о, to, Д + ч , Ву))ф+П2Т4и
= Д2 ($4a + + Т 4и+е(у, t, Bt+rj, В у)ф -е(уо, t0, B t+r), В у)ф)
= U20̂ 2. (3.27)

Substituting (3.27) for the last equation in (3.6), we will denote by (3.6') the 
resulted boundary condition.

Fixing {w, ф) =  (wn, фя) £C o (Q x  (0, t±))x O " ($ 0X (0, it)), we may treat (3.6), 
(3.6'), (3.7) as an initial-boundary value problem for hyperbolic-parabolic 
coupled system we have discussed in  Theorem 3.1, and the dependency of its 
energy estimate upon its coefficients may be analysed in  the same way as above, 
except that two new features need careful examination.

First, the coefficients of wn+i and its derivatives in (3.6), (3.6') depend upon 
фп, А фп and &1фп, the terms 81ф„ appearing only in  the coefficients of the parabolic 
part of (3.5) and only in  the coefficients of the terms which is of lower order with 
regard toAw»+i, VVh-i and Vvn+1. From the proof of Theorem 3.1, we see that the 
constant in the #-order energy estimate depends on daun in  the coefficients of
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parabolic system only in the form | $~г8аип \ fc. Consequently, our dependency on 
8\фп here is of the form | | <  G | фп | k+1. The dependency upon фп, дьфп and
8уфп in the coefficients of hyperbolic or parabolic part is evidently of the order 

Therefore, in  the energy estimate of Л-order for the problem (3.5), (3 .6') ,
(3.7), the constant depends only on f(w„, ф„) |j|fc.

Secondly, as terms of lower order, (3.5), (3.6') contains the terms <£n+1, 0«<£n+1, 
ёуфп+i and 81фп+1, with 81фп+2 appearing only in  the parabolic part of (3 .6)„ 
Noticing the proof of Theorem 3.1, and |# _1̂ n+1 | fc,4< C |^ n+i | !5+i,n' we get

!w.+i !2.,<0*(!CF, д)Ш,у+'п~^\Фп+1\к+1,<1

+  | ̂ ‘лфп+l | k, n +  $  | фп+l | k+1 ,ч ), (3.28)
where the last terms on the right side come from the two terms in  (3.27), containing 
ф. Taking the localized neighborhood small enough, we may make s as small as we 
wish, while the operator norm of M 2 may increase correspondingly. The constant 
Оъ in (3.28) depends on f  (w„, фп) f fc, and is independent of rj.

For well-posed problem, e(t, y, s, o)=£0, so from (3.6) one may solve 8$ n+i 
and 8уф„+1 in  term of wn+1) <£n+1 and gas. Thus, the Proposition 3.6 implies

|<^n+i|fc+i,45̂ ^ !,fc(|wn+i|fc*4+ (3.29)
where the constnnt G\ depends on Щ (wn, ф„)Цй, and is independent of 77.

Adding (3.29), multiplied by small positive, upon (3.28) and taking the 
localized neighborhood sufficiently small to make s < l ,  then making we have

I(«W 1, < М Ш .ч< о ж р , g n u  (3.30)
where the constant Ob depends on ||| (w„, ф„) |||fc, and is independent of 77. As in the 
proof of Theorem 3.1, <7*(f  (w„, фп) 1ъ)<С]с, ,(f(w„, ф„)| fc,), therefore we get (3 .8) .

4. The Existence and Uniqueness of Local Solution

Here, we will use the results of Theorems 3.1 and 3.2 to prove Theorems 1 
and 2' by linear iteration. We only give the proof of Theorem 1. The proof of 
Theorem 2' can be done similarly, and is omitted here.

1°. Existence:
Denote (2 .1)—(2.3) briefly by

f ut — P u —A v= F 1) 
\ v t- Q v - B u = F a,

in Q x B \,

Т 0и + Т 1зиу3+ T-xw = g1} T aw =  g2, on 8Q x 
w(&, 0) = 0.

