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ISOPARAMETRIC FINITE ELEMENT METHODS
FOR NONLINEAR DIRICHLET PROBLEM

Li LiganNe (F B)*

Abstract

In this paper, the author solves the nonlinear Dirichlet problem with nonhomo-
genous boundary condition by use of the isoparametric finite element method, and
obtains the optimal error estimate.

§ 1. Introduction |

We consider the nonlinear Dirichlet problem
{ —Ve « (a(x, w)Vu) f(m), xEQ, (1.1
u=g(w), ol _
where z=(»;, @), and Q is a bounded open subset of R?, its boundary I' is

sufficiently smooth. In [1] and [2] Douglas and Dupont obtained an approximate

solution of (1.1) by F. E. M. with penalty. In § 4 of [2] Douglas also obtained an
approximate solution of (1.1) by F. BE. M. without penalty, but the finite element
space is a finite dimensional subspace of W3(2) NC*(R2). In this paper we obtain an

approximatbe solution of (1.1) by the isoparametric finite element method. Moreover,

the finite element space is a finite dimensional subspace of C°(2). The method in
this paper is a straightforward generalization of a method in [8] to the nonlinear
case. In §2 we shall give triangulation and some inequalities. In § 8 we
shall prove existence of an approximate solution. In§ 4 we shall evaluate the
error |u'—u}|s,0 and ]]'u*——&'ZH 0,0, Where u* denotes the solution of (1.1) and
denotes the approximate solution with numerical integration being taken into
account, For simplicity, we shall not evaluate the error |u*—u}|s,0 and the error
|%* — 3]0, 0, Where 2 denotes the approximate solution without taking into account
numerical integration. |

In this paper O denotes a generic constant with possibly different values in

different contexts.

For 1<p<<oo and n, a nonnegative integer, le} W (K) be a Sobolev space.
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*|uvp.x and | < [n,9,x be the norm and the seminorm on W™?(K) respectively..
When p=2, we write H"(K) =W»2(K), |«

®|ns2 Ko

° i B= l7u2yK) l‘,l

§ 2. Triangulation and Some Inequalities

For simplicity, we only discuss the isoparametric 2-simplex of type 2. Such a
finite element is discussed in [8]. Here we briefly describe them. Let X be a reference-
finite element of an isoparametric family. We take K as the triangle AO\A\B, which
is described in Fig. 1 in [8]. Let K (4=1, +--, m) be all boundary elements and'
K (h=m+1, +++, m+myg) be all interior elements, where Kyp; consists of OB and
AB and arc O4 on I, as shoWn in Fig.( 1in [8]. For simplicity we denote Ky;=Kiz;

m+my
(6=1, -+, m) and Ky;;=Kin(G=m+1, «+, m+m,), and we have Q,= |} Ky. In-

§=1
general, 2, is not equal t0 Q. In thig paper we take Kyp; (4=1, ---, m) as boundary
elements, where K,p; consists of segments OB and AB and arc OEA on I', as shown
in Fig. 1 in [3]. We denote by Ky, (§=m-+1, .-, m-+me) the interior elements:
which equal to Ky We also denote Ky=Kyp (5=1, +--, m) and Ky=Kay (6=m-+1,

ose, m+mg). We have Q= U K. Lot by, =diam (Ky), h= max hg,. We assume.

1<i<mtmg

that triangulations satisfy the regular condition in [4]. We know™ that there exists
an isoparametric mapping Fy: K — Ky (6=1, -+, m+my). Let K° be a bounded
open convex subseb containing K. We also know'® that the inverse mapping of Fp,
on K exists for h<ho, where ho is sufficiently small. Let K i=Fg, (K. We have

KDKy. Lot Gy=Ky\Ku, Q=K u\Eu;, G=Cy UG (j=1, -, m), Ga={J6y,
GZ—UG'z,, =GUGs. Let By (j=1, -, my) and I; (j=my+1, «, my+my)
represent boundary nodes and interior nodes respectively. We denote by le(]? %) the
space of all polynomials of degree <2 on K°. We define
Va={wn (@1, ws) [wy (s, 02) €O%(Q), wy (1, @2)
=3 (&1, ) o Fizt on Ky, where iy (34, #2) € Po(KO)},
Let g be a continuous function defined on I'. We define |

