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A NON-LINEAR FILTERING PROBLEM 
AND ITS APPLICATIONS* * *

S it u  R ong (S J $ .S )* *

Abstraot

For partially observed process in те-dimensional space

f f t= /3 o + f  4 l ( s ,  f t ) d s + f  B i(s, I3s)dw sa \

r  J ° n (0)4 t= J 0B (s, £s)B *(s, £s)<p(s, /3s)d s + j^ B (s ,  £s)dws>

under non-Lipschitz (even discontinuous) condition, a Bayes formula different from [1] 
is derived (Theorem 1). By means of this formula the innovation problem for the above 
process under rather weak condition is solved (Theorem 2) .Then the existence of an optimal 
pathwise Bang-Bang control for a partially observed process with bounded controls is 
obtained (Theorem 4).

§ 1. Introduction

In  -the non-linear filtering problem Bayes formula plays an important role* 
Some abstraot version of this formula can be found in [1] (non-Lipschitz diffusion 
coefficient is assumed for observable process in те-dimensional space) and [6} 
(Lipschitz diffusion coefficient is assumed for observable process in 1-dimensional 
space). Here for one more concrete partially observed process under rather weak 
condition (non-Lipschitz diffusion coefficient even discontinuous drift are assumed 
only) we derive a Bayes formula different from [1]. Then by it  the so-called 
“innovation problem" is solved. That is to say, a new Brownian motion process (B. 
M.) ws, s<.t, is found, which carries the same “information" as f s, s<£, does. This 
problem is crucial, difficult, important, and useful, especially for optimal filtering 
and optimal control problem ([6]). So it has been discussed by many papers such 
as [2—6], [8] and [9]. However, the proofs given by some papers such as [5], [8] 
and [6] appear to be incorrect (See [3]). And all results except [2] and [6] are 
got under the assumption that the diffusion coefficient В (I, as) =1. (In [24, 25] i t  
considers the non-Markovian case but still under some Lipschitz condition and
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«till assume that В (t, x) =  I  and still in 1-dimensional space. In  [6] it considers 
the conditional Guassian processes in  1-dimensional case). Up to now only in  [2] it  
considers the case B (t, у)ф 1. And one of the best results probably is got in [2]. 
But it assumes that the diffusion coefficient B (t, y) of the observable process 
satisfies a jointly Lipsohitz condition and the drift coefficient A p t, ж, у) of the signal 
process has two continuous derivatives etc. I t is obviously some restriction. Here 
■we consider (0) in «-dimensional space, and solve this problem. Then by using 
this innovation result the existence of a Bang-Bang path wise optimal stoehastio 
•control for one kind of partially observed deffusion process with bounded controls 
is obtained based on the idea of separation principle due to Wohnam1-153. 
However, it is a result stronger than that in  [15] in some sense, since the 
admissible set considered here is not Holder continuous in # under the sup norm in 
Я?. Moreover, it is also different from [11—14], since there the optimal control 

•only exists in some wider class-randomized set or under some rather restricted 
■assumption for the admissible set, e.g. assume that it is sequentially compact, 
which is not easy to check, because the observation £ also depends on u. Anyway, 
since up to now there are not many existence theorems of the strict admissible 
•Optimal control for the partially observed process, the existence of the pathwise 
Bang-Bang optimal control (in the strict sense) for one kind of partially observed 
■.stochastic process with bounded controls in «-dimensional space is at least one more 
•concrete result for it. Moreover, our result here is for pathwise.

§2. Bayes Formula and "Innovation Problem” for
Non-Linear Filtering

Consider a signal diffusion process fit and an observable diffusion process £f, 
which Satisfy the following stochastic differential equation (S. D. E.)* 

j dfit =  A t(t, fit)dt + Bx(t, fit)dwp, fi0 = fio£B n,
\d £ t= B (t, £t)B*(t, £t)<p(t, fit)d t+ B (t, £t)dwt,£o=0, *G [0 ,T ], ( )

where fit, £t are «-dimensional random processes, wP  and wt are «-dimensional 
standard Brownian Motion processes (В. M.), A lf <p are «-dimensional vectors, Bt 
•and В  are matrixes. Under a given probability spaoe (Q, 3^, J ^ , P) we have the 
followsng theorem. . - ■ . ■

