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A NOTE ON THE REGULARITY OF SOLUTIONS 
TO A NONLINEAR ELLIPTIC SYSTEM FROM 

ELASTICITY-PLASTICITY THEORY
W u Lancheng (^  Д ) * * *

Abstract

The regularity of the weak solutions to an elliptic system from elasticity-plasticity 
theory is studied. Although this system is a nonlinear elliptic system with discontinuous 
coefficients, G1, “-everywhere regularity for its weak solutions is proved.

1. Introduction
In this note we prove the H 2,T(r> 2)  regularity of the weak solution to the 

Diriehlet problem for a nonlinear elliptio system with discontinuous coefficients of 
the form

dv(Dep(du)du)+F (x)=  0 in  Q, (1 .1 )
w =0 on 8Q. (1 .2)

Here Q is a bounded domain in  R2, и is a vector in  R2, d is the differential operator 
matrix:

г в о
dx±

0

d
d x 2

d
dx? dx±

Dep(0м) - Д - DeAa(P )ATBe,

Be- IS
1  — JJb2

" 1 0

p 1 0

0 0 1 -!*> 
2

is the elastic matrix,
A  =  [AiAzAs} т г

f 0 if  P < 0 ,  1
P  =  ATDe 8u. a(P) =  \ cco~ т~Т~л¥тГ~Г°

* 4 l« o  if  P > 0 ,  h0+ A TDeA
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Here, h0>0, E > 0 , 0 < /z ,< l and A{ (i = l ,  2, 8) are given constants.
This system arises from a class of elastic-plastic problems (see [1, 2, 4] ) .  
It is known133 that Dep(du) is a positive definite matrix: 

f D ep(du)£>X\£\2, X>0, V ££R 3, 
and for any t] £  R2, rj #  0, the 2 x 2  matrix

" Vi 0 ' T ' Vi 0 "
0 Vi Dep (8u) 0 Vi

. V* V i . . Vi Vi. .
is a positive definite matrix, too. So, we say that system (1.1) is a strongly elliptic  
system in  Visik-Nirenberg sense.

2. Preliminaries

In  this section we shall state some notations and well known lemmas which 
w ill be needed in  the following.

We shall denote by H m,p(Q, Rff) the Cartesian product

H m,9(Q) being the standard Sobolev spaces. A similar meaning holds for Om,a(Q, RN) 
and so on.

Moreover we shall denote by | Q | the Lebesgue measure of Q and by 

the average of /  on Q:

Let us now recall some well known lemmas we shall use in  the following. 
Lemma 2.1е53. Let 6(f), — oo<f<oo, be a Lipschiiz function whose derivative 

0'(t) exists except at finitely many points {a±, •••, а>м} a,nd let u ^ H 1,s(Q), K s< o o 0 
Then

в (u) € & • ( $ )
and

(в{u))Zl = e'(u)Ua( (in the sense of distributions) 
with the convention that both sides are zero when ® £ ( J {y- u(y) =«,•}.

j
L em m a 2.2C6’73(Reverse Holder Inequality). Let Q be an n-cube. Assume that g, 

J  are non-negative functions on Q and that
g € L * (Q ) ,q > l,fe L * (Q ) ,s > q .

Suppose

J' gqdx<J)([ g dx ) +& f 9dx + $ { tfcks
J ea(»°) veisCe"; ■/ jq^ )
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1
for each x°£Q and each P < ~  dist(»°, 8Q) Д B0, where

Qn{x°) =  {®GR"; Ia>i—a$\<R , i = 1, 2, 
md B0, Ъ, 9 me constants with Ъ>1, Bo>0, ()<<#< 1. Then

S'Gifoc(Q) for pG lq, q + s ) ,
moreover

(f«. «'*’)’ <°{(L,,‘fe)T+(L/ ’*)’}
for QzrCzQ, R <  Bo, where О and s me positive constants depending only on n, b, 9, q 
and s.