Vi={wi (@1, w2) |wn (@1, @) EVa, wi(By) =g (By) (j=1, «++, my)}.
When g=0, we denote V§=V1.
Theorem 2.1. Lot wy (w1, w2) EVY. Then

J |wh (@1, @) |2ds<<OR® JK |wn (w1, @o) | *daadas, =1, +++, m,

where ;= K alL.
Theorem 2. 2 Suppose that p(w4, o) EV,, Then
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,[G v!p(wl, mg) lzdwlda?z<0h2 j‘K l_’p(ﬂii, mg) _lzda;idwg, Z—_-l, 2, 3-‘=1, ety Mo
3 17} :

Theorem 2.3. Suppose that p(w1, ©3) €V Then
|p(2y, ©2)3,6,<OR?|p(w1, @2) lf,x,j, I=1, 2; j=1, -, m.
Proof of Theorem 2.1—Theorem 2.8 could be found in [8].
Let u€ H2(Q), and II;, be an interpolation operator, which is defined by
(1) ILu€Vy, '
(i) Iwu(B;) =u(B;), G=1, <00y my,
(i) Tw(l;) =u(I;), j=my+1, «, my+ma,,
Arguing as in the case of § 4 in [5], we could obtain
lu— w0 <OF*~"|uls,0, n=0, 1,

mm, ‘% » (2.'>
(S Y-l ] <OWJulas, n=3, 8.

§=1

§ 3. Existence of Approximate Solution

Problem P: Find u€ H*(Q) such that
{u——sg-(w), v T, @.1)
(a(@, w)Vu, Vo) =(f, v), Yo€H{(Q). o
In general, we do not know if the weak solutions of (1.1) are unique. However,
under some conditions™ the solutions of Problem P are sufficiently smooth. Douglas-
Dupont-Serrin™ have proved that the solution of (1.1) is unique under cerfain
conditions. Thus, under certain conditions the week solution of (1.1), i.e., the
solution of (3.1), is in fact a classical solution of (1.1). Under these conditions we
discuss the approximate solution. These conditions may be found in [9], we omib
them. Bub, we notice that the assumption about a(w, w), f, ¢ and Q in next
paragraph will guarantee that the weak solution of (1.1) is a classical solution,
which exists and is unique. ,

In this paper we assume that a(w, u) is a sufficiently smooth mapping of O x R
into ey, 1], where ay, oy are constants satisfying 0<ay<oy<< oo, & is a bounded
open subset of R? and safisfies 3. Moreover, since 4+—>0, we will make the
following assumpation |

0,0 for all h. .
We also assume that the derivatives of a(w, u) through certain order are bounded
on GxR, g is a trace of GE€O? (Q), f is sufficiently smooth defined over & and
u€ H3(Q). Because I is sufficiently smooth, there exists an extension operator H:
H3(Q)—~>H*(R?), ie. for all u€ H*(Q), the function Hu€H?(R?) satisfies Hu|o
=u and, besides, the operator B is continuous, i. e., there exists a constant 0(Q)
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such that 1
| Bulls,0<O (@) [u]s0, Vu€ H(Q).
In what follows, we will agsume that solution u* of Problem P is defined on R? and
satisfies above inequality. But we omit A. '
Problem P,: Find 4, €V such that
(@@, un) Vu, Vor) =(f, ), Vo, €Vp 3.2
oy, are the approximate solutions of Problem P.
Now we prove the existence of Problem P,
Lot uyy bo a cerfain element in V4.
Problem P': Find u,, €V such that
_ (a(®, uno+un1) Vitao, Vou) = (f, o) - ((a(w, uno+tnt) Vs, Vo), Yo, V7. (8.8)
" Theorem 3.1. The mapping S: Vi—>V3, defined by ‘
(a(w, unotuny) VSuro, Vo) = (f, ) — (@(®@, wno+tns) Vatrs, Vi), Y, €V3, (3.4)
ewists and s unique. :
Proof Let v, be an arbitrary element in the space V). Using Theorem 2,2 and
Theorem 2.8 and Poincaré inequality, we have
(a(®, Uno+tns) Von, Vo) >Oﬂol’vhl§.a=a6[l Un f 1o, + f’Uh{‘%.?i. - I'Unl%. &J
=01 vslt 0, — [oal1.6] = OT[valt o — [ sl 2.3+ [valia— [ onl el
>0[|v|3.6—2| ]33] >0 vl %0, (3.5)
the last inequality holds for A sufﬁciently small,
From (3.4) and (3.5) we easily know that solution Suy of (8.4) exists and ig
unique, i.e. the mapping § exists and is unique. -
Theorem 8.2. The range of 8 s contained in a ball.
Proof Let uy be an arbitrary element. The particular choice v,=S8ue in (8.4)

