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UNIFORM BOUNDEDNESS AND UNIFORM ULTIMATE
BOUNDEDNESS OF FUNCTIONAL DIFFERENTIAL
" EQUATIONS WITH UNBOUNDED DELAY*

Hz MiN (f7  #)**

Abstract

In this paper, the author useg the Liapunov direct method, comparison method and
“forgetful” functional to prove four general theorems about the uniform boundedness of
the solutions of functional differential equations with infinite delay. Also, these results are
effectively applied to Volterra integral-differential equations.

§ 1. Introduction

Boundedness of solutions of differential equations is a subject that has been paid
close attention by many scholars. This is not only because it is important in stability
theory, but also because many other nice properties of solutions can be obtained with
the aid of it. For example, for ordinary differential 'equations, uniform boundedness
and uniform ultimate boundedness imply the existence of periodic solutions (e.g.
T. Yoshizawa’s theorem on existence of periodic solutions) . Therefore, how to realize
the conditions for boundedness is a problem to be solved.

Algo, many authors have tried to determine the uniform boundedness and
uniform ultimate boundedness of solutions of functional differential equations. For
fanctional differential equations with bounded delay, this problem was solved basically

by T. Yoshizawa. However, there are very few results for functional differential

equations with unbounded delay. Although some good results have been obtained
recently in [1, 2, 8], the problem is still far from solved.

T. A. Burton has been interested in this subject and proposed an important open
problem about it. It is as follows. |

Consider the functional differential equations

o' (§) =F (¢, «(s) : a<s<t), o> — 00, )

where F is a continuous functional taking value in B" whenever € [, o0) and ¢ is
a continuous function of O([a, c0)—>R"). If a= —oo, then it should be understood
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that #:(—o0, c0)—R",

Suppose that there is a Liapunov functional V' (¢, #(+)) and wedges W,;(r) (6 =1,
2, 8, 4) and K >0 such that

(i) Wi(le@®) D)<V @, (- ))<W2(|m(t)[)+W3(Hwﬂt“'”) for all {>a and x(s)
€0([a, 1>R");

(ii) Vip@ 2(o))<- W4( |o(¢)|) + K for all t>t, and a solution «(¢) of (1).

- The problem is if solutions of (1) are uniform bounded and uniform ultimate

bounded.

This paper gives some partial results. . .

At first, we improve the definition for the so-called ‘“forgetful functional” in

- [1], and generalize the result on uniform boundedness in [8]. Then, a condition is

refined and used to obtain a numbers of results on uniform ultimate boundedness.
We study the subject in two ways. One set of theorems is obtained by using a

‘method combining Liapunov functional with comparison method. The other set of

theorems is obtained by using “forgetful” Liapunov functional,

Consider the ordinary differential equation

y'(#) =G, y(), @

where G [a, 00) X R—>R is continuous.

- Theorems 1 and 2 in this paper establish some relations between solutions of
(1) and (2) with the aid of ¥V functional. The relations can be summarized as
follows. If there exists a Liapunov. funectional V (¢, #(+)) with Viy,(, «(+))<G(3,
V), then solutions of (1) have the same properties (e.g. boundedness, stability and
0 on) as the solutions of (2) under some restrictions on V' (¢, #(-)). So, the study
on FDE can be transferred to the study on ODE which we know very well.

§ 2. Notations and Definitions
Some concrete equations of (1) are the Volterra integrodifferential equations

o () = o)+ [ O, o) ds+7(®), 3)

where a=0 or o= —oc0, A is an nXn constant mairix and =€ R".
Theorems of existence and uniqueness for solutions of (1) can be found in [4].
We use the following notations.

(a) If s € R", then |wl=§n]]mgl
§=1
(b) If ®: [a, b]—>R", then |a|¥= sup lo(2)].