(2.Ю

(2 . 2')

(3.3')

For r > 0, let (pf (t) GO'” (A1): 0< ^ r< l ;  q>r(t) =1  when t<~;q>r(t) = 0w hen t> r.
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We formulate the following new initial-boundary value problem from (2 .1 ')—
(2.3');

ut —P u —'A v = f f 1}

v t —Q v —B u = F a,
in  Q x  R \ f (4.1)

ffoUe+FisUyi+TiW^gi, T aw —ga, on dQXR+, (4.2)
w(co, 0) =0, (4.3)

where P is obtained by m ultiplying all arguments in  the coefficients of P  by cpt^)', 
Я, B, Q, T 0, T lh Pi ,  Pa are defined in  the same way; and (P, g) —<Ph(t) (P> d) with

W rite
^ ( e ,  <0 =  {w; supp w c f ix  [0 ,70 , ||Mlk4< 8> D{w\t=o^>  j = 0, 1 ,—

For small e and t1} after substituting any W (z& (s, oo) into the coefficients of (4.1) 
— (4.3), the resulted linear problem is well-posed everywhere on d Q x R \. On 
account of Theorem 4.1 in [9] and Theorem 3.1 of section 3 in  this paper, the 
linearized problem has a solution w, satisfying

llhlll,„<Ofc.J ( P ,^ ) | | | fc, ,  (4.4)
Since (P , g) has zero traces up to the order h—T a,t t= 0, we have Ц (P, g) |к„—> 

0 as t2—>0. Fixing r], and taking t2<& 1, we may make the right side of (4.4) smaller 
than s. Denote the linearized iteration operator of (4 .1 )—(4.3) bу Ж  Then W
\->w maps ^ ( s ,  oo) into oo).

Taking any w0(Е^(в, oo), we construct ^ i = ^ / w , ' ( ) = 0, 1,••••••). Define Wj+1
*=W}+1-Wj. Then Wi+i satisfies

f dtUj+1 -  P (wj) Uj+1~ l  (ws) V ,+i = (P(wj) — P  (wj-%)) Uj +
i  д У и г - й Ы У } * ! - P(w j)U }+x= -Q (w s-i))v}+ (P { v ) j) -P (w j^ )u h

(4 .5)
T  о (wj) 8JJ1+1+ T  (w^ dyjjj+i+ P i (ад,-) Wj+x =  (P0(w/-1) -~To(wj)')da.u}

+  (Тць(Щ-1) - T u (wj))dyhUj+ (P i(w i-i)-P i(w i))w /, (4.6)
. Pa (^)Ж ,-+i =  (Pa (w,_i) -  P2 (w}) ) wh

W i+1(x, 0 )= 0 . (4.7)
From Proposition 3.6, the right sides of (4.5) and (4.6) can be estimated as 

follows

\\<!г \ р ы N k „ -  ( \ m \ b - s,v +  . i w „ ) ,

\ \ £ - \ l  (щ) -  2 (*ь 0 Ь 1» - . ,< с * , .  ( |F , |  w . f +
I ( $ («>/) - Ф( w , - - i ) ) % + ( P (щ )  -  в (wy_!)) ад,-1fc- a , * _ 1,w 

|^~ 1(P0(w,-_i) - ^ o ( ^ ) ) a i5% + ^ -1(P lft(%_a) -Р л (щ ))д 9„щ 
+^~1(T1(̂ wJ-1) - P 1(wj))wj\k. a,y<Gu,v(\wj \le>1l 
+  [ ^ 0 Л |м )  (I^ U -a .,+  K W )* !* -* .,) ,

I (P a(w/_l)—5fa(w ,) )^ |fe-2,)j^Offt,)j|W/U.4‘ l^"U-2»4*
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Applying the (#—2)-order energy inequality for well-posed problem (4 .5 )-
(4.7), we have

11Жт 1»_а>,<С7,||Г/™й_3„.1|̂ |||й,„ (4.8)
where the constant Gv depends on 77, but is independent of ia<^l. Take f2<^l

i
such that s« :l  and hence C'4|||w;| k,4<-A Thus (3.8) implies that {wj} is a

A

Cauchy sequence in  the norm 1И1й-а} • Since Wj G &  (s, со), we see that W j->w£  
& (e, со) by Banach-Saks Theorem, and ад is the fixed point of «я/, i.e., the solution of

(4 .1)—(4.3). But (4 .1)—(4.3) is identical with (2 .1 ')—(2.3') in 

to =  т|г h, we have the solution ад of (2 . 1 ')—(2.3') in  (0, t0).

