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A NON-—LINEAR FILTERING PROBLEM
AND ITS APPLICATIONS*

Siro RONG (8] i) **

Abstract
For partially observed process in n-dimensional space

{3,=Bo+ [, 4166, BOds+ [/ BuGs, BO20,
&= Bl €)B* G5, €000, BYds+ | Bs, )dw,

under non-Lipschitz (even discontinuous) condition, a Bayes formula different from [1]
is derived (Theorem 1). By means of this formula the innovation problem for the above
process under rather weak condition is solved (Theorem 2).Then the existence of an optimal
pathwise Bang-Bang control for a partially observed process with bounded controls is
obtained (Theorem 4).

(0

§ 1. IntroJustion

In the non-linear filtering problem Bayes formula plays an important role.
Some abstract version of this formula can be found in [1] (non—L1psch1tz diffusion
coefficient is assumed for observable process in n-dimensional space) and [6]
(Lipschitz diffusion coefficient is assumed for observable process in 1-dimensional
space). Here for one more concrete partially observed process under rather weak
condition (non—-Lipschitz diffusion coefficient even discontinuous drift are assumed
only) we derive a Bayes formula different from [1]. Then by it the so-called
“innovation problem” is solved. That is to say, a new Brownian motion process (B,

“information” as &, s<<{, does. This

M.) w,, s<¢, is found, which carries the same
problem is orucial, difficult, important, and useful, especially for optimal filtering
and optimal control problem ([6]). So it has been discussed by many papers such
as [2—6], [8] and [9]. However, the proofs given by some papers such as [5], [8]
and [6] appear to be incorrect (See [8]). And all results except [2] and [6] are
got under the assumption that the diffusion coefficient B(Z, w)=1I (In [24, 25] it

considers the non—Markovian case but still under some Lipschitz condition and
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gtill assume that B(f, ) =I and still in 1-diménsional spaice. In [6] it considers
the conditional Guassian processes in 1-dimensional case). Up o now only in [2] it

.considers the case B(%, ¥) 1. And one of the best results probably is got in [2].

But it assumes that the diffusion coefficient B(Z, y) of the observable process

satisfies a jointly Lipschitz condition and the drift coefficient 4, (¢, @, y) of the signal

p‘i'ooess has two continuous: derivatives etc. It is obviously some restriction. Here
we consider (0) in n~dimensional space, and solVe this problem. Then by using
this innovation result the existence of a Bang-Bang pathwise optimal stochastio

«control for one kind of pariially observed deffusion process with bounded controls

is obtained based on the idea of separation principle due f0 Wohnam™®,
However, it is a result stronger than that in [15] in some sense, since the
-admissible set considered here is not Holder continuous in # under the sup norm in
%. Moreover, it is also different from [11—14], since there the optimal control

only exists in some wider clags-randomized set or under some rather restricted
.assumption for the admissible set, e.g. assume that it is sequentially compact,

which is not easy 10 check, because the observation ¢ also depends on w. Anyway,

:since up 0 now there are not many existence theorems of the strict admissible
‘optimal control for the partially observed process, the existence of the pathwise

Bang-Bang optimal control (in the strict sense) for one kind of partially observed

:stochastic process with bounded controls in n—-dimensional space is at least one more
-ooncrete resulﬁ for it. Moreover, eur result here is for pathwise.

§2 Bayes Formula and “Innovation Problem” for:
Non-Linear Fllterlng

Consider a signal diffusion process Bt.and an observable diffusion process &,
‘which satisfy the following stochastic differential equation (S. D. E.)*
{ dB:= A1 (1, By)dt+Bi(s, By)dw®, Bo=LoER",

di=BG, £)B'G, £)p(t, BYdH-+BG, E)dus =0, 1€[0,T1, D

‘where f8;, & are n~dimensional random processes, w® and w, are n-dimensional

-standard Brownian Motion processes (B. M.), 4;, ¢ are n-dimensional vectors, B,
-and B are matrixes. Under a g1ven probablhty space (Q Z, %, P) we have the
followsng theorem. ' :
Theorem 1 (Bayes formula). Assume that (all functions are jointly mewsumble)
(i) [4:(, @) | <ho(1+ lz]), |B(, )| <ko,
lp, @) | <ko(L+ (2], | B, 9) [ <kos
(i) there ewists @ 3>>0 such that