(¢) V(& 2(+)) €L. Lip « means functional V (%, (+)) is locally Lipschitz in .
Definition 1. Function W (r): [0, o0)—>[0, oo) s called a wedge if W (r) is



s
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contimuous and strictly increasing with W (0) =0 and W (r)—> o0 as r—> o,

Definition 3. V' (¢, «()) ds called a Liapunov functional of V (3, a;( )) is
contimuous 4n ¢ and V € L. Lip a.

Definition 8. Let W(r) be a wedge and 1>0. V (3, @(+)) s said to be foq'getful
if OV @b, w())<W(|&|™™), and for any D>0, 6>0 and to=>a there evists an. §>0
such that [|ao|®<D; |a(#") >0 for tp<<t"<St; t=6+81 dmplies V(¢ o(+))<<
W(lal™™.

V (¢, «(+)) is uniform forgetful if §is 1ndependent of to.

Ewample 1. Let @(%, s) J [O(u, s) |du for all i=q,

and VG () = (1/28) |a] +j &4, 3) | a(s) | ds.
Then V{t «(+)) is uniform forgetful, if ’
| | ‘ j (3, s)ds<M for some M>0 @
-and for each p>0 thére exists >0 such thatb [{s=>a, t=6,-+8] 1mphes
L@(t, $)ds<p. ' ()
In fact, by (4), we have
0<V (4, o(+)) < (1/2k+ M) o] 2 L (o 25).

By (5), for each o/D>0 there exists.an §>0 such that [fo=>e¢; |o]|™W<D;
{a (") | =0 for £,<t"<t; =4+ 8] implies :
t6
j o1, )ds<o/D.

¥

Now N
j: D@, s)|z(s) |ds=£:(l5(t, s) |#(s) [ds+ﬁ D, s)|w(s) | ds

<Jo ()| + Mo < L+ I) ] 20
So

V(ﬁ (e ))<max{i;§l]:£ﬂM)} W (o] 2 def. W (|o|"),

Thus V' (3, #(+)) is uniform forgetful.

§ 8. Conclusions

A section.

Consider equation (2) and denote by w(%, s, ) and r(t, s, a) the maximal
solutions of (2) through (s, &) to the right and to the left respectively.

Lemma (Junji Kato™). Suippose that D* (%) <G‘(t fu(t)) if v(s) <r(s, t, v(£))
Jor dll s& [t—=, t], where v=0. Then we have |
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v()<u(t, s, &) for all i>a
whenever v(8)<r(s, @, «)for s€ [a—m, a].
Theorem 1. Let V be a Liapunov functional and suppose there are wedges
W(r), Walr) such that -
(1) W(s@®) <V (&, 0(+))<<W1(|o|"™) for all t=a and o(s) €O([w, t]—>R");
(i) Vin(t, a())<GW, V) for all t=>ty and any solution x(3) of (1), while the
solutions of (2) are uniform: bounded (wnsform ultémate bounded).
Then the solutions of (1) are uniform bounded (uniform ultimate bounded).
The proof is almost the same as.the one of Theorem 2, thus omitted. - _
‘Theorem 2. Suppose the condition (ii) o f Theorem 1 is satisfied, and there are
wedges W(r), Wy(r) (W (r), Wi(r)(6=1, 2)) and a positive constant U such that
(1) O<V (3, a())<<Wa(||™™) for oll t=a« and x(s) €O([e, {]—>R");

() Vit 0())< =Wy (|a() ) P8, a(« D)< — | W(la@ | =W (o)) |

for dll t=ty and |2(t) | >U.

Then the solutions of (1) are uniform bounded (uniform ulttmate bounded).

Proof We only prove the case for uniform ultimate boundedness. :

Let o(%, o, p) be a solufion of (1) satisfying [e|***<H for given H>0 and
to=0, and y (%, o, ¢o) be the maximal solution of (2) o the right with yo="V (4, ).

By (1), we have yo=V (io, ) <Wa( g™ <W4(H).

By (ii), there exists a B;>0 such that for Wi(H) >0 there exists T=T(H)>0
such that yo<Wy(H), t=ty+T imply |y (%, to, 9o) | <Bi. From Lemma, we have

V @, @(+))<y(s, to, yo) <By for all t>4,+T.