Theorem  1 (Bayes form ula). Assume that (all functions are jointly measurable) 
( i ) | Ax(t, x) | <&0(1+  I ®|) , | В (t, x) | <&o,

I<p(t> cc)\<ko(l-r \cc\), |B (t, y) |<&o;
( i i)  there exists a 8 > 0  such that

* B* means the transposition of B.
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(B (t, x ) l ,  A ,»S|A ,|2, 
<fii.it, x)%, X » S |A ,|2,

for allX, x, y £ R n, where ( • ,  <■)• is the inner product in Rn;
(iii) a) |By(t, x ) y )  |2+ 2 ( x - y ,  Ay(t, x) -A ±(t, y)'><c1(t)f>1( \ x - y \ s>) ,  

b) | В (t, x) -  B{t, y) 12< c a (t) pa ( | x -  у |2) ,
where Pi(t), i= l ,  2, are increasing,’, concave, positive, defined on utz (0, oo) such that

R em ark  1. Usually we take the probability space (Q, $F%, P) as follows?
Q = O^.Vj-all continuous map from [0, T] ->Rn,

^ ’= .#°-the Borel field generated by all open sets in  0 ($iTi, where the norm is. 
uniform convergence norm,

— { f£ Q :  f ( s ) £  A, s£  [0, f], ^.-arbitrary Borel set in  R n},
P== some given Wiener measure on
Remark 2. Ay can be discontinuous, e.g. Ay{t, x)*=— x /\x \ ,  as x*£0; and 

Ay (t, x) =0, as x=0. Then Ay (t, x) satisfies (.Ay (t, x) — Ay (t, y), ®—?/><0.
Proof By applying [19] and [6] it is not difficult to see that there exists a 

weak solution (fi, £) for (1). Now if (ft1, £PJ, i  =  l ,  2, are two solutions of (1) in  the 
same probability space with the same В. M. (w(1), w ), then by condition (iii) and 
Ito formula it  is easily seen that /81 =  ̂ 2. Denote yS == yS1 == >82. By Gronwall inequality 
we have

and Ci(t) —Ci(t, a>) is such that P-a.s.

we have

J o gt (fi & ), £*>) ) exp ( |0 <<? (s> A  (?) ) г (*>) >

| Д*(«, g.(qQ)y («, & @ )  |ac&s) dP(Z)
(2)

E  sup | fit [ 2<:k, к is a constant.

And the following matrix operation holds: (Denote A 2=A< J*.)
A2- P 2= (A + B )  (.A * -B *) -  (BA*-AB*) -  {A+B) (.A * -B *) 

-B (A * -B * )~ (B -A )B %
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\A2O - B 2O \< k\A 2- B s \<-\0\. (8)
Hence, applying Ito formula to it, by (3) and the 2nd equation of (1) as well as 
'assumption (iii) we see that P-a.s.

$==£?, for all [0, Т ].
Therefore by [7] (1) has a pathwise unique strong solution (/3t, it) , which is #~Г<1>,№ 
-measurable. Furthermore, by condition (iii) it can be shown that is ^ im
measurable. Hence y8t is independent of w. Moreover, since B± is uniformly non- 
degenerated, w{(1) is measurable with respect to (w. r. t. ) cr(/3s, 0 < s < i) . Hence 
is a “-measurable. Now let us introduce the following lemma without proof for
saving pages.

L em m a 1. Denote

$(*, £)=?>(*, A ).
TAen /o r сш/ 5 £  fAe following S. D. E. (4) and (б) йоге <pathwise unique strong
solutions it ttnd 7]t, respectively:

l d i t - B ( t ,  it)B*(t, &)Ф(г, Z>)dt+P(t, it)dwt,
U o = 0,  t £  [ 0,  T ] ,  °
f drjt—B (i, 7)t)dwt,
U o = 0 ,  1 6  [ 0 ,  T ] .