% B¥ means the transposition of B.
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{B(t, @)A, AY=8|A |3,
{By(t, @), Ap=3|A %,
foa~ all A, m, yE R", where s, > is the inner product in R
(i) a) IBi<t: ) —~ By (2, y) |2+2<w Y, A1 (¢, o) — A1 (3, y)><01(t)91('w yis):
b) |B(@, &) —B(, y) |*<ca®) pa([o—y[*),
where p;(3), t=1, 2, are dnoreasing,; concave, positive, defined on u& (0, ) such that,
[, dulpu@d =+,
and ¢;(t) =¢;(t, w) s such that P-a.s.
T
Jo le;(8) |2dt< 400, ¢;(1) >0, =1, 2;
(iv) w® is independent of w.
Then for any g:(B, &), an n~dimensional vector, F §**~measurable with

B|9:(B, )| <+oo, for all € [0, T,
we have

[, 26@),0nex([] <06, 8. ), a8 @)
5[ 1B )0 G, £.@) M) aP(3)
| ([ <ots, B.@), dia@)y
L 1B &e)et, £ 1489 P

Remark 1. Usually we take the probability space (2, &, &;, P) as follows:
Q=0 p-all continuous map from [0, T]—>R",

. @

BB, &) |71 =

F =J3°-the Borel field generated by all open sets in Ofpy;, where the norm is.

uniform convergence norm,

F=Bi={fE€Q: f(s) €4, s€ [0, 1], A-arbitrary Borel set in R"},

P=gome given Wiener measure on (O, %#°). '

Remark 2. 4, can be discontinuous, e.g. A4;(t, )= —a/|z|, as #0; and
A;1(4, ©) =0, as =0. Then A4, (%, ) satisfies <4; (%, ) —4:(, ), 2—y><0.

Proof By applying [19] and [6] it is not difficult o see that there exists a
weak solution (B, §) for (1). Now if (8, &), =1, 2, are two solutions of (1) in the
same probability space with the same B. M. (w™, w), then by condition (iii) and
Ito formula it is easily seen that 8= 82, Denote 8= B*= 8% By Gronwall inequality
‘we have.

E sup | B:|2<k,  k is a constant.
And the following matrix eperation holds: (Denote A2=A4.4%)
A?—B?=(A+B) (4*~B*) — (BA*~ AB*) = (4+B) (4*~B*)
—~B(A*—-B*) - (B—A)B",




On the other hand
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| 420 - B0 | <k} 42— B?|-|O]. ‘ 3)
Hence, applying Ito formula to &, by (8) and the 2nd equation of (1) as well ag
“assumption (iii) we see that P-a.s. |
El=£2 for all +€ [0, T].

Therefore by [7] (1) has a pathwise unique strong solution (B, &), which is Z v
~meagsurable. Furthermore, by condition (iii) it can be shown that B; is F P~
measurable. Hence B; is independent of w. Moreover, since B; is uniformly non-
degenerated, w(® is measurable with respect to (w. r. t. ) o(B;, 0<<s<X¢). Henoce &
is Z P"—measurable. Now let us introduce the following lemma without proof for
saving pages. '

Lemma 1. Denofe |
| B, B) =00, B
Then for any b EO{)r the following 8. D. E. (4) and (B) have pathwise unique strong
solutions & and n;, respectively:

{d§t=B<t; £) B (3, £)D (¢, b)dt+ B, &) dw,, ®
£0=0, t€[0, T, '

| dyz=B (@, n;)dw;,

{no=0, t€ [0, T1. (5)

Denote w,~the solution measure on O generated by v, ete. Then
Moge ™ g,
T 1(%) o« 2
e/ (r) =exp ([ @5, 1), dn>—2 [ 18°6 ) B(s, D) °as). @)
Now let us return to prove that fo_rmﬁla (2) holds. Since wp~pu, by the same
approach as in the proofs of Lemmas 7.6 and 7.7 in [6] it is derived that

Mgy g™~ Mg X thyy g X g8,y

g™~ gy Mg —2.8s,
and

(Bp,e/d (s X wy)) (b, #) = (dppee/dpny) (@),  pgX oy ~8.8.c (7)
Therefore for any A€ Z (O ),

| jM 9r(B(@), £(0))dP(w)= j [9£(b, @) @pne, e/ ACmax o)) (b, ) dyua () gy (2)
= [ Jor(d, @) @pn/i) (@) aua B @) |

=;4 J 9r(B, ®) Bres/ ) (@) A (D) (dpn/Buse) (@) dpne ()