As Vi (¢, () <<=We(|2a()|) if |2(¢)|=U, we see that if $o+T<é< oo, then
there is a positive P such that [#(#)| can remain larger than U on an interval of
length at most P. Hence, there exists the first #;=>t+T with |a(¢,)|=U. We may
assuine &, >to+T.

Now for x(%, ¢, @) either .

(A) |2(@®)|<U for to+T<t<ty, Or -

(B) |2@)|>T for ty+T<it<t.

If (B) holds, then by (ii)* we have

V() -V ®<-W(|[a@ ) +W(|a(t)]),

|o(8) | <W*(W () +By) ==

B>U for to+T<t <4y,

and also
|#(2) | <B for all ¢>1.

In facJ, if |@(#*)|>U, then there must exist #; with £<#3<t*, |¢(t2)|=U and
jo(2) | =U on [t "], and |#(#*) | <B by using (ii)*.

Thus
|2(¢)| <B for all i=t,+T.
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This is uniform ultimate boundedness and the proof is complete.
Corollary 1. Let V be o Liapunov fumctional and B, 5:[a, o0)—>R* are

contimuous, and suppose there are wedges W (r), W(r) such that

(1) W({a@® <V (@, 2(*))<W(||"*) for all t>a and v(s) €O([e, t]>R");

(i) Vi@, a())<—9@ V>, () +B(t) for all t=>ty and a solution «(t) of
(L), where B(t)<<B for some B>0, n(¢) =n for some >0 and 0<y<1.

Then all solutions of (1) are uniform bounded and uniform wltimate bounded,

Corollary 2. Suppose the condition (ii) of Corollary 1 is satisfied and there are
wedges W (1), W(r), Wa(r) and a positive U such that -

(1) 0V (4, a())<Wi(|2|**?) for all =0 and o(s) EO([w, ]—>R™);

(i) Vit o(-))<~Wa(|o(®) ) = W (|2(3) )| if [2(3)\| >U. Then the solu-
tions of (1) are uniform bounded and uniform ultimate bounded.

Remark. Some results of [2] [Chapter 7, Section 2] are special cases of
Corollaries 1 and 2. ’ _

Ewample 2. Consider the integrodifferential equation (3).

If A is stable, then there is a unique positive definite matrix B with A7B+BA
=1 ' |
There are also positive constants K, ¥ and A with

hle| <[o"Bz]*?°<(1/2F)|«|; |Bo|<K [«"Bx]¥?%. ()

Furthermore, if there is a K >K and >0 with

0<k<k-K j:" |0(u, 1) |du, ®

then we can deﬁné

V@, o(+)) = [mTBw]1/2+I?f L“[ 0(u, 5)]|o(s) |du ds.
We require that (4) hold, and | |
| () | <m for some m>0 and {>a, (9)
and there be a continuous function A(#) with A<<A(£)<<1 for some A>0 with
0G, 912010, §)|du. (10)
Then .
hlo| <V (2, 2(+))<(1/2h+ MU K) o] —

Taking the derivative of ¥ along a solution of (8) we obtain

Vin(s, a(-))<-kla| - (B -K) [ |06, 9| [2(s) ds+ K| £)|

tJ)

<= (/2 |o] =ha|la]’] for |o()|>2En 4Km gt 17
where h;=min{k/2, (K—K)}, and also
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Vit a(+)) < — 2k BA(8) [ Bo] v - KK K 20| [R10(, 9)] |o(s) ] du ds

+K|f®)]
| OV (&, (D) +EIFD,
where 7(£) = A(#) min {2kF, (K —K)/K}>\min {2kF, (K-K)/K} 7>0..
We define W(r)=nr, Wi(fr) (1/2k+KM)r, Wa(r)=&/2)r, Ws(r)= hifr,

B#)=K|f()|<Km<Z=p.

The conditions of Corollaries 1 and 2 are satisfied and we have the following

def.

proposition.

