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SURFACE IN R* WITH PRESCRIBED |
GAUSS CURVATURE

_“Howe Jiaxive (BEMH)*

Abstract

Assume that a smooth function K (», y) vanishes on a simple closed sinoof:h curve 4
and dK | 4,+0. Then the result of the present paper shows that there is a sufficiently smooth
surface z=#(z, y) defined in a neighbourhood of 4 with curvature K.

- Let K bo g'iVen 0> function of (o, ©s) CR2. Is there a local graph 2==2 (24, mg)
near some point p, in R? with curvature K? As is well known, the problem was
solved in [1, 2], for the case K (p) +0, and in [3] for the case K (p) =0, dK (p) 0.
As a continuation of [8], the present paper is devoted to the study of the case:

" K=0and dK+0on a simple smooth closed curve A: 4 o
o=m;(w) (5=1, 2), @3(w) +ai(u) #0, €0, 2w]. (0. 0)
Our main result is the following theorem. »

Theorem. Let (0.0) be fulfilled. Then there is a sufficiently smooth graph 2=
2(w4, @) defined in @ neighbourhood of A with curvature K.

The Problem discussed here is very closely related to the local solvability of
Monge Ampére equation with mixed type. The section 1 is devoted to reduction of
Monge Ampére equation to the sum of an ordinary differential equation of Fuchsian
type and a nonlinear perturbaf;ion. The technique used in this section and in section
8 is similar to that in [8]. To author’s knowledge, the theory of the positive
symmetric system given by [4] and later generalized by [b], so far, has been the
most powerful tool o attack the mixed equation. In section 2, based on this theory,
a priori estimates for solutions to linearized equation are given. In section 8, the
application of Nash—Moser methods completes the proof of existence.

Finally, the author would like to express thanks to Prof. Gu Chaohao for hig
suggesting this problem to the author.

§ 1. Fundamental Equations

Without loss of generality, we assume that K =K (u, v) is smooth in [0, 27] X
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t—m:, w] with period 2 in u. Throughout this paper, we always suppose

K (u, %/2) =0, K,(u, w/2)>0. 1.1)
In order to find the graph with curvature K, one may seek “generalized Torus” -
r(u, v) = (rocosu, rosinu, p(u, v) snv) (1.2)

with ro= (14 p(u, rv) cosv) as the object to be 1nvest1gated Now We proceed to find
the equation p (u, fv) satisfies. ’
The metric on (1.1) ' N N
o dr?= (12 p2) AP+ 2040, A o+ (pv+p”)dv . - (13)
The equation we expect may be written in the form
0=F (u, v, 0, Pés Pos-Pus Pus Pov) |
= (pov— 20507 — ) (Puu— 10008 v — 205" cO3 v ~ pyrop™ sin v)
= (puv— Pupop ™ — pur5 (py 08 v — p8in ©) )2~ K (u, v)-fp('v, P Puy Pv): (1.9
“Where (Zi is a smooth function of its arguments and ) B
| 0@20,0-¢ @
Take a change of variables R ‘ - o

U=, v=2%+m/2, p=po+—é—(2'v — ) 2pa(u) + &°W, (1.6)

where py and p,(u) are to be determined. Denoting by # (w), after changing the
variables (1.6), the right hand'side in (1.4), we have

F(0) = — ((pa2(@) — po) *+ K o (w, w/2) p5) &yp5*+6*I (e, @, 9)- 1.7
* Here I(e, @, ¥) is a smooth function of ¢, @, y. Particularly, choice of

po= —%, ps(0) =0 (14N B Co, /B8 ) (1.8)

‘gives '

F0)=¢*I(e, w, ). - - - (1.9)
With :
7 _(fo0F

we rewrite (1.6) in the form

8F Wy +8 37, ,,wamy + &5 F o Want+ 8OF p o6 ff Wy
F -+ F(0) =O0. (1.10)
The direct computation yields o ‘
. 0F | opy= — (pa(®) —po) ps* +8Fs (@
0F /8pu = (p2(®) ~ po) +Fu, (1.12)
0F | Bpy =8F13, : (1.18)
OF ] 0pyy =82y (1~ pa(®) / po) + &3 F 5. (1.14)