- :(;EA) (Bn/dpe) (€(w)) P w)v J'gT (B(@), £()) (deses /) (€ (@))P(S).
. . | | ®
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J“@ 5 97(B(@), £())dP(w) = je H(ge(8, &) |F1)aP(w)
J(f 4) (d'w"/dulf)(E(w)>dP(Q>E<gT<B: f)ly )l§=f(w)

[ s /) () 4P @), [©)
By (8) and (9) we have | '

B(5:(8, )17 1) = ([3:(8(@), £(w)) Gaes/ i) (€())AP(3)

x ([ @ups /) E@aP@) . D)
Since wesen~ w,, applying Lemma 4.10 in [6] and substituting -

G/ dp) (€ (@)) =03 (] <0, B3, ()
AN IO l”ds)

into (10) we arrive at formula (2).
Consider a more general system: ¢€ [0, T, _
dBi=A1(t, Br)di+By(t, Br) dw®, Bo=Po(w) — Fo measurable,
{dft—“B(t’ &)B*(¢, E)el, By §)d+B(G, E)dw, &o=0.
Corollary 1. Under assumptions (ii) and (iv) in Theorem 1 and
(1) 41(s, @) | <ko(1+|2]), [BG, @)| <ko, | B, )| <ho,
oG, @ y) | <ko(1+ o] +1y]), for all o, yE R, 1€ [0, T,
(i)’ b) |BG, )~ B, y) |2+2<a>--y, B(t, #)B*(t, ), 2, ®)
—B(4, ¥) B*(t, Y)o(t, 2, ¥)><¥ ($)pd (|o~y|*), for arbitrary zE R,
as |w| <N, |y|<N, t€[0, T], N=1, 2, -,
where ¢y () and p¥ (w) have the same property as that in (iii) of Theorem 1,
(vi) there ewists an 8>0 such that
Eoxp(e|Bo|?) < oo,
(vii) (U)' has a pathwise unique strong solution and B is independent of w,
Bayes formula (2) then still holds. -

@’

Oorollary 1 can be proved similarly as Theorem 1. Let us prove our main -

‘theorem,

Theorem 3. Assume that conditions (1\—-(1v) in Theorem 1 are fulfilled, and
(V) o, oL, ph, exist, and - 8
LRI w>,|<ko<1+|wl>.
;Tken'wehaw B | A | o
1) 8. D. B. (1) has a pathwise unique str/'ong solution f,, wkwh is FPoe
‘measurable, for all t& [0, T]; '



_ Thérefore( o
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— [t t _
2) ’wt=Jo B-1(s, §s)d§s—Ja B*(s, &) p(s, §)ds is @ B. M. on the probability space

@, B, F4, P, satisfying B(dndui®)=0, where 3, &)=B(p(i, B)|FD).

Therefore &; satisfies 8. D. B. for olb ¢ € [0, T'] 4
dé,=B(t, £)B'(t, Ep(t, E)dt+B(t, &)dw, £6=0, (11)
8) Fi=F7, forall t€ [0, T]. ,
Remark 3. Conclusion 3) in Theorém 2 means that the process w carries
the same 1nformat1on as the process §, does. Usually we call w; an 1nnova’olon

process.

Remark 4. Theorem 2 implies Theorem 1 got in [3] in some sense, since
the observation process in [8] is assumed %0 be
dgt“Btdt+dwt; Bo=0,t€ [0, T7,
and it is considered in 1-dimensional space. Here our observation is as
dé;=B(4, &) B*(t, &) (3, B:)dé+ B(t, &)dw,, £,=0, t€ [0, T1,
where the diffusion coeﬂi_clent is not necessarily Lipschitz continuous and the processes

~are considered in n-dimensional space. The assumption of our theorem is also relaxed

from [2] in some sense, where the Lipschitz continuities for B, 4, B; and also ¢,
indeed, are assumed. ' .

Remark 5, Let a/(#), b(t) be nXn, 1Xn matrixes, respectively, which are
non-random and both of which have continuous first derivatives w. r. 1, te [0, I1.
And assume that all conditions in Theorem 1 for A;, B; and B except ¢ are satisfied.
Let o= (@1, @2, ***, @u), and for all € [0, T'], s C R" lot

(3, ®) = (a*()@)i+ (a®(t)2)isin o+ (@®(8) )67+ (0(#) )4
Then all conclusions in Theorem 2 hold.
 Proof 1) is true by Theorem 1.