3. Н ы  Regularity

In [8], the authors proved the existence, uniqueness and E 2,2{Q, R2) regularity 
of the weak solution for the Diriohlet problem of system (1 .1 ). Here we would like 

to show that this weak solution is actually in  H 2,r{Q, R2) for some r > 2  and thus in  

€P-'\Q, R2) for some 8, 0 < S < 1 .
D efin ition . A vector u{so) is called the weak solution of problem (1 .1 ) , (1 .2 ) , i f  

u £ H 1,2{Q, R2) and satisfies the following integral identity',

f {dp) %  (8u) &a dx-  [ pv Fdx =  О, V p G C? (Q, R2) . (3 .1)Jo Jo
We begin with proving the regularity in  the interior. The main result in  this 

section is the following theorem.
T h eorem  3.1. I f  F  £ L S{Q, R2) , s> 2 , then there exists an exponent r > 2  such 

that i f  u £ H 1,2{Q, R2) is the weak solution of problem (1 .1 ), (1 .2 ) , then и G (p ,
R2) , where r  depends only on A, De, A, h0, s.

йя»
Proof The first step consists in  proving that uXh= -z—  (& =  1, 2) satisfies

OXjt

f {8p)TDep{8u)8uaKdx +  ( plHF d x = 0 , \/p£0%{Q, R2) , k=* 1, 2. (3 .2)
J Q J Q

We begin by remarking that from (1 .4 )— (1 .6 ) one can rewrite (3 .1 ) as follows

f {8p)T{De&u-DeA y {P ))d x = [  pTFdx, VpeOZ(D, R2) ,  (3 .3)Jo Jo
f 0, P <  0

where у  ( P ) —A is a Lipsehitz function of P.
Г [ooP, P >  0

Therefore, for any ф G О о {Q, R2) , inserting р —ф^ (k = l,  2) in  (3 .3 ) , we have 

f (d if ijт{В еди -DeA y (P )) d® »  f xftlFdx, \/ф £0% {0, R2) , A =  l ,  2. (3 .4)J Q JO
Since u £ H 2>2{Q, R2) C3:I, using Lemma 2 .1 , it  is easy to show that y{P )  G 

E 1>2{Q). Hence, the vector De8 u -D aA y{P) belongs to E 1,2{Q, R8) and it oan be
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differentiated in  the weak sense, i.e.

Jfl T(Bed u -B eA y (P )) dm

—  Je (0«/OT(Beduah- BeA y'(P )ATDe dm, Чф£ 0 ^ (0 , Ra) ,  £ =  1, 2.

(3 .5 )
Then, from (3 .4) and (3 .5 ) , we have

Jfi (дф)т (Be -  DeAy' (P) АтВе)Ыан dm+ Jfl ф и  dm=О, V ф €  О? (О, R2) , =  1, 2.

Therefore, (3 .2) is proved. Moreover, (3 .2) holds for every o’2(^> R2) .
The second step is now to get the result of this theorem from (3 .2 ).

Let Q be an и-cube. QczczQ. For each ®°£Q and each dist(®°, dQ) /\B Q,

where B0> 0  is a constant, we construct a cut-off function r) (m) :

v €O o(Q2R{x0)) ,  0 < ? 7 < 1 ,77=1 on QR(m°), \ D r ) \ (3 .6 )

and choose as test vector in  (3 .2)<p=(pk=r]2 {uZs — (мв4) 2R) , & =  1, 2, where

( O s B = f  uaKdm,

then we get

Jfl (^2 (м«, -  (m**) 2b) ) ] TBep (ди) d (ueil -  (мв4) ал) dm

+ f W  (Ux* -  (О 2п) ] IJdm=0, & = 1, 2.Jo
By some computations we have 

| д  [0 (17 (w ** -  ( m ** ) 2b )  )  ]  TBeP (Эи) d  (17 (uZt -  ( m < J  2b )  )  dm

-  f [0 (??(m**- (*O »))]*A p(0m) {dT{r}I))T{ux -  («,)»)&Jo

— Jo («** -  (w*t) ав) ^  O7I )  А*? (0м) 0 (v (м«, -  (м«*) ав)) dm

+  1  {ua -  (uek) 2R)TdT(r)I)Dep(du) {dT{y)I))T{uXf.~ (uXk) 2R) dm

~ \ qv Lv («**-  (« О 2b) ] e*FЙ® — Jo а д (м *,-  (mJ 2b) rP dm,

where I  is a 3 x 3  unit m atrix.
Since Bep (ди) is a positive definite matrix, elements of Bep (0m) are bounded, 

and those bounds depend only on Be, A, h0, we have

2  f 10 (v (ux:c — («ч)зв)) |2d®<0 2  f_ |0rW  |21 м«» ~ (м$л) 2в l2 d®fc=l Jo fc=lJO

+  o |fl772jP|2d®,

where О depends on X, Be, A, h0.
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By Korn’s inequality1-8-1, we obtain