Denote fi^-the solution measure On 0 ^ Т] generated by rj, etc. Then

(duft/dpi) (у) =exp (Jo<®(s, 6), d ^ ) - - ^  &) l2rfs)* (6)

Now let us return to prove that formula (2) holds. Since by the same
approach as in  the proofs of Lemmas 7.6 and 7 .7  in  [6] it is derived that

P/3,f~A*7}Xp4, (*e X JV-a.s.,
Pn ~a-s.,

and
(d[j,e,f/d(p,e X /*,)) (6, sc) =  (dfjbfb/dnf) (x), -a.S.. (7)

Therefore for any

J  М Ж *»), i(oi))dP(oi) =  ® )(d^,f/d(p.fiX ^ )) (b , x)dg,B(b)dfin(x)

= J ®) (.d^/dpr,) (x)dfMB(b)d/iv(x)

'■\А\дт(Ь, x) (dfip/dfii) (x)dfiB(b) (dfjun/d/Jb() (x)dpb;(x)

■J ^ (Ayujdybf) (£(o )) dP(o>)JflPr(/3(£), £(o>)) (d /v^M O ( i (&>))dP(£)«

On the other hand
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f дт(/3{а>), £(<o))dP(*>) -  [ P ( M A  0  | J^)dP(o>)Л£еА) J(feA)

4 M ( < w d ^ )  (£(«))dP (б>)E  (gT(/3, I) | ̂  £) | /=«ш)

X j  (dg,^,/dgf) (£ ( to )  )  dP (a>) „ (9)

By (8) and (9) we have

0 1 (/3(со), £(<»)) (dfbtfA/dfa) (f (e>))dP(S)

x d c d ^ / w c K c o ) ) ^ ^ ) " 1. (10)

Since fi(/nz>~fx,v, applying Lemma 4.10 in [6] and substituting

(d ^ ,,« /d ^ ,)(f(w ))« e x p (f  <j>(8, /3,(S), df,(w)>

« . ) ) , ( , ,  A (S )) |2&)

Into (10) we arrive at formula (2) .
Consider a more general system: t £  [0, T ]}

d/3«=J.i(i, fit)d i+ B x(t, /3j)dW{(1), A>=$>(<»)- ^ o  measurable,
. d£t= B (t, fr, i t)d t+ B (t, it)dwt> £o=0.

Corollary 1. Tinder assumptions (ii) and (iv) in Theorem 1 and
( i )■ 14i(*» ®). I < *o(l +  | « | ), |P (i, ®) | <&o, | P (i, «/) I < K

W (t, ® /iO |<*o(l+[® l +  ly|)> for all oo, y£B?, t£  [О, T],
(iii)' b) |В (*, to) - £ (i, g/) |2 + 2<®- у ,  P (i, в )B*(t, x)<p(t, ft, a)

- B i t ,  y)B*(t, y)<p(t, -ft, у)У<с1 (f)p ii\o o -y \2), for arbitrary 
as \x\ |g/|<lV, $€[0>'5P], N **1, 2, —,

■where-cf(t) and p$ (w) have the same property as that in  (iii) of Theorem 1,
(vi) there exists an e > 0 such that

E  exp(e | A) |2) <oo,
(vii) (1)' has a pathwise unique strong solution and /3 is independent o f w, 

Bayes formula (2) then still holds.
Corollary 1 can be proved similarly as Theorem 1. Let us prove our main 

theorem,
Theorem g. Assume that conditions ( i)—(iv) in Theorem 1 ore fulfilled, and 

(v) (p't, p's, q>la exist, and

»)|, \qL(fi> ®) [< io(l+ |® [).
Then we have ■■■■■-■■■

1) S. D. E. (1) has a pathwise unique strong solution £t) which is 
measurable, fo r  all t£ [0 , T1't
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2) wt = B - \s ,  is) d£s — B*(s, £s)<p(s, £)ds is а В. M. on the 'probability spaceJo Jo
(Q, P ), satisfying E(dwtdw fr)=s01 where pit, £ )= E ip it, A ) |«^7)»
Therefore £t satisfies 8. D. E. for all t £  [О, T]

d £ t-B (t, £t)B*(t, £t)p{t, £)dt+ B(t, £t)dw, £0=0, (11)
S) for all t £  [0, JP].
R em ark  3. Conclusion 3) in Theorem 2 means that the process w carries 

the same “information” as the process £t does. Usually we call wt an innovation 
process.