For

. dw,=B(8, &)dE;— B* (¢, )¢, §)dt,
applymg I’ﬁo formula we have

e@(z, 71%,) - et(z,w.g) -+ ?}<z, js 3‘(2 »Wu) B";l (S“) dé’u >

il [ B FUO ) 1 [ e,

,.E(eigz_,wjolgrsf) =exp (:_[ﬁl_(t-— s)). .

Hence w; is a B. M. on (Q, &, #§, P). Hdwdw® =0 is evident. So 2) is proved.
Let us prove 3). For this we only need to prove that the pathwise uniqueness holds
for (11). Then applying Corollary 1 in (i) of [7] from 2) we can see that & is a
pathwise unique strong solution for (11). That is to say & is' a F "-measurable
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function. And 8) holds. Asgsume that there are two solutions & ahd &7 satisfying
(11) on the same probability space with the same B. M.. Denote this probability
Space by (@, #, %, P), and '

GN=lnf(t l§¢l>N '?/'-‘-*'-1 2) IGN(S>=‘I(3-<G”)°
By (2) | _‘

5(% &) =G, f(w))/g(s: é("))))
where | _
£, @) =[50 B@IYE, (), BENIPE), i-1,2,
9, £@))= {70, §(w), BE))PE),
7, £0), 8@ =oxp ([ <(s, £.E)), dgi()>

5] 1B &), £.6)) %),
If wo can show hat there exist constants EY and k¥ (depending on N only) such that
as t<Gy(w), (&Y, k§>0) v
- H<|9G &) |I<H, |G &)<k, (12)
then 4
Bighar =&, <t ([ o8I G -8 Loy DB+ L+ L), (19)
&Vhere o |

=J:E | (s, E(0)) ~ F (3, (@) |2I4,(s)ds,
I3 =J;E lg(s, E4(w)) —g(s, £¥(o)) IQIGN(S)CZS.

“Here we take ¢,() =1 in (iii) for simplicity, otherwise use the time change technique.

(14)

As a matber of fach
dp (s, B:(@)) =g} (5, B:(@)) di+pld:(t, Bw))dt+@,Bi(t, Bi(@))dwi(t, @)
5.3 dBIBIG, B(E)),
‘Where
B"’"(Bl: B2+, B%), Bi=[BY1is-1,9,ne
Introduce now a product probability space (2% 8, Fx ?, FX %, Px P). Denote
£ (o, ) =& (), w(t, o, &) =w(, o),
Biw, @) =Bi(@), wi(t, @, &) =wi(t, @) =wD(t, &),
Noting that Hpxzdw(s) dws(t)=0, by Ito formula it is not difficult to prove thab
there exist AcQ, Ac 3 such that for (w, ) € (Q—4) x (§- 1)
p(t, Bi(@)), dét(@)>=dlp(s, B:(@)), & (@)>—<dp(s, Bi(w)), & (w)>,
-where P(A) =P(A)=0. Hence as (o, @) €(Q—4) x (G-1),
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0<yt, §0))= [0 (T, 5) L[] 1B, £1)lots, B(E)) 1 s}aP @)

<Jb’ exp(Ii (@, @))dP(w),

where

I (o, &) = I (o, &) — I{*(0, @),
1, 5)=4p(t, B(@)), &@)~ [, Koly &(@)>+<obds(s, B(3), &)
+(U/2) 31 <(@%p/0000) BYBI(s, B.(5)), € ()1,
120, 5)= | <pLBGs, Bu(@))dwsGs, B), E1(0)>-
By Theorem 4.7 in [6] there exists a §>0 such that |
sup B oxp (8] %) =sup [ oxp (8] 81| HAP (@) <+oo. (15)
Therefore for any constant £'>0 we see that as <Gy, _
[0 <0, £, ) |aP@)<] oxp(¥ lpt, K@) 181))IP@)
<exp(k'kolV*/8) sup B oxp ((8/2k0) [pt, £)|) <o.
The same argument shows that as ¢<G'y(w) for all (w, &) € (2—-4) x (8- 4)
[exp (@, $)aP@) <hy<+oo. (16)
On. the other hand by Girsanov theorem as t<Gu,
[yep(= 120, 3) L[ 18 6iBiGs, BGDMWP@E)<L. (160

So applying Holder inequality, by (16) and (16)., we get that as <Gy

9(t, E(w)) <k <+oo, (17)
Moreover, by (17) for 0<p<1, ¢=p/(p—1)<0 as t<Gy,
([5lox (=12 (o, 3))19P@) " >1/exp(lq| )10, (18)

Note that there exist No, 70>0 such that
P(sup|p(t, B:(w))|"<SNo)>ro>0.

