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A NOTE ON THE REGULARITY OF SOLUTIONS
TO A NONLINEAR ELLIPTIC SYSTEM FROM
ELASTICITY-PLASTICITY THEORY

" Wu LANCHENG (& 2 &)*

Abstract

The regularity of the weak solutions to an ellipfic system from elasticiby-plasticity
theory is studied. Although this system is a nonlinear elliptic system with discontinuous
coefficients, Cb%~gverywhere regularity for its weak solutions is proved.

§ 1. Introduction

In this note we prove the H>'(r>2) regulairity of the weak solution io.the

Dirichlet problem for a nonlinear elliptic system with discontinuous coefficients of

the form
0" (Dep(Ou)ou) +F (2) =0 in Q, .1y
u=0 on 9Q. (1.2)
Here Q is a hounded domain in R?, y is a vector in R?, 9 is the differential operator
matrix; 5
Dor 0
o=| 0 -.32—2 , (1.3)
0 9
Ony,  Omy
Doy (0u) =D, — Dedo(P) ATD,, ' 1.4)
1 w 0 7
p=-Z p»l1 0 (1.5)
1-w 1—pw
005

is the elastic matrix, :
A=T[A414,4,]",

0 if P<O, 1

= r P ==z e S T-—mney el 146,
P=A .Deaua a( ) {ao if P>O, Qo ho"'l“A.T.De.A. ( )
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Here, ho>0, E>0, 0<u<1and 4; (¢=1, 2, 8) are given constants.
This gystem arises from a class of elastic-plastic problems (see [1, 2, 4]).
It is known" that D,,(du) is a positive definite matrizx:
Doy (Pu)EZN|E[% 1>0, VEERS,
and for any 7 €R?, +#0, the 2 X2 matrix

m O 7y O
0 ')72 .Dep (3%) O 'hz
N2 M L ma

is a positive definite matrix, t00. So, we say that system (1.1) is a strongly elliptic
syslem in Visik—-Nirenberg sense.

§ 2. Preliminaries

In thig section we shall state some notations and well known lemmas which
will be needed in the following. : ‘ |
We shall denote by H™?(Q, R¥) the Cartesian product
H™?(Q) X H™?(Q) X -+ X H™?(Q) = (H™*(Q) )7,
H™?(Q) being the standard Sobolev spaces. A similar meaning holds for 0™*(Q, R¥)
and so on.
Moreover we shall denote by |2]| the Lebesgue measure of Q and by

' Lfdw

the average of f on Q:
Jjgfglw - ]éTLfdw'

Leb us now recall some well known lemmas we shall use in the following.

Lemma 2.1%. Let 6(8), —oo<t<oo, be a Lipschitz function whose derivative
0’ (t) ewists ewcept at finitely many points {@1, -, @y} and let w & HY(Q), 1<s< o0,
Then ' .
6 (u) € HV*(Q)
and _

OW))e,=0' (u) Us, (im the sense of distributions)

with the convention that both sides are zero when o & ij{y; u(y) =a;}.

Lemma 2.2% 7 (Reverse Holder Inequality), Let Q be an n—cube. Assume that g,
J are non—negative functions on @ and that
L 9EINQ), g>1, FETHQ), s>g.
Suppose | ‘ -

foie 9l“’ﬂ’””<b(£-,,,,w)9dw)q,+ pavrtf  gae

Qar(@®) - . Qs (@)
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Jor each 2° €Q and each R<—%— dist (2°, 8Q) A R, where

QE(“’()) ={wER": ,wf—w?l<R; §=1, 2: A) n}9
and Ry, b, 6 are constants with b>1, By>0, 0<<0<1. Then
ge€Li.(Q) forp€lg, g+s),

(5, #ae) <o, ra)'+(f, o)}

for Qe Q, R< Ry, where O and & are positive constanis depending only on », b, 8, ¢
and s.

moreover

§3. H% Regularity

In [8], the authors proved the existence, uniqueness and H*2(Q, R?) regularity
of the weak solution for the Dirichlet problem of system (1.1). Here we would like
to show that this weak solution is actually in H?"(Q, R?) for some r>2 and thus in
O*4(Q, R?) for some 3, 0<3<1. | :

Definition. A4 wector u(w) s called the weak solution of problem (1.1), (1.2), if
u € HY*(Q2; R?) and satisfies the following integral identity:

Jg (007 Dy (Bu1) B0 s — L, oFf Fdo—=0, Vp€O;(@, RY). 3.1)

We begin with proving the i‘égularity in the interior. The main resull in thig
section is the following theorem.