R em ark  4. Theorem 2 implies Theorem 1 got in  [3] in some sense, since 
the observation process in [3] is assumed to be

d£t~fttdt+dwt) 8o~0, t £  [0, T] ,
and it is considered in 1-dimensional space. Here our observation is as

d£t - B ( t ,  £t)B*(t, £t)p (t, A )dt + B(i, £t)dwt, £0=0, f £  [О, I 7], 
where the diffusion coefficient is not necessarily Lipschitz continuous and the processes 
are considered in «-dimensional space. The assumption of our theorem is also relaxed 
from [2] in  some sense, where the Lipschitz continuities for B, A1} Bi and also p, 
indeed, are assumed.

R e m a rk ^ , Let asit), bit) be nXn, t x n  matrixes, respectively, which are 
non-random and both of which have continuous first derivatives w. r. t, £ £  [0, T ) . 
And assume that all conditions in  Theorem 1 for A lf Bi and В  except p are satisfied. 
Let p= (pi, pz, •••, pn), and for all i £  [0, T], %£Rn let

Pi(t, a>) =  (jP it)® )^  (aa(t)x )isinxi+  (a8(0®)<e~*'+ (&(0)<.
Then all conclusions in Theorem 2 hold.

Proof 1) is true by Theorem 1.
For

d m - B - ' i t t & d i t - B X b & p & m ,  
applying Ito formula we have

ем >==еы > + ^  £ e«M B^\£»)d£u}

- i ( z ,  £ ei{»’Wu>B li£u)7pu{ £ ) d v ^ - - ^ - ^ еы Чи«

Therefore

E  iei<g,Wt> | # 7 )  =  exp s ) £ ,

Hence w* is a B. M. on {Q, Ж, P ). EdwtdwP =0  is evident. So 2) is proved. 
Let us prove 3). For this we only need to prove that the pathwise uniqueness holds 
for (11). Then applying Corollary 1 in  (i) of [7] from 2) we can see that £t is a 
pathwise unique strong solution for (11). That is to say £t is a ^-measurable
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function. And 3) holds. Assume that there are two solutions £} ahd £? satisfying 
(11) on the same probability space with the same В. M.. Denote this probability 
space by (Q, P ) , and

(?^=inf(t: \& \> Я , i=“ 1, 2), I g№(s)
BY (2)

.?>(*> !*)“ /(*» £*(<*))>
where

/(*> £ * ( < » ) ) £ ( « » ? ( * ,  £Xo>), fi(to))dP(al), i - 1 ,  2, 

#(t, £*(<»)) = J g у (t, £*(“ )» 0(w))dP(w),

£*(й>), 0 ( 5 » -*esp (£<$>(*, & (£ )), «$(<»)>

~ i j l  |5 ' (s'  s w m *, A © ) ! » * ) .
If we can show that there exist constants k f  and k f  (depending on N  only) such that 
as t<Q N(ct>), (k f, Щ>0)

е м ) \ < щ ,  № ? (* > ))[ < % ,  (i2)
then

Л|ЙАО,-Я«0. [ Ч В  ( £ р№ 1Я -Я |У о.« (® ))*+ А  + h ) ,  (13)

where

I a=
4

h ~ f t S \g (s , Я ( и ) ) - « ( и  « * > ) )№ ,(» )* •

f  B |/(s, Я(м)) - /(» ,•« » ) )  !%,(«)*,

Here we take c4(t) = 1  in  (iii) for simplicity, otherwise use the time change technique. 
As a matter of fact

dip(t, &($>)) =cp't (t, fit (<o))dt+<p,xAi.(t.) ^ ( Z ^ d t + ^ B ^ t ,  #(£))<J«0i(i, <y) 

+ 4  2  /3t(Z))dt,A 4,iTfc=l
where

/ 3 - №  j8a, £»), B i=  [B |'L ,,=1)3(......
Introduce now a product probability space (б  х ц  J^ x  J*) x P x P ) .  Denote

£t(o>, Z )= £ t(a > ) ,  w ( t ,  со, £ ) - « > ( < ,  со),

А  (со, <u) =)8{(ct>), W i(t, <w, < y )= w 1( t ,  co )— w a)( t ,  со).