Hence by the inverse Holder inequality (see [18]) it can be derived thab
- ¢ o ~ ~
([5|exp(z2(0r D=5 [ 1B, & @))ots, £:(@))1%s ) |24P(@)) o>y >0.

| - | (19)
(12) is derived by (16)—(19). Hence (18) is obtained. Applying now
sup B (4, Bi(@)) | *<ew. |

(by (15)) and [¢*—eY|<|e®+¢'|+|m—y| we have
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BIFG, £ 1 @) 1o
<t [,|[/ <066, 8., 083 @) ~di? )@ T HIPE
+5 58], (16 0ot £GP
- 1B, @), £.) |2>ds] Lo, 0aB(E))
<s(s[,|[ 176, £))

~ B @) 176 O)llos £.E) Idsl P@) a0

+8 [,|[. 156 @)=, &N 1106 A@)ds| B@Ia )

0

+8 j‘ (B, €)= BGs, )Gt ) Bs<w>>>ra,,<t>j aP(3))

+lc}vE p(Elgl(w) 52(w)|91¢;,,(t))ds lcN(IZ+I’2+I§+I4)

It is eamlj seen that
(<t [ (8182 ) =820 o, (),
| L <k (I+s), Is and Is—deﬁncd in (14).
By Fubini theorem
<[ B[] 1BG, €(0))~ Bls, &) IPlg(s, B(@)) %sTe, (HAPE) <M,
e R
| BIf G £(@) ~fb () |*To, OO <E Lo+ To+ ID.

" The same 'a,rgument shows that the same ihequa,lity holds for E[g(t, (o))
-—g(t f”(w)) |2I¢, (¢). Applying Gronwall inequality (Lemma 4.15 in [6]) we geb

E|f G €(0)) ~ £, (@) [* e, () + Blg(t, () -9, (@) | IGN(t)
<wy(Ii+Ey j exp (xﬂ (t—5)) j (E|§1 £2e. IG,(u))ds)ds<k§,1'
At last from (18) we get ' '

EI&AGN(CG) §tAGN(w>|2<70NJ P(Elfs/\an(w) gsAGN(w)P)ds

Hence by Lemma 8 in [1] (or by [7]) E|§sAGN(w) &2ay(0)]2=0. From thls it is
easily derived that the pathwise uniqueness holds for (11)

Corollary 2. Assume that ¢(4, o, y)=p(5, ©) does not ‘depend on y, and
conditions (1), (ii) and (iv) én Theorem 1 and (iii)’ b), (vi), (vil) in Oomllmy 1
are satisfied. Then all the conclusions in Theorem 2 hold.
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§3. An Application to Optimal control
(n-Dimensional Case)

‘Let us consider the optimal control problem for partially observed process - -
{ dB;=u dt + B1(8)dw®, Bo=Bo(w) —F ¢ measurable, (20)
dé;=B(8) B* () (Aso(£) B;+ Ass () )b+ B () dwy, £0=0, 1€ [0, T,
where the performence function is (we denote the solution of (20) by B¢ for u;)
ORI ANTIES (20)
and the adinissible control sob ig
U ={u: u(t) — F {—measurable, for all € [0 T] , and 0pt10na1 [ | <1
such-that (20) has a pathwise unique strong solution}.

The optimal control problem is to find u, € % such that __
J (o) =mindJ (u). (20)4
ueH

For definiteness lot us take F# ;=% ¥% and & =% ¥™%. Assume that

(i) Aa, Asy, By and B are all bounded n X n matrixes, which do not depend on -

@, and there exists a >0 such that for all tE [0, T] and any A E R",
LB, Ay=>3[A]%,
and so do B;(¢) and Ag ().
(i) w™ is independent of w. , , ,
(iii) the initial distribution P(By<<ao1, ***, Bon<on) is Guassian, where By=
(Boy, ***» Bon), a= (a@o1, ***, @on), With mean vector mo=FE(By) and covariance matrix
Yo=E ((Bo—myg) (Bo—mo)*) such that tr, yo<oo and v, is posﬂuve definite.
(iv) there exists an >0 such that
H(exp(s] Bo]?)) <oo.
Applymg Gorollary 2 of Theorem 2, we see that for each uE %,

= j B(s) dé,~ j B(s) (Aan(BrtAn())ds, (21)
where B,=E(B,|Z {) is a B. M. under the probablhty space (Q, Z, F§{, P). Denote
for each o,

mFE(leff), ')’t=E((IBt—'mt) (Bi—m)*| F ).