gives ‘
O V8uo| 3, 0<|fllo. all Suno] 0.0+ s | ra | 1, o Sttno| 1, 0.
The conclusion of the Theorem follows from above inequality.

Theorem 3.8. The mapping S: Vi-—>V?3, defined by (3.4) is continuous.

Proof Let sequence {u.} in 79 be convergence and u, be an element in V2 such
that u,—>up in V3. Since S is bounded, sequence {Sw,} is also bounded. Since 77?
is finite dimensional space, we can extract from [Su,} a subsequence {Su,} such that
{Su,} converges in the V. Let u be an element in V'§ such that S, —>u in V9. Now
‘we prove u=_Su,. We have

(o (@, tn,+1n1) VU, Vor) = (f, vn) — (@@, Un,+tns) Vitny, Vo), Yo, €V,
Liet us fix v in V%, above equalities converge to

(@ (@, to+uss) Vs, Vou) = (f, ) — (a(@, %o+1us) Vess, Vo), Vor €V, 3.6)
From (3.4) and (3.6), we obtain u=Su, Since % is unique, sequence {Sw,} is
convergence, we thus have proved our Theorem.
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Theorem 3.4. Problem P; has a solution.

Pa‘oof Problem P, and Problem P} are eqmva,lent Uging Theorem 3.2 and -

Theorem 3.8 and Brouwer fixed point theorem, we see that operator equation =
Suy has a solution. We denote by e the solution of up=Sus. Obviously, wy is a
solution of Pj. Therefore uu+wuu is a solution of Py, '

§ 4. Error Estimate

For simplicity, we only consider error estimate with the numerical integration
being taken into account. Using the same method, we could obtain error estimate
without taking into account numerical integration. ' '

Let £ (w4, #5) be a continuous function defined on 2. We have

J f (wi, ) dwidmg—ﬁj f (@1, w5) dwy dza+ 2 Lr. f (w1, wa)dwydas. (4.1)

=1 d=m-+1
Let K be an a,rblbrary interior element and Fx bo an 1s0pa,ra,metr1c mapping such

that K =Fz(K). If f (w1, 5) = f(a:i, %)« F7, then we have

J f(a;i, wz) (Z:Ui dazz =J f(wi, w2> Jpx (mi, 072) dwl (1522, (4 .2)

where J 5. (%1, @) denotes the Jacobian of mapping Fg. If we a,pply the quadrature
formula over £ :

A A A LA L A A - .
L’E F (@, @) dﬂ&dwz"’z;i &uf by, B, 4.3)

where &>0(l=1, -+, L), then we have the quadrature formula over K |
L .
er (21, @g)day dmyvg ong f (bur, bax), (4.4)

where
wz,x=<ﬁz~] Fx (811, 321);
b, =Fx(b), b= by, bu), (4.5)
buz = (bur, ba).
We denote
B(p) = [ 7@y 885,05~ 3y 0f B, ). (4.6)
In what follows, we assume that &y, b, =1, -, L) satisfy the following conditions:
(1) B(@J5)=0, Vo€Py(K), ‘ |
(ii) B@®)=0, VaocP,(K), 4.7
(i) B (ow) =0, vaEf*' (K), waPZ(ﬁ') '
Let K be an arbltrary boundary element and Fg be an isoparametric mapping.
‘We shall apply the same quadrature formula (4.4) for boundary element R,i. e

| L?f (wi, fvz) dwy dmz"’; wz,z?f (b;w”f, bzzi) ’
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where iz and b are defined by (4.5).