(о, у  ta)- Taking

2°. Uniqueness:
. Let w, ад' are two solutions of (2 .1 ')—(2.3') in  (0, to) and (0, tj)respectively; 

м бЛ ьсахС О , ^ ) ) :  §ipwhfV< °°, Vtf*(=CZ(-t0, t0); 
w'G-H'fc(t2x ( 0, tj)): |||i/jV|||s„ < oo, Vi/>'GO'o(-to, to).

Let to =  min (t0, to). We want to prove w —w' in  (0, to).
Because the set of all f G [0, to] for which w —w' is dosed, it remains to prove 

it  to be open, i.e., Wo<to, if w — w' in  [0, To\, then 38>0, ro + 8<to, such that 
w=w' in  [0, To+ 8] . W ithout loss of generality, we may assume To—0.

Since ад, ад'= 0  for t < 0, we see that \/s> 0, 3n< to , such that ||w|(fc(4,ri< s , 
l|w'|fc,4,ri< s .  Let (F , g ) —(prt( t)(F , g), where cpr is defined as in 1°. Similarly 
choosing Tx and r a, we consider (4 .1)— (4.3).

I t is evident that when ri^Cl, s<$Cl, (4 .1)—(4.3) is well-posed for any wG 
^ ( s ,  00). As in  1°, for 'T2< r i ,  r2< l s the linearized iteration operator stf of (4.1)—
(4.3) maps ^ ( s ,  00) to 3£(e, 00). And for s<$Cl, «я/ is contracted in  the norm 
III • lllfc-a,̂ . Since # ( s ,  со) is convex and closed in the Hilbert space with norm IHIkw 
by Banach-Saks Theorem, it is closed in  the topology with the norm ||| • |||й_а„. From 
the contraction of stf, we know that the fixed point of is unique in ^ ( s ,  00) „

Substituting ад, ад' into the coefficients of (4 .1)—(4.3), we have the well-posed 
linearized problem, so there are solutions ад*, w[ in  ^ ( e ,  00), therefore the iteration 
may proceed:

Щ+i= ^ w ’h i= U  2,-*.
As in 1 °, for r a< l ,  the sequences {%} and {w'j} converge to ад* and w '* ^ ^ (s ) 

00), respectively, ад*, ад'* being the fixed point of sd. But the fixed point of is
. * /*unique, so ад =ад .

Because of (4 .1)—(4.3) is identical with (2.1 ')—(2.3') in (о, т г ^ ,  аш  ̂w> w> 

are solutions of (2 .T )— (2.3') in ^0,у Г 2), from the uniqueness theorem for linear
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areproblem in [9], it follows that w=wi, wr = w[ in  ^ 0 , i.e., wlf w[ 

solutions of (2.1') —- (2.3') in  ^0, — r^ j . In  the same way, we oan prove w±—wa =  • • • =

vf, w'i = w% =  * • •= w'* in  (o, —ra ̂ . But v f —w thus w = v/ in ^0, ~  and ~  <ra can

be taken as the desired 8.

§ 5 . The Relevant Properties of v- Weighted 
Pseudo-differential Operators

In  this section, We discuss the properties of a class of pseudo-differential 
operators whose symbols have only H k regularity and are ^weighted. "We will 
give the proof for Propositions 3.5, 3.6, and 3.8. Our approach of proof follows 
Beals-Reed1123 and changes the corresponding proof for smooth coefficients in  [17]. 
Compared with, the result of Ma jda in  [11, 12], the requirement on the regularity 
of the coefficient is considerably relaxed.

I) The Proof of Proposition 3.5.
F irst we cite a useful lemma (of. Lemma 1.4, [2]);
Lemma 5.1. Suppose

= sup j | g (£', £) |2d f < ° o s

O S = supJ|0 ( f , O | ad£< co„

Then

удеь-овд, (га) (f ) -  jeer, 0А(А«е£Чя?),
m i  i rA K O /J o lM ,. . .