Applying Theorem 12.7 in [6] we see that m,, 7, are the unique continuous Zj-
measurable solution for 8. D. K.

dm,; = %(Zt + ')’tA o(t) B* (t) 1dwt,

{ 22)
mO—E(BO)) te [O) T] ’

{ ¥e=B1(3) Bi(t) —7:420(2) (B(2) B*($)) " 420 (£) 7, (23)
70=E<:80—m0> (Bo"‘mo>*, A4S [O; T]) .
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-and 1y, is positive definite for ¢ € [0, T].

From (22), (21) and (20) we get

{ (Z(Bt - mt) = -Bi (t) d’wgl) - '}’tAgo (t) (Ago(i) (,Bt - m»dt +B<t> (Z’I:Ut)g (24)
Bo—mo=PBo—E(Bo), t€[0, T]. :
Therefore 3;—m; does not depend on u € %. Since
‘ d(Bs—m) = By()dwf® — y:.A50(8) B* (2) duy,
we have _ '
dw; = B*(3) A50(%) 2y {(Bi(#) dw® — d(B: —my) ), (25)

i.e. w; does not depend on u € % either. Therefore
wt=w?, for all u€ %,
where % is the innovation process corresponding to control u=0. Henco
' | FV =g (w0, s<t) =c(@?, s<t)=F 7,
where all g-algebras are completed by the P-nullsets from #. From now on, we
always write w; as @0, |
Now leb us consider the separated problem.
Discuss (22) for all u€ %', where
U’ ={u: w is optional, F P-measurable for all € [0, T'] such that |u|<<1}.

(26)
For such admissible control, consider the performence function as
T
T () =EJ0 | |2 b
And we are going to find out a uy € %’ such that
J1(to) =min Jy(u). : @n
We have the following lemma,
Lemma 2, Set _
~y/lyl, as y+0, -
Uy =
OB P (29)
" Then S. D. E. _ |
{ dm; =T (m7)dt-+7:0(8)" dw,, (0(8)*=A5(H)B"(#)™) (29)
m8=EB(), tE [O; T]

has a pathwise unique strong solution m{, which is F#P~measurable. Moreover
u;=U (my)
is the optimal control for the separated problem (22), (26), (27), i.e.
J1(u®) =min Jy(u).
ueq
For proving this lemma we need the following proposition. Set

17
’D't=J'0 l'}'sO:lzds..

Then 7, strictly increases to infinity as 4 co. Denote




Jg(’l)o) =min Jg('v)-
) veal ‘

"We have the following proposition.
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Tt = (’D’t) —1.
‘Consider the following stochastic optimal control problem: For
t - _
My=mi+ [, 0,700 Pds+ 5, € [0, T, (30)
“where
~ T ) —
= 701 din (31)
is a B. M. adapted to
%:-f?t, 1S [O) T!J)
~ where Ty =77, v '
"= (v: |o|<1, v is F~measurable and optional), (82)
T
FFORY] VA (33)
find ¢° € %" such that
| | (84)

Proposition 1. o, =U(M7), where U(.) is defined as (28) and M; satisfies S.

D. L.
t "~
M= m+ [ UMD 17,05 2ds+, 1€ 10, T4,

(85)

{actually M; is the pathwise unique strong solution of (85)), 4s the optimal control for

stochastic optimal control problem (80)—(34).

Proof By Example 2 of [22], (85) has a pathwise unique strong solution. By
T1] it can be shown similarly that the pathwise uniqueness holds for the following

‘S. D. B. in 1-dimensional space:
d(8) =2(0(8) )2 dws (£) + (n—2] 7,0t | ~(a(£)*)¥*)dt,
{‘U@) =y, $€ [0, T4].
Therefore the proof of Theorem 2.1 of Chapter VI in [10] is applied.
Proposition 2.  For any vE X", set '
U =V,
#hen w& Y'. Conversely, for any wE U’, set
' | | V= Ur,,
shen vEU". ‘
Now let us return to the proof of Lemma 2. By (85) and (81) we have

. t g -
Ty = mS-I—JO U(mg) ds+ Jo 705 dw,,
where we have applied my=M,; and P-a.s. |
B|m|2<B|m{|? for all € [0, T],
for any u€ %', The proof is completed.
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Now let us present the following theorem.