Define : ' .
_ 'A(% U, ’l)) = (“ (‘v) y)vu; va), ( (48) A
A iy s, v3) = ﬁlog wun.w(bun,, U (birea) ) Vi (bira,) Vor(biry,) (4.9)
f('v>=<f: "I)), (4.10)
Sa(on) = mim 2 o, f(Oire) v (bixs,) - 4.11)
Problem P,: Find %, €V such that
AnQuny uny v3) =fr(vn), Vo, €VY. (4.12)

Theorem 4.1. The mapping S: VI—>V?3, defined by
Ay (%ano+27h1; S ’57-0, V) =f h(’vh) — A (&ho’l“&hi; ?ZM; ’Un), Yo GV;?, (4 .18)
ewists and is unique, where Uy is o fiwed element in V3. ‘
Proof Using the property of a(w, «) and the Theorem 4.4.2 in [4], we ob lain
A (Uno+ting; Un, up) >0 “%»”1,9,.
By Theorem 2.2 and Theorem 2. 8, the followmg inequality holds,
Ay (Uno+ Ungy uny ) =0 w3, 0. (4.14)
The conclusion of Theorem follows from above inequality.
Theorem 4.2. The range of S 45 constrained in a ball.

Using the method of § 4.4 in [4] and arguing as in the Theorem 3.2, we could

prove our Theorem,
Theorem 4.8. The mapping 8 is continuous.
‘Theorem 4.4. Problem Py, has a solution.
Using the same methods in the Theorem 3.8 and "Iheorem 8.4, we can prove
{hat Theorem 4.8 and Theorem 4.4 are exact.
Let us next turn to the error estimate.
Let uj and u* be solutions of Problem P, and Problem P respectively. Let v, be
an arbitrary element in V4. We can write |
| An (s Uy —vn, Uy —vn) = AU w* — s, %y —vn) AU Vs, Uy—Vs)
— A U3y o, Uy —wn) + [FuCl— o) — F (@7 —n)]
—[AQY u*, U—v) —f (e —v)]
=AW — o, uy—vp) + LAY va, Uy —va) — AU 04, Ut —3)]
+ LA (uz; v, i —on) — An(Us; O, Ur—0n)]
+ ol — o) —f (U —on)] - [AQ"; o, Ui —w) —f(@—w)].  (4.15)
Now we estimate each term on the right hand side of (4.15). We denote each
ferm on the right hand side of (4.15) by I, II, III, IV, V respectively. We have

|| <o — 0] 1,0 B — 0] 10 (4.16)

IIII<O”“(¢; u®) .;ll(w, 77;) llOv3;b'lmhlllvﬁ;Ql,ﬁ;—'vh"j.,g. (4.17)
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Using the method of proving (4.19) in [8], we could obtain

1
) “\Z, ~
x| <02 ("3 fonld ) 5= onl (4.18)
Using the method of proving (4.21) and (4.24) in [8], we could obtain
IV | = | faun—va) —f (@ —v8) | <OB?| f | 2.0.3]4 — o3l 1,0, (4.19)

where ¢>>2. We may write
‘ # 3 * ~% ‘
[V]= “P a(w, u*) T@;«(uh - fvb)dsl.
By Theorem 2.1, there exists constant O such thatb
2 ~%
|V <O|u| 20k [ui— |1 0. (4.20)

Taking vy =ITw" and using inequalities (4.14) and (4.16)—(4.20), we obtain
lwh — a1, 0<O A+ [ a(w, u*) ~a(@, @) os.0]s