Using this lemma, we now prove Proposition 2.4:
i) Since

where a denotes the Fourier transform of a with the argument g, all the rest of “ л” 
denote Fourier-Laplace transform.

Let G(£', i )  = < f-£ > ~ ft, g(i', О  -<£>*«(£', i ,  »?). Since i > y  IV, from Lemma 

6 .1  it follows that

!«(*, D> ч)«(*)1ч- 1  ч)|-С71м|г
ii) We need only to show that \/u, v £ L 2(BN, t]),
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| (a(e, В, п)й, « ),| < a ||M |J 'y ||r
We can choose {^} such that 1 — Sq)j(z), where <p}(z) ^pC z—Zj) with some % 

and <p£Oo. Let ifjj(z) =ift(z—Zj), ф £О о, ф=1 on supp <p. Hence 
| (a(z, B, rj)u(z), o(e)),|

=  | J« 0 , £, v)u(€< v)v(?)eiz(~ntdgdz\

==< ^ l \ \ ( M ( z > g, ri)eiz(u ( i, ridge-”*(<p,v)(z)dz\

£,»?)«(£, r i^ ln *

But (ifjja) €Sp‘k, so from i) , (ф^а) (z, B , rj) is a uniformly bounded operator in 
L 2(RN, r i and its norm is independent of j, by the make-up of ф, and the definition 
of Н1г. Therefore

| (a(z, в ,  »?)«,

iii) Let r(z, B , r i — №, P (z> B , »?)] • Then

щ )- \ H e ~ t ,  l ,  n )H b  п Ж ,

where

H e, t, ч) -  2  о. Г8?<r(c+<f, n)dt^(f, i, v).
Ial=l JO

Sincedf<r(Z,+tg, rj) is uniformly bounded for |a | =1, and <£, гф^т°(,€У B%P (g, 
£, ri is a nniformly bounded set in  L 2 (RJ) for all £, 77, we have r(z, £, rj)

iv) From iii),
g~xP{z, B , rj) -P (« , B, r i ^ + ^ l P b ,  B, r i ,  W ’ 1 

—P(z, D, r i B ,  r i ,
where rt (z, B , rf) € S P \:l+1.

Similarly, ^ _V i(2, B, r i  =^1 («, B, 77) (2, B, v), where r2(z, В, ri £
S P &  Evidently, n (z , B, r /K "1 €  &P?;*+1, so [<f~\ P(z, B, 77)] eS P °d ,

II) The Proof of Proposition 3.6.
i) The proof may proceed in  the same way as in [15], one needs only to 

substitute the 77-weighted norms for the usual ones, 
ii) We have only to show that

1 (?-*(.«) u , < 0 |* - 4 ( | a„ M a, * > f .

Following [15], we have

<£, r i Y ^ u v  (g , r i  =  <£> v )  |<Г> »?>'fc< f-e > " fc. f ( £ ' ,  v ) g ( £ f - g ) d g \

where f(g , rj) —(£> цУи(£, v), d(£) =*(£Уу(£) • The notation “ л” means the Fourier- 
Laplace transform or Fourier transform according to whether the expression 
containing 77 or not. Thus
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<£, rj)m  (£ ,» ? )= ((  +  f )g(£'-£)o-~1(g, rj)<r(£, rj)
4J (|Л«фл J \e\>^\ti/

•<£, ч>‘<£', 4 > -* < r-£ > 'V (f , ч М Г , >?)-W . (6 .1)

When |£ ' |<  i | f | ,  we have |£ '~ £ l |£ | . Expanding the terms <£, rj}h in  the
£

above relation, we can estimate each term in  turn :

<£, Ч>-*<;Ц 0 ., Ф ^ ' У " ,

■ When | f | > A | f | ,

<»•(£'» •i?X f, ч>в
is uniformly bounded, because of the monotonous decrease of cr (£, rj) about
| f | .  Since < ?-£ > -» €  LS(J$ ) , « ^ ( б  ч М Г , пУ<£> 4>*<e, Ч>*<£ -  €>-* is a uni­
formly bounded set in L a (Rf>) for all £ and 77. t v

Combining the estimates for [£‘' \ i  | £ | and | £' I |£ |, and applying Lemma£ £
5.1 to (6 .1) , we get the desired estimate.

iii) We proceed as in  ii) . F o r |£ '| < y | £ | < | ^ ' | < 2 | f |  and | | ' |  > 2 |£ |,

we estimate separately the integration in  (5 .1) and arrive at the desired inequality, 
details omitted.