Theorem 3. u;=U(m;) is-the optimal control for the stochastic optimal control
problem (20)—(20),, where m; is the pwthfwzse unique strong solution of S. D. E.
(29).

For proving Theorem 8 we need some more preparation.

Consider for t€ [0, T1],

dBt=u, ds, BO=0, " ,

_ , 36)
L _BWB ) AuOFd, Ei=0, (86)
{dﬁt—Bi(f)d'wa) Bo=PBo, 87
dés= Bi() B*(t) (A1 (8) +A20(£) By dt+B(t}czw,, &o=

Then it is apparent that
‘ Bi=Bi+B, E&i=Ei+E.
Applying Theorem 2, we get an important relation, which will be used frequently
in the following
FI=F{=FP=FrcF}.
Denote
=B (| F7) =E (| FF), uy=E(uw| FL), Bi=B(B}|F ("), olo;
and
’ w; =w?,
‘We have the following lemma.
Lemma 3. E(B¢|#P)=pL
Proof By B;‘=J: u, ds we have |
B@| 79 - [ Bl 7 P)ds+ . |
Tt is easily seen that H(&,(w;—w,))=0, as t>r>s. Now since for u€ % ,u, 1, is
F {“~measurable and E((u,—%,)w,) =0, as r<s we have
| B (ug—1s| FP)=0, as t>s.

Lemma 4. For u€ % we have GE U’ and
J (@) <J (u).

Proof J(w)=J (@)~ | (1817~ |@8|ds—B | <Bi+But B+ B Bi-B
B [ B, Bi—Bbds-2B | <P, Bi-Bdds |
T o a o
B || B, Bt~ Bds =TI+ IntIs

Evidently by Lemma 8 we have
I,=0,

oL, B
L= | Bi- B, Bi—Blds+Ii>0,
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M

N U T
Lo=28 |} B(., Bi~Bb|# 1) ds—28 | B, Bi—Bibas.
By w¥=w} and the nonsingularity of B*(t), Aso(#) we can show tnat
L
Bi=PB.. ‘

Hence I,=0. And we come to the conclusion.

Now we are in a position to prove Theorem 3.
Proof of Theorem 3. First of all it is obviously that

. T . T T
J(u)= EJ (mymi)dt+Tr. jo v dt=d1(u) + Tr.j0 y; dt.

By Lemma 2 for u°=U(m;) we have

J1(u® )<J1(u), for all u € ”Z/’
Applying Lemma 4 we get

J (u°) =minJ (u) =min J (u).

uea ucw
At last, lot us show that
| » uwW’EX.
Since uf is F P =F i-measurable, but by (87) &; is & **~measurable, we see that
ay is F PP ¥~measurable. From (20) for ¢€ [0, T7],
a8 = dt+ By (D) dw®, BE=Bo,
{ d&y" = B(3) B*(8) (A20Bt + Ans () ) di+ B(#) duw;, £5=0.
Hence BY and £ are F P“'“~measgurable, i.e. (20) for w; has a pathwise unique
strong solution BY, £¥. Moreover, % is & P-measurable, Since
TP TP T,

(20)’

we have u® € %.
An almost step by step approach as section 2 here generalizes the above result

$0 a more general partially observed process system (in n~dimensional space)
dB8;= (Bs+u;)dt+ By(£)dw®, Bo=Bo(w) — Fo—measurable,
{ d¢;=B(8) B*(3) (420(8) Bs+ A1 () )dt-+ B(8)dwy, £0=0, t€ [0, T1.
We state the result here. '

Theorem 4. Under assumptions (I)—(Iv) in this section u;=U(m;) is the
optimal control for the stochastic optimal control problem (88), (20)1—(20)s, where
U(y) is defined in (28) and m; és the pathwise unique strong solution of the following
S.D. E.

(88)

| {dm?——— (m3+ T () dib+7:0 (%) dus, (39)

mo=HERB,, t€[0, T],
where vy, satisfies the prior ordinary déﬁermtml equ.ation
{ i =2+ By(8) Bi(t) —7:450(£) (B(£) B*(£)) 2420 (2) 7, (40)
Yo=H((Bo—m0)(Bo—me)*), € [0, T].
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