Proposition 1. If A is stable and (4), (8), (9) and (10) are sat@sﬁed then all
solutions of (8) are uniform bounded and uniform ultimate bounded.

B section.

Theorem 8. Let V be a Liapunov Junctional and suppose there wre wedges

W (r), Wi(r) and a positive constant U such that
(i) o<V (3, w())<W1(|2|“®™) for all t=a and w(s) EO (b, t]>R");
(i) Vit ()< =W (|e@ |)for all t=1to and |2 (£) | ZU;
@ii) Bm (W () —Wa(r)) = +oo.

Then all solutions of (1) are unéform bounded.

Proof ‘Let #(¢, %, ) be a solution satisfying |p|*<H for given H>0 and
fo=a. .

Let y=max{H, U}.

By (iii), there exists an M=y such that r>M implies
(%) W) =Wilr)>W(y).

Now for = (%, o, @) either

(A) |o@)| <M for all {=>1,, or

(B) there exists a first £;>t, with |o(y) | =M

If (B) holds, then either

(A |o(t)| >y for all =4, or

(B’) there exists the first ¢,>%, with|z (%) | =7.

If (A’) holds, then Vi, (¢, #(+)) < —Wiu,(|o(t)|) so that

V) -VE)<-W (@ |)+W(|e(t)|) for t>#.

Hence
(28 | <= (W (M) + W () ==
If (B’) holds, let | |o(y) | =t1£ta;2§’|w(t)|>M,
‘then

| Ne@) | <|o(@1)]| for all ¢t
In fact, if it is false, then there is the first interval [fs, ] with |2(%)] =7,
| 2@ | = |o(: )], |o() | >y for ¢€ [ts, 4.
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By (ii), we have » .
V)~V () < (|at) ) + W (o) ),
so that we have OV ((()<—W (|2t |) +Wi(|a(Z1) |)+W (), a contradiction
to (). | »

Now, we consider the interval [%;, £,]. By (ii), we have

W(|aG) < (|(t) ) +V (2) <W<M> +W (M)

and so

|0 (E) | <= (M) + W7y () )2

Thus, in all cases, |o(%) | <D for all t>>t,.

This is uniform boundedness and the proof is complete.

Remark. Let V' (¢, #(+))=V(t, #(+)) +W (|o(®)|)and W (r) =W(#) +W ().
Then Theorem 8 can be stated as follows.

Suppose there is a Liapunov functional V (¢, @ (e )) and wedges W (r), W (r),
W () with W(|=z])<V (@, o( ))<W(||m||““. ) and llm(W(rr) W(r))=4oco. If

“there exists a U>0 with V7, (%, a:( ))<<0 for |w(t)|>U then the solutions of (1)
are uniform bounded.

This shows that the counterpart of Theorem 0 in [1] for (1) can be obtained
under a restriction on b(r) (cf. Burton [1]).

Eoample 8 COonsider again equation (3) in Example 2 with (4), (7), (8) and
9) as before.
Let V' (¢, #(+)) be as in Example 2. Then

0V (¢, 2(+)) < (1/2h+ME) o] " <X Wi(llw“f“’ﬂ\,

and coL
Vin(, a(-))<~Fbla| = ®-K) [ 10G, 9| |a(s) [as+ K |7

—ﬂlllwlll for |w<t)l> 2Km def. U,

where y=min{k/2, (K —K)}.

We define
W (r) =punr.
In summary then, we need Lim(W (r) —W.(r)) = +o0 or
| w>1/2k+KM. ' (11)

By Theorem 8 this will yield the following proposition.

Proposition 2. TLet constans be defined by (4), (7) (8) and (9). If A is stable
and (11) is satisfied, then all solutions of (8) are uni form bounded.