I l l)  The Proof of Proposition 3.8 (Sharp Garding Inequality).
The proof consists of the following steps:
1°. For the composition of the operators 0£% (z, D, rj) and jV ’jz, B, rj) *
Lemma 6.2. Under the condition o f Proposition 3.8, (z, В, rj) — (z,

J), rj) °J f{ z , D, rj) is a bounded operator in L a(BN, rj).
Proof Because of the block structure of 0£%, j V', we need only to consider' the 

composition of the corresponding blocks.
„ Г MSLk J T 11 +  ̂ 2 1 ^ '2 1  222k%j v *=

[_ 3&2\ 1 1 + 2 1  22.
I

Denote by jJD, rj} the operator with symbol ( |£ |2+ ^ 2) 2. As in [2], making use 
of the Cauchy integral formula for remainders of 1-order Taylor expansion, we 
have r(z, D, rj) =  [«Л^зОг, В, rj), (В , rj}] С & Р Р -1, and

^ 22(г, В, rj)<jB, rj}oJBa2(2, B)<B, rj,>-1=  ( ^ s a ^ 22) (z, B, rj)+r1(z,B, rj), 
where n (z , B , r j  G ^P i’s-1. Thus

^22°^22=^22°^22°(B , rjy'QD, rj} * 1

= ̂ 22<jD, rj)°jV'22<D, rj}~1 + ^ o r ( z ,  B , rj) <J), rj} - 1 

= С^иЛ>) («, В, rj) +n(e, В, rj) +&22°r(z, D, rj) <D, rj}-1,
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where г%(%, D, 77) +& aa°r(z, D, 7 7 ) rj)'1 is bounded in L2(RN, 77),
^21*^32 may be treated similarly.
The rest four terms in  3%Ъ~АГ  may be discussed in  the same way, if  we change 

<D, 77) by £ .
2°. For the conjugate of the operator, we have the following lemma.
Lemma 5.3. Assume the conditions in Proposition 3 .8 . Then D, 77)

— (z, D, 77) is a bounded operator in If*(BN, 77).
Proof Since

D, 7j)u(z) £, v)u(zf)dzfd if

we

B ut

4) - j c s ^ y c f - c  e, ч ж с , ч ж .

(й М О '(£ -£ , S, 4 ) - ( S M O '( f - C ,  £, ч)

+  S O .  Га?. ( ^ V j ' t f - : ,  £ i + * t f - 0 , . i W t t f - O * ,lai=l Jo

(С # у й < £ , ч> - (я£Ж )'и((, ,)  + j r t f - J ,  {, ч)«(С, чЖ ,

where

гй, с, ч)- 2  o.f^oSTrytf, г+* »)*£“•!«l=l Jo

Evidently, <d>fc_1r  ( |,  С, т?) is a uniformly bounded set in  L3(BJ) for all £, 77 
Hence Proposition 3 .5  implies that г  (г, D, 77) is bounded.

3°. By Lemmas 5 .2  and 5 .8, the proof of Proposition 3 .8  is reduced to the 
proof of the following inequality

Be (w, H (z, D, 77) w )v>O0 Re(w, £  u )v+Cir]\\v\\%. (5 .2)
Let

G ( z ,  £, 77) = R e ( ^ ^ / ‘) - c 0

= Re — c0

0"qI%p

Oolao

-  (Л.-1)
Re (0t\x-A/~и)

0

-о. J
(6 .3)

We shall prove the following Lemmas.
Lemma 5.4. Re (u , D ,  t])u)n>0 Re (w, £ u ) n.