Noting that Epxpdw(t) dwi (#) =  (), by Ito formula it is not difficult to prove that 
there exist i c i 3 ,  Ac: £2 such that for (со, со) £  (£2 — A) x  (£2 ~ A )

A(w)), d£\(a>)y==d(jp(t, # (£ )) , $ ( < » ) > A(5)) ,  £t(o>)>,
-where P (A ) ~ P (A )  =0. Hence as (со, &>) £  ( f i - Л )  x (£? — Л),
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о<g(jk, £*(<»))“ J2eacp|l{(<», w )--i.Jo \B*(s, £i(a>))<p(s, &(w)) |2dsjdP(o!) 

< J g exp(I^(co, S))AP(со),

where
Ii(o>,•w )= i’(1(&), со) — I | a(co, со),

oj)=iq)(t, &(£)), i l (a))>-  f [<<?/, f!O)>+<?>Ui0, A (5)), £(*>)>Jo

+ (i/2 )  f < w « ) w ( 8, /8,(S)), & (fi>)>]*,

I t 2 (со, S )= J*  <?>® At (s, Д, (со) ) (s, w), it  (со) >.

By Theorem 4.7 in [6] there exists a 8 > 0  such that

supi?exp(8| A |a) “ SUP L exp(8 | A |a)dP(co)< +  °°. (15)
t<T t<T Jo

Therefore for any constant kr>  0 we see that as

j aexp (tf | <$>(«, & (£)), £t (co)>|<2P(w)<|oexp(A/|9j(i, &(&>))] |$(«) l)dA(to)

< exp(k'koN2/ 8) sup Ё  exp ( (8/2Jb©) \<p(t, A ) 1a) < °°•
t<T

The same argument shows that as tf<6?#(co) for all (со, со) £  (О —A) X (p  — A )

exp (I t1 (со, со) )с?Р (со) <H-oo4 

On the other hand by Girsanov theorem as t ^ G N,

| г <«р(-•*?*(<», S )) -I - j* J g W v ;B 1(s, &(S))|*>»P(Z)<1.

So applying Holder inequality, by (16) and (16) j, we get that as
g{t, £*(<о))<Л&< +  оо.

Moreover, by (17) for 0 < ^ < 1 , q = p /(p —l)< 0  as

(J2 lexP ( - Jr«a(^ co))|3dP(co)) /S> l / e x p ( |^ |% ) 1/iel„

Note that there exist N 0) r0> 0  such that
P(swp\ip(t, A(co)) | 2<17о) > г о>0.

t<T

Hence by the inverse Holder inequality (see [18] ) it can be derived that

(У и р ^ Ч ю . S ) - - | j ‘ | B*(s, й(ш)Ж», A © ) l ’* ) | ’iiP(S))W >K>0

(18)

(1 6 ) l

(17)

(18)

(12) is derived by (16)—(19). Hence (13) is obtained. Applying now

вар S\q>(i, A(co))|4<c4
t< T

(by (15)) and |a*— <  |ee+el'| • |* “ у | we have

(19)
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mm, f’O)) -/(#,

<к’(ш ls|jo<?,(s' A(S))’ )(")>| s' - io , w p & )

+ т 1 И Г » ( |я ( *’ S W M * .  f t ( S ) ) |a

- |В(«> Й(ш))?(«, A(<3)) I3) *  loK(t)dP(Z)^

Js | j'

- S a(s, If (о))) I |p(«, I1) I |$5(s, &(w)) |«fe dP(Z)IG„(f)

+ я Щ  f 1( ^ ) ) - ^ ( s ,  l 2(*>))| |?>(s, A(w)) ]cZs dP(Z)IGlf(t)

+E  Js| J o  ЙС®)) ~ -®C«j lf(w))(dw(s, a>),9?(s, fis(oj))>IGK(t) dP(Z)J  

, £ Р(л -й(«) |%Х0)^=*ИЛ+Д+Д+Д).
I t  is easily seen that

д<£| £ рсвдо»)-!?(©) i».iGjr («))&,
Д<^К-^а + Д)> I& and I 3-defincd in  (14).