Theorem 4. Let V be a Liapunov functional and suppose there are wedges
W(r), Wilr), Wa(r) and a positive U, and a continuous function B: [a, oo)—->[0 oo)
such that
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(i) V is ungform forgesful;
(1) Vo 2(:))<-W3(|2@) |) = [Way(|a@) )| for all =t and |(2) | >T;
(i) Vi (4, «())<B®) for all >ty and a solution »(3) of (1), where
lim B(¢) =0;
o (iv) yﬂ(W(r)—h(l)Wi(m))=+w, where

I, I>1,
h® ={1, I<1.
Then all solutions of (1) are uwiform ultimate bounded.

Proof Let H>0 be given. We must find D>0 such that [t,>a; [o| ™% <H;
$=a] implies {(¢, to, @) | <D. ‘
| As Vi@, 2())<~Wy(|o(t)]), there must be P>0 such that the inequality
|o(#) | >U must fail on any interval of length P.

By (i), there is an I>>0 such that for the above D>0 and 2U there is an §=
8(D, 2U)>0 such that [{=>a; |o|*"<D; |2(*)|[=2U for p<<t"<t; =>4+ 8]
implies ¥ (¢, @(+)) <IW1(Jo|%™).

For p= (W (20)—W(U))/28(D, 20)>0, there is an m>0 such that [f>a;
t=to+m] implies B(3) <p as ltlfgﬁ(t) =0.

Consider the interval sequence
Ii=[ty+ (6—1) L, th+4L] A [t—, & for =1, 2, ee,

where tp=%,+m and L=P+§.

Now for » (3, to, @), on I, either

(A) [o(8)[<2U; or

(B) there is a #; € Iy with |#(#1)|>2U.

If (A) holds, then either

(A’) |a(s)|<2U for all §>t, or

(A") there is the first #*>#, with |#(¢)| =2U. In this case

V (¢, () <IW1(|2|"*?) for t=min {t*, {4+8}.

By (iv), there is an R>2U such that »>R implies
Caw) W (r) —=IWi(r) >W (20).

Now for = (%, %, ) either

(AD) |(#) | <R for all ¢>1}, or

(A3) there is the first #i>#, with [« (&) | =R.

def.

If (A3) holds, then|a(t) | <W1(W(R)+IWi(R))==B for =1 (See the proof
. of Theorem 8).

Thus, in all cases |2 (%) | <B for i>#.

If (B) holds, then for (%, #,, @) either

(B') there ab least is [tV @] C I, with |o|¥**™1<2T and @ — V>4, or
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(B") #® — M <§ for each [tV, ] with [t ¥ 2T .
If (B) holds, recalling the discussion for case (A), we have |a(t)|<B for all
321, certainly for $>>1}.

If (B”) holds, we may suppose that there ab least exists an interval [, {®]
and $¥>¢® with |x(tV)| =20, |2@?®)|=|a0(®|=U, U<|o()|*>*'<2U and
|| “>*1< 2T, where #® is the first, point greater than ¢® with |#(¢®) | =2U and #®
is the biggest number with |#(2) | =TU

As V(1)(t a(N)<—|Win(|o@) )] for 1€ [#®, #],

ST 4Gk V(E<-WQU) +W(U)A —-5<0,
S0 tha,t V decreases at least by 3.

As Vs (¢, o(+))<p and i@ —iD <8, V(§) ~V () <8p<8/2 for {P<I<i®, w0

that V increases ab most by 8/2.
This shows that V' decreases at loash by 3 /2 on I, and so, case (B") happens ab
most N times continuously for some 1nteger N as V (8) <W, (D).
Thus, if #>t,+m+ (N+1)L, then we will hai;elw(t)|<B forever after. Take
T=m+(N+1)L. ‘ |
This completes the proof.
Ezample 4. Consider the system (8) with @), (8), (7) and (8) as before.
‘We suppose '
ltgrgf(t)=o | | (12)
and - | |
hy>1, where | =max {1/2k, (1+KM)}. . (18
Then it is easy 10 see that the conditions of Theorem 4 are satisfied and we have the
following proposition.
Proposition 3. If A4 is stable and (4) (6), (8), (12) and (18) are swt@s fied,
then all solutions of (8) are uniform ultimate bounded.
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