Lemma 5.5. G{z, D, 7])w)p>—Ci\£^u\a- c a\v \l.
Suppose that these two lemmas are proved. Then we have 

Re(w, ^ Â / w)4>R e(w , G(z, D, 77)w ),+ c0 Ве(м, £  u)n 
+Со7?1^||ч+(^—l)o  Re(w, £ u ) v 

> ( ( X - l ) c + c 0-Ci) Ве(м, £ u ) n+(cor)-c1)\\v\\*.
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Taking 97^1 leads to (6.2).
4°. The proof of Lemma 6 .4 .
As in [2], denote H i (2, g, 97) =R e g, rj). From the structure of

in  [17] , we know H a(s, g, 97)>Ga-0I 2p-
Let Q(e, g, v) g, v) - c 0cr0I zp, Q(z, g, 97) and Q>0.
As in  [20] , let q (B} z, B, 97) he the Friedrichs symmetrilization of Q:

q(C, *. ft ч)- \r .(£ , £, «Ж«, £, ч)Л(й £, ч )4  (6.4)
where

л « , :,ч) -<f, ч>."*%(«, »>~hs- &), (5.5)
with $9 being a smooth even function of compact support, supp <pcz{g£RN, l£| < 1}, 

and j ^ 2(£)d£ = 1.

Let г(г, D, 97) = q(B, z, B, r)) — Q(z, B , rj). Since q(B, z, B, rj) is nonnegatiye, 

(m, q(B, z, В ,  97)м)ч> 0 , it remains to show r(z, g, rj) £ $?; JT2(ul).

Since

г(*Лч)и( ,̂ rj) -Jr(f'-£, ft q)<<(ft >))4ft (5.6)
#(f, ft v)-n+fB -JAd'+ft £, v) $(£', £, ч)-й(е. ft 4)3 .̂(f, £, i0t»£:

+J[*Vtf'+ft £. ч)-Г.(£, £, ч)Ше, ft п)К((, £, ч)й£. (6.7)
For brevity, we will denote by д (g'f g, rj) or # (£', g, £, rj) the functions in 

L2 (Ff<), uniformly bounded for the parameters g, £, 97. We should prove

<g'y~2Hg', g, rj) £ L a(RJ>), uniformly in  g, rj. (6.8)

1) <ft 4>b

On supp Fo-, I £ -C |< < £ , »?>l- And 
C, r j) -Q (g f, g, rj)

-  2 , 0 .  Г л ъ й с г , C i+ *(f-C ), ч)л*  я*  (£ -£ ) •l«l=l 9 0

-<ft>-*<ft 4 > L ( f ,  f t £ . »),
eo

n-<ft 4>t<f'>-“j7?,(ft+ft £, v)r.(£, £, i0j(f,ft £, i0d£

-< f t  4>l(t>-W,(,v)i

ni-^(ft, ft idjWft'+ft £, 4)-■*■.(£, £, n№(f, £, «i><*£
-< f t  i)>,<ft>-V(ft, ft 4 ).
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Therefore, (6.8) is valid on <£, ??>J.
£

и). <e»i<s,v> t
Now we have <1; +  /c '̂, ri)a~ (£ , rfr., (0 < й < 1 ). From [17] it follows tha t

(6.9)

where

^a-o<$,v>:b фа,в,Ут::~ уыаи\
Therefore

С, *?)-3 ( f ,  f, t? ) -  2  £  v ) ( l - € ) ei«i=i

+ s  Го.а?,4 (г, ti+ * (c -e , 4 )aw O - * ) * ( i -e *lal=2J0
-  2  a $ ( f t ,  I ,  ч) « -£ > ■ +  IC - f t lX O A f t+ K C -f t ,  чХ- W ,  ft. ft 4).

I«l=l
(5.10)

■ F.cf+f, г, ч) - у.(й £, ч)- 2  о^ж.а+ы’, i, n)ei«i=i

-  2  о № » Г , ч > ' }'  2  (5 . i i )lal-l T<s0<sl
where

? -  (ft+ * ft'-£X ft+ ift', ft ч Ь -П Й , ft ч)

-  2  О '.гч е , ч > ^ "  2  v ) /S D > Wlal=l Г<Й<1

+  2  W + i f . * / 1  2  (5-12)lal=2 y«3<2

Noticing that F%(£, £, 97) ( £ - £ ) “ is odd in  (£ -£ )  when |a |= l ,  from (6.10) 
(6 .11), we have

ri-  2 (W m , c, 1 7 ) - ^ , *?да<кг, e,v)(i-№*(£, c, *)«

+ 2  f<Wr(f+£, с, ч)Гвй(Г, £+*(C-£), ч)(1-*ЖС-©"Л(г, С, ч)«|a|=2j JO
-< Г > 1-В1£-Й| 2  >k,.,r(ft+*ft', 4) p ( f ,  ft ч)