Here and later weo always take F;, F;; to express some smooth functions

of ¢, o, y, 8w, 8*Way; EWay, E*Weay Wy, Wyy. (1.15)
After inserting (1.11)—(1.14) into (1.10), dividing both sides by &® and noting
(1.1), (1.8), (1.9) we obtain |
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L(w) = (y+eFa)wyy+*Fiawey+ (| po| +8F11) 8 W0
+&?Faw, (1 +sF ) wy+ e*Fw+ eI (s, v, y) =0. (1.10°)
It is easy to see that the derivative operator of .& (w) - '
$(u+ tfw) L (w) ~ L (w)w

t—>0
= (y+ 8F22) Wyy+ 82 F10Way+ (| po| + 8F11) 8%Was+ 2 F 1004 .
+ A +eFy)w,+e*Fw+tel (s, », ), (1.16)
where, after u is replaced by w, Fy, F,; are also the smooth functions like (1.15).

§2. A Priori Estimates for Solution to Linearized Equations

The purpose of this section is to establish a priori estimates for solutions to the
linearized equation of (1.10"). The framework of the positive symmetric system
given in [4] is adequate. Let G denote the bounded domain {(o, ) |0<0<2mw, —2<L
y<2}. Consider a symmetric system defined in @ of the form :

RV = AaV +B aV +oV=f, 2.1)

where.
A=A° (w) ?/) +eA? (8: @, ?/) )

B=DB%a, y) +eB(s, z, ),
O0=0a, y) +80*(s, », ¥)
and 4%, B\, ¢ (4=0, 1) are smooth matrices of period 2w in #. It is evident that the
following differential operators
, D={D=1, D1=0/0w, Dy=0s(y)d/dy, Ds=a3(y) (y—2)0/dy} 2.2)
form a complete system of tangential differential operators on @ if ag+az=1 on @
and ap=1 as y<<1/2, ag=1 as y>1 (see [4, 5]).

Assume that - _
det A%°(», 2) %<0 as « &[0, 2x], 2.3

which implies the boundary y=2 is not characteristics for (2.1) if ¢ is small enough.
In the sequel, we always impose this restriction on s. Under this assumption, by
the results in [4, 5], one can find smooth matrices P,,, ¢, such that the 1—st

enlarged system of (2.1)
BD, =~ Py D+ (Dy—1s) R. @2.4)
Similarly, the argument of induction gives immediately the following lemma.
Lemma 2.1. Let (2.8) be fulfilled and lot & be small enough. Then the s—th

enlarged system of (2.1)
RDU)...DG'3= —EP(T 'F-D ‘Do'p—l‘D 'Da'pn. "'D
3

2 D%, Dq"‘tw-xDmP D Dyt 'D'rr + fi[l (De,— ta;) R (2 ‘5)

r<s-1
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with the integers satisfying qi-+---+qi=>1, g1+ +q+1+r—1>s. According to the
definition in [4], a symmetric system like (2.1) is said to be positive definite if and
only if on the region discussed y=0-+ 0! —04/dy —dB/ow is positive definite.

- Lemma 3.2, Let (2.8) be fulfilled. If there ewists a positive imtegers such that
the s~th enlarged system of R®= A°/0y-B%3/0x+O° is positive definite, it follows that
the s—th enlarged system of (2.1) is positive definite too, when |&|<eg; for some positive
constant .

Proof First we have to find the relation between both of the s-th enlarged
systemg of R%and R. In domg so we split P,, into two parts
Poy=Poz(®, 9) +6Poc (s, @, ¥),
te=1c(2, ¥) +6ls(s, », ¥),
where the matrices occurring in the right hand side of the last two equalities are all
smooth in their arguments. Denote by 18?," and fe the s—th enlarged systems of R*

and R. Thus

R°=A°-§Z/.-+B°i+o0

R= AT+B——-+(O°+30) ‘
Here A° (B° A B) is the matrix with 4° (B°, A, B) as diagonal elements and 0°

C are smooth in @, y. Hence
= (0°+ (0%)*—-04% oy —0B°/ow) +0(e) =9°+0(). . -  (2.6)
The positivity of y° implies the positivity of v if s is small enough. This oompleteé

the proof.