2  f \D(v(uaK- (гОав)) | 2c&c< 2  f |Drj| 21 w®* — (mJ 2b| *da>+o\ rf\F\*dx,
fcssl J Q  ft=sl J Q JQ

and from (3 .6 ) we get

f |U2w[2daK-S-f \Du- ( D u) 2R\ 4 x+ o \ \ F \ 4 x. (3.7)
Л  JQai>(za) . ,

Using Sobolev-PoincarS inequality1-7-1, we obtain

f IZ)M-(2)M)2B|2da;<:aff \D2u \^ d x )  3̂*8̂
Combining (3 .7) and (3 .8 ) , we have

»-fr2
f  [Л2м[2й!ж <а({ | # 3w |^ W )  * +  o f  [FPcfo. :
J v&,w /

2n  2 »  I О

Now, choosing </= |D 2«j n+2, / =  |F |  n+2, g = —-—  and 0 =  0 in Lemma 3 .2 , we
№

get
2 п  Г

jJFuj n+2 6 Lfoc(Q) for i,i4'2 w-b2
n n г)>

moreover ;

I Я 2м | ̂  *в)Р <  I D2u 12ck) ”+2 +  o ( £  I F  I

for QaBC CQczD, M <R0, where О and s are positive constants depending only on n, 
^ , ^o, s.

If we le t <p, then I B 2u I 6  L'Uil> (Q) for 2, 2,+ --—̂ г e ) . Here, «=»

2, so r = p G  [2, 2 -be) and и (Q, R2) for any QdczQ. Therefore, we have
uGHf^(Q, R2) for r  £  [2, 2 + s ) .

4. Regularity up to the Boundary
Suppose Q £ 0 2. In  this section we are going to prove the regularity of the weak 

solution up to the boundary.
For each aPQdQ, without loss of generality, we suppose oj° = 0, 17(0) is a 

neighborhood of 0 and dQf]U  (0) can be expressed as

as+£(% ) = 0 ,
and under a transformation

(4.1)Ух= 0i,
.2/2 =  ®2 +  !(<C:l) ,

the image of the domain Q П V  (0) lies on the upper half plane R+ and includes a 

half-cube Q+ =  Qf|R+, where Q={?/£IR2: \y%\<Ri, 6= 1 , 2}. In the sequel we shall set 
D  for the image of U (0) and D+ for the image of Q П U (0).
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From (3 .1 ), we know that if и is the weak solution, of problem (1 .1 ) , (1 .2 ) , 
then u(zHl'2(Q, IR2) satisfies

f (d<p)TDej)(du)dudcc=( qFFdx, V<p£0%(IJ(0), W ).
JQnU( 0) JQnUCO)

and under the transformation (4 .1 ) , we have

f (d(p)TDep( d u ) d u d y A  $TFdy, V<p£Oo(D, R2) ,  (4 .2 )
J D+ J D*

where u(y)= u(x), <p(y) =$з(*), P (y) = F (x). d still stands for the differential 
opertor matrix w ith respect to x (see (1 .3 ) ) .

Now, for any ifi£Oo(D, R2), inserting in  (4 .2 ), we have

R*). (4.3)
%1

It is easy to show

where

4 =

f y i  

d
%2

0

0

0

0
d

dy%
Therefore, we obtain

L  D°»(du)du d y -  Г'Ы Ф уф У П е^дййу

“ L  ( i k P ^  V f 6 0 ? ( B .R » ) .

Using Lemma 2 .1  and (4 .4 ) , we have

- - J oi ( e 5 ) ' i ) w( 8 « ) [ 0 ( ^ - ) + r f c ) 2 . S ] % ,  V ? S < W > , Ra)

Combining (4 .5 )  and (4 .6 ) , we get

+jB,r (v i) (2 ,$ )TDv eZdi>+jDi v Jesfr'CA

( 4 .4 )

(4 .6 )

(4 .6 )

For any «/°(SQ and 22<-|-dist(«/0, 8Q) we have three possibilities:

1 . QsS(y°)nQ +- 0 ,
2 . QSit(y°) ГКГ =  0 ,
3. Qsл(у°) ПQ+ Ф0> Q3b(2/°) (IQ ^ 0 .