Theorem 3.1. If FEL*(Q, R?), s>2, then there ewists an ewponent r>2 such
that if w€ HY2(Q, R?) is the weak solution of problem (1.1), (1.2), then u€ HEI(Q,
R?), where r depends only on A, Dy, A, hy, s.

Proof 'The first step consists in proving that u,, = gg— (k=1, 2) satisfies
TOV .

[, @Dy @) ou o+ [ PP =0, VpeOz @ R), k=12, (3.9
We begin by remarking that from (1.4)—(1.6) one can rewrite (8.1) as follows
| L (8)7 (Ds 0t~ Dydy (P)) dw =L: ST s, Vp€O7(Q,RD, (3.8

0 P<0
wh =47 is a Li itz fanotion of P. -
where y(P) {%P, P=0 is a Lipschitz function

Therefore, for any 1 €05 (Q, R?), inserting p=1,, (70%1, 2) in (8.8), we have
[, @o)(Deu—D. £y (P)) do [ yiF dn, V4E05(R, ), k=1, 2. (3.9)

Since u€ H>2(Q, R)™, using Lemma 2.1, it is eagy to ¢how that v(P)&
H*%2(Q). Hence, the vector D,du—D,Ay(P) belongs to H“2(Q, R®) and it can he
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differentiated in the weak sense, i.e.
[, @0e)*(Dsou~ Doty (P

= L (04)" (D4 Bt — Do Ay’ (P) A*D, u,,) &, A4S 0;(Q, RY), k=1, 2.

(8.5)
Then, from (3.4) and (3.5), we have

Jﬂ (@007 (D — Dodry' (P) ATD,) D1y, -+ J'Q I Fdo=0, Y$EO03(Q, RY), h=1, 2.

Therefore, (8.2) is proved. Moreover, (3.2) holds for every p € Hy2(Q, R?).
The second step is now to get the result of this theorem from (3.2).

Let @ be an n—cube. Q- Q. For each 2°€Q and each R<% dist (a°, 8Q) A Ry,
- where Ry>0 is a constant, we construct a cut—off funetion 5 (z):
n€ 05 (Qun(a)), 0<n<1, n=10n Qa(e?), | Dn| <o, (3.6)
and choose as test veotor in (3 .2)<p=gv,a=975 (g, — (Ug,) 2r), k=1, 2, Where
(Ua,) 2m =} Uz, B,

Qaz(@®)
then we get

[, 100t~ o) )17 Dey (2102 (1, ~ ) ) d
+ [, 0 o WD a) 15T 850, k=1, 2,
By some computations we have

] [0t = () 18)) 17Dy (@0) 9 (e, — () )V
=, (01 (e, = () 3017 Doy (9) (0 (1)) * (s, = () we) b
= [ Whoa (10 28707 (0T) Dy (00) 2 (1 e, — (1) )

1Y

+ |, (= (1) 22 707 (1) D1 (0) (0% (1)) (U, = () 0)

- " n [7] (uﬁx - <u¢.';) 2R) ] z;nF do — J 0 N (uwk - (uwk) 2R) TF dw,

where I is a 3X 8 unit matrix. :
Since Dey(2u) is a positive definite matrix, elements of D,,(dw) are bounded,

and those bounds depend qnly on D, A, hy, we have
2 o 2
kglj’ﬂ la(ﬂ(u‘”f‘_ (u%)%)) lzd‘”<o kgjﬂ laT(WI) lalua."' (%k)mlzdm

+0L} 7| F|?do,
‘where ( depends on A, D,, A, ho.
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By Korn's inequality™®, we obtain

3, 1Dt @) ae< 3, | D[t~ Gt )on| O 7

k=1

and from (3.6) we geb

J‘ I .D2 l 2 dm\
(2% Qan(@®)

|Du—(Du)zE|2dw+0J0 L IFlPa @D
Using Sobolev-Poincaré 1nequalitym, we obtain o '