Now we turn to the linearized equation .#’(u)w=g. Consider a boundary value

problem
L' (ww=y, 2.7)

w(w, 2) =0, € [0, 2x] and w(0, y) =w (2w, y), I?/l<2’ (2.8)

- This is a boundary value problem of the equation of complicated mixed type. To

specify the type of (2.7), we first make some assumption Suppose that
16F22|<1, ISF11l< , lSFigl

when (#, y) €@, Iulg,<l and |e ]\<eo, (2.9)
for some constant eo->0; Here and later, |u|e, |¢|c¢:+ stand for the continuous
norms of the function » and its derivatives. (2.9) guarantees that (2.7) ig elliptic
near y=2 and hyperbolic near y= —2, With the aid of a transformation of variables

V exp( )(&w/ay, w, §0w/0x)" = (vo, v, v1)* : (2.10)

(2.7) may be reduced to a symmetric system
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where ' '} -
r?j'i"SFzg’ 0 . 0
A= 0 -3 0,
L 0 B 0 _—<|POI+8E11)
T e Fy 0 (|po] +eFs)e]

B= 0 0 0

1 (Ibol+eF12')s o 0

£y - 0 s 0 —8—(‘1901+-8Fu)

for' some positive constant & to be determined. Letting e=0in (2.11) gives.

1
ey 00

y O 0 |
BV={0 -5 0 -%Z_Jr_' 3 —;-a o @i
LO 0 —po] o :
=(g, 0, 0)*. -
1 should be emphasized taat (2:11’) is independent of F,, Fy. For (2.11°)
) . .

Mg ——= - .

1 7Y J . 0.
=l 8 %8 0o | i @.12)

0 0 Ilml

Whi'c}; is positive definite if J is small 'en_oﬁgh, From now on we fix the constant &
which makes (2.12) positive definite. In fact, we can get much sharper result. We
claim that for arbltrary s, the s—th enlarged system of (2. 11’) is positive deﬁmte
In doing so, we evaluate the commutators
R°D;=D,R°,
R°D,= - 3A Dot - (s +_.aa;/“2 )'Rd, o (2.18)
RDy— - 3A Do+ +<D3+——(a3(y )R,

where the terms omitted,. accordlng to the remark in [[4], part II], will Inot affect
the positivity of the 1-st enlarged system of (2.11). Frem (2.4), (2.5), (2.18) it
follows that the positivity of s-th enlarged system of (2.11") is determined by




No. 3 Hong, J. X. SURFACE WITH PRESCRIBED GAUSS CURVATURE 387

. ‘ . oA
diag (% =+, ¥°) +d1ag(n1 %, ey My *3-?7)

with p=38:4° and n; € [0, 1, -, §], 1<<j<p, which is positive definite.

Theorem 2.1. Assume that u€ 0> (@) and |u|¢,<1. Then for arbitrarys, thers
esist constants 8,<go, and O;>0 such that for any g0~ (@), (2.7), (2.8) admits a
solution W in H,(Q) satisfying .'

Z IW1:<0igls =0, 1, 2) L (2.14)
an
[W1:<Os(lgls+ |ulssslgl2), s=>8. o (2.18)
Proof Let us first study the boundary value problem of (2.11) with
v(@, 2) =v(m, 2)=0, VO, )=V @m, 1), lyl<2 -~ (.16

Under the assumption (2.9), (2.16) is the stable admissible boundary condition of
(2.11) (Refer to [5]). In order to get the differentiable solutions to (2.11), (2.16),
we have to investigate the positivity of (2.11). Apphcatlon of (2 b) to (2.11)
gives . :

ﬁ(D.,,—t,,,)R=RD.,,.-D,;+2P&,7D D4, DeDoy Do,
$=1

+2Dq‘l‘m—; (0) - D% 't*rz 1(0)DQ’P 'm'(O)D D, D, R
+ 3 (D%, D% ltm D*Pys]iDsDeyDe,  (2.17)

g1t q+01+1q4-ril<s

with [If’]o F(e) — F(Q), t,,=1,(0) + 8t,,, Doz =Por (0) +epm Evidently ¢,(0),

P, (0) are all determined by the enlarged system of Rand independent of u. As
mentioned above, the positivity of (2.17) is completely determined by the firsh
three terms of the right hand side of (2.17). Combining Lemma 2.2 and the fact
that for any s, the s-th enlarged system of R° is positive, we can find a constant e,
which only depends on the norm |u|, such thab (2.17) is positive if |s|<(s,. The
exisbence of solution in H (@ to (2.11), (2.16) follows at once from the results in

[5]. Thus fw=--exp(—%— y) v is the solution to (2.7), (2.8) in Hy(@ O if s>4.