By Fubini theorem

Js<}s-b]‘ |B(5, fiW)-B(s, ff(a>))|*|j>(̂ i8>(S))|4rie,C*)dP(3)*«4A.
Hence

Х / а  i 1^ ) )  - / a  i a(« )) i9- iG, ( o < ^ ( i « + i 8 + Д ).
The same argument shows that the same inequality holds for E \g(t, |* (<y)) 
— g(t, | 2(&>)) | zI Gir(t). Applying Gronwall inequality (Lemma 4.15 in [6]) we get

m m ,  ? ( « » - / ( < ,  jf‘ w ) i * i e.c o + j® i» a  ? w ) - a  м р ' / . , ®

< й ( Л  + в ( в Ч ' ( й О - « ) ) | 0/»(-®1й_ й1а--г<1.(“) ) * ) * < ^ . .

At last from (13) we get

■® 1$ло,(ю)-£*ло,(<») |*<?лг|оР(-®!Йлв»(й>)-йдв,(«) I2)ds-

Hence by Lemma 3 in  [1] (or by [7]) E  \ %lKGlf (со) -  (to) |2 == 0. From this it is
easily derived that the pathwise uniqueness holds for (11).

Corollary 2. Assume that q>(t, x, y) = p(t, x) does not depend on y, and 
conditions (i), (ii) and (iv) in Theo'rem 1 and (ШУ b), (vi), (vii) in Corollary 1 
are satisfied. Then all the conclusions in Theorem 2 hold.
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3. An Application to Optimal control 
(^-Dimensional Case)

Let us consider the optimal control problem for partially observed process 
J dfit= Wf dt +  B t(t)dwP5, fi0= /30(<y) -  JF0 measurable, 
[d& = B(t)B*(t)(ASi()({)fit+ A al(t))d t+ B (t)dw t> £o=0, t e  [0, T ], c '  

where the performance function is (we denote the solution of (20) by f i t  for щ )

J (u )= E  Г \fit\H t, (20)i
Jo

and the adinissible control set is
= {m: w(t) — J^f-measurable, for all £ £  [0, T ] , and optional, |w{| < 1 , 

such-that (20) has a pathwise unique strong solution}.
The optimal control problem is to find u0 G ^  such that

J ( uq)== min J  (u). (20) a

Tor definiteness let us take and J r =  Sr ptl',w. Assume that
( i ) A 2o, A21, Bx and В  are all bounded nX n  matrixes, which do not depend on 

% and there exists a S > 0  such that for all t £  [0, T] and any X £ Bn}
<B(t)K, A ,»S|J\,|2,

and so do B t (i) and As0(t).
( ii ) w(1) is independent of w.
( iii)  the initial distribution P(/30i<«!ol fion<-.aofi) is GuasSian, where fi0— 

i /Зои ” ‘> M ,  e =  («oi) *•*, «о»), with mean vector m0=A(/3o) and covariance matrix 
7o= T ((A >-m 0)G6o—m0)*) such that tr. 70< °°  and 70 is positive definite.

( iv )  there exists an s> 0  such that
T(exp(8|/30| a) )< ° ° .

Applying Corollary 2 of Theorem 2, we see that for each s

Г 3 r \ i )  dg$-  f* B*(&) (Л о(8) Д + Aal(s))ds, (21)Jo Jo
where Д = Т ( Д |# " |)  is а В. M. under the probability space (Q, 3^, # 7 , P ) . Denote 
for each %

m t =*E ( f i t  | ^ 0 , 7  t= E ( ( f i t -  m {)  ( &  -  m {)  *! < ^ 7 ) .

Applying Theorem 12.7 in  [6] we see that mt) y t are the unique continuous Ж\- 
measurable solution for 8. D. E.

f dmt= Utdt+ y tA*20 (t) B* (t) ̂ dwt, 
j  m0= E  (fi0), t €  [0, T ] ,
/  V t - B x ^ B K i ) -уА (Ъ )(В (Ь )В Х 1 )У 'А ы (£ )уи 
,yo= E (fio~m o)(fio-m o )*> [0, У],

(23)
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and 7 t is positive definite for t £  [0, J7] .
From (22), (21) and (20) we get

-7(J.2o(0  (AoO) (A  -  mf) еЙ+S  (0  dwt) ,
/30 wio — So E (& ), £6 [О, Г ].