Since
Ju* ~ G510, 0<C " ~ 51 lw” — 551
and : _
la (e, u*) ~a(a, Us) Jo,8,0<0]u*— 27;"0,3,9;
we obtain

lu* — 3] 1,0<O A2+ |u* ~ U] o, ] (4.21)
Let I* be an operator defined by ' "
L*o=—V+(a(w, u)Vv) +a,(@, u*)Vu' Vo,
' By assumption in § 2, we know that operator L* is well defined and that the solution
z of the following problem ’
Ly=u'—u, =€Q,
. { x=0, | oI’
belongs to H2(2) N H§(Q). Moreover
12]2,0< 0" — %3] o 2. (4.22)
Therefore ‘
J* —u3)3, 0= (u* —u}, L*x)
= (' —uy, —Ve(a@, u*)Vy))+ W' —u;, a,(z, v*) V' Vy)
= (V' —u}y), aolw, u*)Vy) —-Jpa (@, u*) (' —-ﬁ}’,)%ds ‘

+ (u* —uy, @, u*) Vu*Vy)
~k,

=A@ o, x) —A(ur; ur, x) + ([a(e, ©)) —a(®, u*)]Vuy, Vi)
(@, ) @ =)V, V)~ [ oo, u) @ity 2L s

= A" oy ) — AU Uy 1) + (@' =) 0y (2) V"~ i)
@ = BT @V, V1) ~ | 0o, u7) @t~ ) 2 ds

= A" u*y x— ) — AQus s, x—Ix)]
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+ (@~ T (o) Y W~ 80) + (= T8 () VW, V1)
CHLA@ o Tw) - A @, Tw)] - | ale, o) (i) 2

where ,
N\ o - 1 ~
ay (w) = Jo oo, w* —1(u* —uz) ) dt,

Gun@) = [ (L~ D, o' 0" i) .
We may write '
A o, D) — Al @, Do)
=~ [A(uz; 77;:, II nX) — Ay (ui; sy M)+ Of (Tax) = fu(Tax) ]
j a(w; u ) H o dS. ‘

Define _ » .
Z;,(u; v, W) =Ja,. a(z, u)VoeVuwdw.
We may write . ' o
A (uz; U, Miy) — An(ﬁi, tny )
[Ah(uh; un — I ’ Hn%) Ab('i;; &Z Ihwt, May)]
+[Ah(uh; ITyu*, Hh%) A (uz; It Hh%)]
L HTAGE @, D) — X @, D).
Argumg as (5 18) in [7] and (5 19) in ['7], we obtain
| A5 Cuy; Dau®, Miy) — Ay (un; I, D) ]<0h3(|u
IA;»(&Z, Un— HnU*}-ﬂhX) An(«iz, 177» I, Hh%)l
<Ot~ " 1, 0" — @3 0.0
<O[h+h|u*— h||1,g] IIu*—ﬁZ][o,g.
By (4 27) we may write ,
A(’IZ;, ’IZZ, ITy) _Zh @725 ’L'ZZ, ITy) .

' ,-'-'=jg' a(w, Uy) Vit Vi da— Jg \ga(w: ) Vity, oV Tiydo,

Arguing as (3.27) in [8], we obtain
| A(a; w3y o) — An(Ui; &Z, Hh%) | <0h3||'“ i lo.0- f
Therefore
IA(?ZZ, &Z, H nx) A,,,(&,’:, Uz, Miy) |
<O[h*+h|u* ~up)1,0] 4"~ @iloo
‘We may write

F( ) — fu(llg) = Ja}. fHyy de— () + Ug\ o Mo o~ Jghmfﬂnxfdfv] .

Using (4.24) in [8] and (3.86) in [8], we obtain

|3,9"’M un"o.ﬂ; v

ds,
(4.238)

(4.24)

(4.25)

(4.26)

o |
(4.27) P

(4.28)

(4.29)
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|Jn\9;fﬂ"x dw—Jm\ofH’“ dor| <OB®| fls.082]2.0
- <OR*| fllzq 8l ~uilo0, - (4.80]
| Uobfﬂ’”x do—fr(Inz) | <OR*| .ol ~Biloa. - -
By Cauchy inequality and Theorem 2.1, there exists O such thab