" n+2

j | Du— (Dw) 2R|”dw~<0< [ 10l ) 69
. Qan(a®) an(a?")
Combining (3.7) and (3.8), we have
nt2 '
:f [D”ul”olw<0’<f | D% s ola;) " t+0 | 7|2 dw.
@=(@%) Qsr(@®) - Qm(W“) :

2n . . .
Now, choosing g= | D%| "2, f=|F|®? "+2 q= +2 and #=0 in Lemma 3.2, we

get

|D9u|n+2€Lac(Q) for pe[n+2 n;{;z—}-s),

moreover ‘

(:fom IDQuI*"g% dw>%< (j: mID“‘fLLI"(JZrz;) o (J' i | F| n+2da;>1

for Q.xCCQcQ, R<R,, where O and & are positive constants depending only on m,
A} .Dg, _A., }lo, S.

2n
+2 +2

2, 0 r=pE[2 2+s) and v € HP(Q, R?) for any Q= <Q. Therefore, we have
u€ H%i(Q, R?) for rE&[2, 2+s).

If we leot fr—

p, then | D%| € L},.(Q) for r& [2 2+ 8 ) Here, n=

§ 4. Regularity up to the Boundary

Supl‘)'ose Q€02 In this section we are going %o prove the regularity of the weak
solution up to the boundary. | A

For each 2°€2Q, without loss of generality, we suppose #°=0, U(0) is a
neighborhood of 0 and 22N U (0) can be expressed as

932 + § (wi) = 0}
and under a transformation
Y1=T4,
4.1)
{y2=m2+§(m1), (

the image of the domain QN T (0) lies on the upper half plane R% and includes a
half-cube Q*=QNRE, where @={y €R:|y;| <Ry, ¢=1, 2}. In the sequel we shall seb
D for the image of U (0) and D* for dhe image of QN U (0). |
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From (3.1), we know that if v is the weak solution of problem (1. 1) (1.2),
then v € Hy?(Q, R?) satisfies

r o 1 5 2
.Larmw) (@9)" Doy (0) D Jonv(mgp ¥ da, V¢EOO O, 7,
and under the transformation (4.1), we have
|, @) Du(od)diiay=| i Fay, V505D, R, (4.2)

where 4(y)=u(2), ¢(y) =9(x), F(y)=F(x). @ still stands for the differential
opertor matrix with respeot to # (see (1.8)).

?

Now, for any ¢ €O (D, R?), ingerfing ¢=-§y‘£’- in (4.2), we have

~

[, [o(ZE)] puomoian-[, (2L Fa, vieosdm). @

Tt is easy to show

b2 on B . i
o2L)=-2-ol-¢" B, (4.4)
where | ‘ :
0
0
oY \'
2,=| o o Il
9
0 o5

Therefore, we obtain
[, (-2 Du@iaiidy— [ ¢"(u) B D02ty
-[, (&Y' ray, vicos@.r). .5)
Using Lemma 2.1 a,nd (4.4) , We have |
o ~\T e
J +(_6-Ea¢) Dey(90)85% dy
SOOI B+ @i, VIEoD, . «.6)
Combining (4.5) and (4.6), we got
J,. @ Duo(E Y+, O)Dut” w8ty

+, €@ @R Doy | (L) Fay=0, vIeHy (D, RO,
- (&.7)

For any y°€Q and R<—1-

4
1. Qe NQ* =g,
2. Q3R(?{0> nNe =g, .
3. Q) NQ+J, Qa(®) nQ- * .

dist(y° 0Q) we have three possibilities:
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In case 2, as we have seen, we have

Juin P (GN =0 f,,., 12 (B5)

In case 8, inserting = 772 6u e Hy*(D, R?) into (4. 7, where 7 is a cut-off function

2n n+2
n+2 n
* dy) | P2y, (4.8)

an(y")

1(y) € 03°(Q23(?/°)>, 0<n<1, 7=1in Qu(o?), | Dul <, (4.9)

we have

Jo o030 )] 2o (o[, o5 ) | 2ot w0
of, 00 3 20 s [ 2o 2] v,

By some computations, we get
RECE RS 1
=7 ot ( 8y1 ) & (nI)Deyd (n_éal)dy
+[ (21 2E) ] Dyo* (122 ay
*awu>wwmwww%w