Therefore /3{—mt does not depend о п и ^ .  Since
d(/3{—m*) =  B i(j)dw p  -  y tAlo(t)B*(t) ~4wt,

we have
dwt =  B\t)A*2o(t) - 'y T 'W fy & w ?  -  d ( f r - m t) ) } 

i.e. wt does not depend o n « G ^  either. Therefore
w f= wf, for all и £  Qt,

where wf is the innovation process corresponding to control w=0. Hence
'&~fa= (r(w%, S < i)“ °'(“’s, s < i ) = ^ T ,  

where all cr-algebras are completed by the P-nullsets from From now on, we 
always write wt as wf.

Now let us consider the separated problem.
Discuss (22) for all и £  W , where
^ ' =  {w: щ is optional, -measurable for all f £  [0, 21] such that |м4| <1}„

(26)
For such admissible control, consider the performence function as

J%(u) = E JQ \mt \2dt.

And we are going to find out a i / o £ f '  such that
=  m in J1(w)<s (27)

и ew

(24)

(25)

"We have the following lemma. 
Lemma 2. Set

Then So D. E\

V ( y ) ~
- v / \ y \ ,  аяуФО,
0) as y=0.

(28)

f dm°t =  U (m f)dt+ y tO(i)*dwt, ( C i ty - A to i ^ B X ty 1) 
[m l^E So , i 6  [0, T]

(29)

has a pathwise unique strong solution m°t, which is ^ “-measurable. Moreover
u°=U  (m°)

is the optimal control for the separated problem (22), (26), (27), i.e.
J±(u°) =  min

uem’
For proving this lemma we need the following proposition. Set 

Then r t strictly increases to infinity as t f  oo. Denote
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T t - t e Y 1.

Consider the following stochastic optimal control problem: For

Ж*= mo+ 17sOt | ~ads + Щ, tfG [0, T J ,

where
~  № _  
w t = \  7s0*s dw a

»Ss а В. M. adapted to
^€[0, r j ,

■whore 27i=Tr,
(«?: I#J < 1 , is .^-measurable and optional), 

'find v° such that
Jn(v°) =m in J^Qd),

Ю6 Ш"

(30)

(31)

(32)

(83)

(34)

We have the following proposition.
P ro p o s itio n !. v°=U (M t), where U (.)  is defined as (28) and M° satisfies S. 

D . E.

M°t - m o0+ fu (.M °s) 17s0:\ -4 s+ w t, t£  [0, T J ,  (35)

'{actuafly M° is the pathwise unique strong solution o f  (35)), is the optimal control for  
stochastic optimal control problem (30)—(34).

Proof By Example 2 of [22], (35) has a path wise unique strong solution. By 
f[l] it can be shown similarly that the pathwise uniqueness holds for the following 
S. D. E. in  1-dimensional space:

Г dx{t) =2(o)(i)+) 1/2dw1(i) +  (№ -2j7sCf: | -X < t)+ y /a)dt,
t  ж(0) =®o, iG [ 0 ,  T J .

Therefore the proof of Theorem 2.1 of Chapter VI in [10] is applied.
P roposition  2. For any v ^ W " , set

Щ — Г?,)

then wG °tt'. Conversely, for any mG W , set
Vt =  Urt,

then v G .
Now let us return to the proof of Lemma 2. By (35) and (31) we have

m°= m°0+  f TJ (m°) ds + f ysC* dw3,Jo ' Jo
where we have applied ms—M r(S)] and P-a.s.

E  | m° 12< E  | m“ | 2, for all t G [0, 21] , 

fo r any mG * The proof is completed.
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Now let us present the following theorem.
Theorem  3. u°—U (m°) is the optimal control for the stochastic optimal control 

problem (20)—(20) 2, where m° is the pathwise unique strong solution of S* D. E . 
(29).

For proving Theorem 3 we need some more preparation.
Consider for t £  [0, T ] ,

f d fif^u td t, /3°=0,
1 ■= В (*) S* (0 A20 (t) fit dt, fg=0,
f dfit =  Bxft'jdwp, /30=/30,
1 d£t—Bx(j)B*(t) {A z ft)  +  Аж (i) fit) dt+ B (f) dwt, £o= 0.