- ou* g_ R m 9 %
Ur' a(w, u*) “on %7 dsl < Oh?|u "z,a[gl ||Hn%"1, x,:;]
1

et 2 m]

<OWF || oWl 2 |80+ hlal8 ) S <OW ol ~ Biloo. (4.81)
Combining (4.26)—(4.81), we obtain o |
| A(u*; u, M) — Ay ) | <O +h|u* —i|s0] lu* —hlo.0.  (4.82)

Lot us next turn to the error estimate of another terms in (4 23)

5 mn ;
<OW¥|u |0 2~ I

We 1 may write °
Au'y uy x— ) — A(tn; r, 1 — ) - L b e
= AQE e, 2 ) + @) (@~ GV, V(- T()).
Therefore | . -
LA o, 5= D)~ A @y 2~ Do) | <Ol — ot~ Mol
| <Ohlu*~ 3]s alu* ~ @l o.0. (4.83)
Using Cauchy inequality, we have - C e
| (W*—u)au(@)V (W —up) + (v — @) 2aw(2) Vu*; Vi)

<O“u*__z’z;”0’3'9”u*_ﬁ; |1,.Q“X'|['1,6;9<0.”“* - &ZHOvE’nQ”u* - Z’ZZ Ilivﬂ"X ”.210

P P A : !
' <O|u*~usl2o |u" ~uil5 0. : (4.84)
Obviously, the following equality holds: D
: j a(w, u") (u**u,,) -—J w(a:, u) (u*— Hhu*)@‘-ds
ro 7 08
+L~ a(w, u*)(Iw*— u,,) 6;5 ds. ’ (4.85),

Using Cauchy inequality and Theorem 2.1 and inequality (1.2.8) in [4], we obtain

U a(s, u) (I —u;:)ids|<0|nhu .

<Oh2|[11hu ——uh||1,g||7€"2. 9<O[h§+h7||“*“‘“k||1,9] " —a;,
TPy
: <O[|u Hnu lo,rflw— uhllo,a

Let us turn to the error estimate of |u*—IIu|o,r. Since w*=@ over I' and GG
0%(2), we have

0,05 (4.86)
<O'||u — I Ilo,

0.
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Ju* = st o, 1< |t — G — I (u* — &) o1+ | G — ﬂh,gu'o,p
- [[U,,(u“—G‘) ”0'1‘+ "G"ﬂhG"o,r

| <01h‘3[ﬁu I @2, K“]E.*.gzha
<01h2[2"u — I l]1,K,,+§l“u*~—G”‘f,Ku
+EHG HhG“1.K.,] +0.h8,

Since -G & i ¥Q) N H?(Q), there exists O such that
E"’“ —Glll.x.,<0hllu ~ @3 o

Therefore, we have
. n u* —_ H;,u* n o p<.0h3

and
U o, u*) o — IIu)-Qx—ds’<Oh3Hu —itleo (4.87)
Comb1mng (4.85)—(4.87), we obtain
U a(w, u*)(u*— u,,) ds‘<0[h3+h]|u ~ty] 1, o] Ju* — 1] 0, 0. (4. 38)

We could obtaln the following 1nequa,11ty by combining (4.23), (4.82)—(4.85) and
(4.88)

~g g % ~% l
| [w* =43l 0,0<O[A*+h|u" | .0+ |u* — i3] E ol — w18l
From above inequality, we obtain

lu* — sl 0,0 <OTA®+h|u" — ur) 1,0+ |u* —uh] %, 0] - (4.89)
Using (4.21) in (4.89), we see that for / sufficiently small
lo* — 3] 0,0+ hlu* — Uy ] 1,0<O[A*+ Ju* — U335, 0]. (4.40)

Arguing as §4 in [9], we may prove u, weakly converges to u* in H(Q) and
strongly to «* in L?(Q2). Thus, we obtain the following Theorem 4.1 from (4.40).
Theorem 4.1. TLet u* and u) be Solutions of Problem P and Problem P,
a'espectwely Lot the coefficients 4n (1.1) satisfy the hypotheses in § 8. Then we have
lu* — @3 lo,0+ B u* — 3] 1,0<OR3,
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