-+-1 £ -  f  I a<r>-*<#+ 1 (£ -  0 . 4 > 'W ,  ft 4) (for ге эи р р Л )

- « f t  ^ « y - *  2  <ft+*ft', +<Г>-*)г(Г, ft 4)y</3tsi

-<fty-W. ft »)•
f n -  2  o„ft'‘ fe-F„(ft ft »)3 (ft',ft v ) K ( £ ,  ft 4К

+Jo(|f |>̂ 2f.(f+«', ft ч)в(Г, ft ,)J,(ft ft ч)Л£

(6.13)
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= 2  f<£ v X * N Ф1,е,у(£, ч)Н'уд11<р(н')й(й', £, у)*Л£, i> v)dtlet!=1 J

+Jo(ir|a<f, п)&е;<р(р)Ше, £> ч)л(6 £, 4)«.
(6.14)

©
For у</3} дцфуц) is odd in  fi$ so the first integral in  the above expression is 

zero. For 7 - / 9, ifc,«,76 Я Д ”. then

ъ-<£У-'д(.е, {, ч)+<£>-*<£, 4>.<£+if, Ч>Ж, (, ч)
-<Г >а-“»(Г, £, ч). (6.16)

Combining (6.14) and (6.16), we know (6 .8) holds for ''/> ?.

5°. The Proof of Lemma 6 .6.
Let Ъ(В, z, B, rj) be the usual Friedrichs symmetrilization of G(z, B , rj) with 

parameter 97. i.e., in  (6.4) and (6.5), F a is substituted by

As in 4°, let r(z, B , rf) = Ъ(В, z, B , rj)—G(z, D, rj). Since Gn, 6?2aG$-Pi’fc> we may 
show rsi, rsuGSPi’1*'2 simHarly as in  4°. Thus, the proof of Lemma 6.6 is reduced to 
proving the following inequality;

Ее(м, ГцО, В, г})и)щ< 0 ||«Г2м[|*. (6.16)
In  the following, we w ill briefly write т=Гц and G = Gn° As in 4° ((6 .7 )), we 

have

f(£, f, ч) ■ n+rn-jj’tf'+fc £, ч) L&(£, l, ч)-<J(f, £, ч)Ж£, £, v)<

+jDF(f+f, £, ч)-j(f, £, п)Ш?, f, чЖ£, £, ч)«. (S.17)
When <f> > l < f ,  4>1 noting that in  the proof of Lemma 6.4 we have at most

once differentiated Q, we proceed here in  the same way to have (£'Ук~2г (£', £, rj) 
uniformly bounded in  L 2(Rfi), for all £, 97.

1 1 AWhen 97)^, the estimate of Гц is sim ilar to (6.14). Hence we have

sim ilar estimate as (6.15). In  the expression for ri (similar to (6.13)), the first 
integrand contains only the first derivatives of $  about £, therefore we can estimate 
i t  as in  4°. Nevertheless, the second integral must be considered anew. Now we 
have

( W f + f .  £, ч ) Г  2 0 Д Й ( Г ,  £ ,+ * (£ -£ ). ч ) M (l-* )* (£ -£ )* Jf(f ,  £, 4 )d£J JO lal=2
=  I ti  ~  £ 12 • <£’У \ £ + Ъ (Ci -  £), (£', £, 4) (for Ci G supp F)

-<£>-*<& 4?>Wi & 4). (6.18)
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1 1Combining it -with the estimate in г)У^ gives

п У ^ Н Г . ( ,  v) (8.19)
is uniformly bounded in  L s (R f>) for all £, у .

Since

(u, r u (e, D, ??)«)„= (w, rn (z, D, rj)S>̂ S ’~2u)f,

= r-L-iiz, D, [rn, ^u)n)

and

Oil, «^] £ $ P f ’fc_3, we have | (и , <Гц (й P , т?)м)ч| < C r| ^ , u |3.
v
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