(36)

(37)

Then it is apparent that
f i ' t - W + ' f i t ,

Applying Theorem 2, we get an important relation, which will he used frequently 
in  the following

& X -  SF f =  ЗГ *  =
Denote

• щ= Е (щ\ & - Ъ = Е Ы ^ ? ) ,  щ- Е ( ъ \^ П >  $ = Е ( Р Ц ^ Г ) ,  etc;
and

Wf =  w f .

We have the following lemma.
Lem m a 3. E ( f f i \ ^ 7 )  = fij.

Proof By f if—JoWs ds we have

Eifi'i I J F f ) =  £  E (us- й $! )d s+ $ .

I t  is easily seen that E (£s(wt — wf')') =0, as t> r> s. Now since for ,и а—й6 i© 
«^ /“-measurable and E ((u s — ws) wr)= 0, as r < s  we have

E  (us—us | & Y) — 0, as t>s.
L e m m a 4. For w  haw u ^ ° l/' and

J (u )< J (u ) .

Proof J { u ) - J @ ) = E  \ \ \ P “\2- \p ! \* ) d s = E \ \№ + ‘ps+ fi!+& , f i t - f i bJo Jo
W,

fi“- fib d s+ 2 E  £< & , РЧ-рЫ *

+ E  f (fig, fig — fif)ds — I i + 1 .2+ 1 %.Jo
Evidently by Lemma 3 we have

I 3= 0 ,
t

h - E  JQ< f i t - f i i  p ug -fib d s  + h>Q ,



. I 2 = 2H £  H «/3S, & = 2 я £ < & , j§?-j§5<fe.

By w\l=Wt and the nonsingularity of B*(t), A2o(t) we can show tnat
a  ^
/3S = /3S-

Hence 12 = 0. And we come to the conclusion.
Now we are in a position to prove Theorem 3.
Proof o f Theorem 3. F irst of all it is obviously that

J ( u) = e [ (m tm*)di+Tr. f y t d t= J 1(u) + T r .[ y tdt.Jo Jo Jo
By Lemma 2 for u° = U (m°) we have

for all wG W .
Applying Lemma 4 we get

J (u ° )~  min /(ад) =  min / ( « ) .
иб®' us<k

At last, let us show that

u ° e w .
Since u° is ^ ”f ° = # ’f-measurable, but by (37) is f '1’’“-measurable, we see that
-<u°u is FF f m'“'-measurable. From (20) for iG [0, T ],

' dfif= u°dt + B fft)  d w f\  /ЗГ=/30, 
■.da<e= = B ( i) H * ( 0 (^ f + A 21( 0 ) d i + B ( i ) ^ ,  £ f= 0 .

'Hence /3f and £“° are ^ f ’“-measurable, i.e. (20) for u° has a pathwise unique 
strong solution f t f ,  i f .  Moreover, u° is "-measurable. Since

F f ° ,

we have и0 G ^
An almost step by step approach as section 2 here generalizes the above result 

to a more general partially observed process system (in и-dimensional space)

Г dj3t= (/3t+ict')dt+B1(^t)dwt1), /30=/30(<y) -  ̂ -m easurable,
\dit=B{t)BXt){A2o{t)pt+A21(f>'))dt+B{t)dwh i<>=o} te со, т].

~Wq state the result here.
T heorem  4. Under assumptions (I)—(Iv) in this section u% — U(mf) is the 

optimal control fo r the stochastic optimal control problem (38), (20) i—(20) 2, where 
U (y) is defined in  (28) and m° is the pathwise unique strong solution o f the following 
B .B .E .

dm° =  (m°t + U (m°t) )dt+ytO (f) *dwt, 
m l-E P o , *G[0, T],

where yt satisfies the prior ordinary differential equation
yt^% yt^B±(ff)B i(t) — ytA*2o(t)(B(fi)B (f) ) 1A2o(t)ytl 

.У о -Е ^Р о -т о Х Р о -т о У ), t£ [0, Т].

No. 3 Situ, В. NONLINEAR FILTERING PROBLEM

(20) '

(38)

l:
(39)

(40)
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