- ta(yf') [ ( >:| Depg’/(..yi)aﬂl dy

- T 1" a5
<3?/1> 8" (n) Dest" (42)8i Ay

v sn(ﬂ°)

ol PR 7Y ( )] Dyt dy

JQi=(¥%)

2
= )(
&

J @in(y®)

) 31 (nI) Dap 05 dy
_ oy [ ou

JQan(ﬂo) [ oY+ >:] J’ QZR(W) ayi ( oy ) ﬁdy

Using Korn’s inequality, we have :

' ou T 2|37 2 ‘ on \2 i
JQE(#“) D(n 3y )I dy<0 QZ»(U")(Ia 071)' oD+ 0y ) Oy

(|o|2+ |3,a )2+ | F |2 dy, (4.10)

2

dy

+aj

+

where O depends only on %, D,, 4, ho, suplg"(yi)l
From (4. 10) and (4.9), weget

ou '0 J ou_|?, j’ R ,
.[e;(m) D< 91 ) WST) o oY1 Wt ) y)(|3u| 18] | .
Since u=0 on 92, we have ———gg —0 on 9Qiz(¢°) N {y2=0}. Using Sobolev-Poincaré
1

inequality and then dividing it by R", we obtain -
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| _&m ID < 3y1) dy<0 Geu(wlD(%)

0f qau| + 1B | 7.

n+2

_2.@.2. nt2
n+ dy)n

Now, let

oan.
n+2 -

lD( 3?!1») in QF,
0o . 1nQ"
e { [au|2+|a,,u| FIFHFE g,
10 ‘ , in Q-
=n+2.
n

It is easy to verify that ¢ € L(Q), q>i, FEL”(Q), g<r*<L, and

2
20" gq dy<‘0<£lzx W) 9 dy ) }Q, R(go)‘fq (4 °11)

Therefore, in each case, the inequality (4.11) holds.
Using reverse Holder inequality again, we have

: gELfoc(Q> 'fOI‘ pE [91 q+8)

< 'Qx gp dy>%< o { angq dy J:Q }

for Q.r=Q, where O and ¢ are positive constants depending 0n1y onn, A, Dy, A, hy,

and

sup|¢’|, s, which implies

~ 2n
|D(_3?!—) wTCIAQE) for pElg, g+8), Qucq.
oy '

. _ 2n v ou r 2 \
Setting T=—"gD We get lD<—3ﬁ_>' €Lr(Qg) for rE[ ) ) Since
AN } 2 , o _ 2

D ( 6@/1) {awa < 6@/1) aty ety 200 3w1 a +&' () 3y ety me bl
%%
dy20ys |’ _ @3-

. : 2~ .
In order to show that u€ H*"(Q, R?), it remains to prove that %—1—26-‘ eLr Q).
. : - . 2

To do this, we will use system (1.1).
It is not diffioult to check that under transformation (4.1), system (1.1) can

be written as follows: _ |
) 0 7 oy 0 7

0 1 | Dy o 1 |2%

A LON) 1 &

where the notation “--.” ig used to express all of the terms which belong to L*(Q%).

=F a.e. in D,

Y2
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By elliptic condition (1.7) we have -
) 0 7 ) 0 o
d.(‘)'['l 0 - 1 EE -DepA 0 1 1#0.. . \
| | 1 &y L1 €
Therefore, we get
L er@y.
2

Using the standard technique we deduce that | D*|-€ I/ near 8.

From this conclusion and the regularity in the interior, we have

Theorem 4.1. If Q€02 fEIs(Q, R?), s>>2, then the weak solution u of the
problem (1.1), (1.2) belongs to H>7(Q, R?) for some r>2.

A consequence of this theorem is the following theorem,

Theorem 4.2. Under the assumptions of Theorem 4.1, the weak solution w of

the problem (1.1), (1.2) belongs to O%+°(Q, R?), where 0<d<1 = %, r>2 48 the ewponent.

gn Theorem 4.1.
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