(4 .7 )
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In ease 2, as we have seen, we have
n+2

’ + 0 L « |# I % - (4 -8)
^ Я

In  ease S, inserting t/»=^2 £  HI’2(Z), R2) into (4 .7 ) , where r) is a cut-off function

v(y)  (^ 2д(«/0) ) , 0<77<1, r/ =  l  in <Эл(«/°), | -ZfyI < О 
В ’ (4 .9 )

we have

L  № - § $ M K M * .

By some computations, we get

Ы аШ т̂ аШ ^

+L A ^ ^ Iw w rJ k*>

~ 1 . . А ж ) т a t W B ^ v M  

"L w 4*" w [g* (ч ж)УВп̂

h u m  L дух \  ду% IJ Jew»0) % i \ % i /
U sing K orn's inequality, we have

Iл О» ж )  Г * * 0 L ,,(1 ar (,,I) 1 >+1 11+ dr)
дух )!

Эи
t y i

+0 f (1ам|2+ |^ м |2+ | ^ | 2) # ,
Jejs(»°)

dy

(4 .10)

where О depends only on X, De, A, h0) sup)£"(2/1) | .
From  (4 .1 0 ) and (4 .9 ) , we get

8U *dy -\-o[  ( |5 m| 2+  | ĉ m |2+  \j?\2')dy.
JQisW)JQUv°) \ дух / I Вл jQt, (y°) pyx

Since m=0 on 8Q, we have —0 on dQtniy0) П {«/2=0}. Using Sobolev-Poincar&
oyx

inequality and then dividing it by R n, we obtain
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l Qtm 

+  О

2 n n+2

I + f С- l ia+1 ̂  ia+1 ̂  i a) °̂J (в2я(у°)
Now, let

0 —
Я ( J ! L )  \ e yJ

QTt.

\  I n+2 ' .in  Q-*

f -

0 in  Qr,

( | 0m| 2+ | J * | a) ”+F in  Q*, 
0 in'Q“,'

2 =
n-Ь2 

n

It is easy to verify that g £ L q(Q), q > l ,  f tzIfX Q ), , and

|  + a |  /®dy.
JQxm  yjQtxW /  JOtsW)

Therefore, in  each ease, the inequality (4 .11) holds.
Using reverse Holder inequality again, we have

g £ L pl0C(Q) for p £  lq, q + s)

(4 .11)

( L  ^)т< 0 {(Lf̂ y+ ( L / ' ^ ) ' }
for QzrĈ Q, where О and s are positive constants depending only on n, к, Д ,, A} h0i 
s u p ||" |, s, which implies

в Ш г)1е1/№) for , 6 I> 2+^ 2  4 Sinoe
d

Setting <r — - p, we get

» (|ь)} and
\  £?2/l /  L O0Ga \  д у х  П  0 S = i ,2 ; i = l ,2

0  + ? ( * ) •  0  0

02u d2U
dy2dyx > dyl

Эж* % 1  ‘ ъ чг/х/ dy2 ’ д%2 ду2

€ B r(Q%)-

д2и

, we have

dyl ev(Q t)<In order to show that u£H .2,r(Q, !R2) , it remains to prove that 

To do this, we w ill use system (1 .1 ) .
It is not difficult to check that under transformation (4 .1 ) , system (1 .1 ) can 

be written as follows:

'iX v i) 0 ' T " Г Ы 0 "
0
1

1

Г  Ы .

Bep 0
l

i d2u
dyl

+  •••== ‘S' a.e. in  B \

where the notation “•••” is used to express a ll of the terms which belong to _Z/(Qn).
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By elliptic condition (1 .7 ) we have

det
~ £ 'Ш 0 "т

Y ( f t ) 0 ’

0 1 Вер . Q . .1 .

l е ы . 1 Г (2 /0  .

Ф0.

Therefore, we get

f f  « ' « a .

Using the standard technique we deduce that \ B2u\ £ 1 /  near 8Q.
From this conclusion and the regularity in the interior, we have 

T heorem  4.1. I f  Q £ 0 2, f  £ L S(Q, R2), s > 2, then the weak solution и of the 
;problem (1 .1 ) , (1 .2 ) belongs to H 2>r(Q, R2) for some r > 2.

A consequence of this theorem is fche following theorem.
T heorem  4.2. Under the assumptions of Theorem 4.1, the weak solution и of

the problem (1 .1 ) , (1 .2 ) belongs to 0 1,6(Q, , where 0 < § < 1  — —, r > 2  is the exponent

in Theorem 4 .1 .
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