Now we prove (2.14), (2.15). In order to do so, we introduce another kind of

norm for V. Set
I“V"|2=0§s "*.Dl’l'."D‘TzV“Z’

If 1<2, the I-th enlarged syétem of (2. il) only depends on the derivatives &*4 8B
&0 .of order |B|, |a|, |7]<2.” From the energy imequality for the posﬂnve
symmetric system and the assumption |u|¢,<1 it follows that

IV I<OARVI.<Gilgl: (=0, 1,2). @y
From now on, unless stated otherwise, constants Oy, O, +++, O, -+ are all independent
of & and the derivabives &*u. of order |a|>4. The case of 1=0in (2.14) is the
frivial consequence of (2.18), i.e.,
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) = oxp( - v Yol <017 i<l
Direct computation yields
.
*é; = .Dj_, (2 .19)
-52/—=D2+a3A'1(R—ODo~BD1). (2.20)

Denote by &° each of derivatives with respect to @, y of order |a| =s. It is easily seen
that (2.20), (1.19) can be rewritten as

*r=XE, (o, y) D+ F,D,+F,R. 2.21)
F; (=0, +, 4) only depend on the derivatives 9*u of order |a] <8. Furthermore
as= IIE E's;l---r;,DTx.'.-D71+ l“lg‘lEa (w, y)a“(st1D7+F4R> ° . (2 .21/)
By (2.21) and (2.18) we can derive that
WL<V]:<C:qVl:+ | BV [i-) <Cilgl. (=1, 2).. (2.22)

To prove (2.15) we have first to estimate the norms ||V |, As claimed
previously, the system composed of the first three terms in the right hand side of

(2.17) is positive when |&|<e,. Analogously, application of the energy mequahty

for positive symmetric system yields

WSO T (Do~ te) BY |+ LDy D4y, D P T8D2D, - DLF]),

g1+ =1,
it tgtltr—I<s.
Because the last terms in the last inequality are the sum of certain terms which are
of the form
sD*Fyeo- D" F DDy s DV
with F; related to 8 of order |a|<\4 and mtegers satisfying p;+-- p,—i—rr Z<s 2,
we see that the term we are evaluating is pounded by

e l;[ | | L0/ | | 2o~ | 7 | @ bront =D | 7 1y Butekd

<80, ([t]|sqs| V| o) @F 20/ G- 0| || Lrfort+00/ 6=D)

<803<HV“3—1+ “u"s+3lv‘co)~ : (2'23)“

In getting the last inequality we have used Nirenberg inequality. From the similar
argument, the inequality
(Do, —1,) BV | <Os(llgls+ |ulessl g]o), (2.24)

follows without dn@ﬁculty Summmg up, and using the embedded theorem and
(2.22), we geot ‘

IV N:<O:(lgls+ [lssslglatslV o), $>8. (2.25)
Turn back o (2.21'). Dealing with the last term in (2.21’) in the same way as done
in getting (2.28), one can obtain
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| [V]s<Cs(elV s+ gla+ lulssal gl (2.26)
Choice of a smaller constant ¢ yields (2.15). This proves Theorem 2.1.

§ 3. Proof of the Main Theorem

This section is te complete the proof of the main theorem by proving the
existence of sufficient smooth solution of (1.10") in the region {0<e<2m, —1<y<<
1}. If @ is a constant >8, then g, = (L— (§~ -+ +4§-0-9))>1/2 and G, ={(a, ) |0<
o<2m, — 2 <y<2n,} CG. Let u€ 0= (G) be of period 2w in ». Then

u(e, )= 2 &) exp(v/—1 ja) 3.1
with smooth coefficients a;(y). Denote the mollifier by :
Jiu= 3 (§6.9)0a;@))exp (v/~1 ja) (3.2)

with 6,.=97"‘<§<7<2), N,.>0, and j(y) €0°(R") satisfying

Ij (pdy=1, Jy”j (Wdy=0, 1<p<s

{s t¢ be determined), and sﬁpp j< (=1, 1). As well known, for any u€C0~ @,

1 1 ] 110y O (51, 82) 057 [t] 11,y 00 E 82818 8.8
an

[ (T =) st] 0y 6y <O (81, 82) 05~ || 00 1 S2 <81, (3.4)
The constant in (3.8), (8.4) will not change when 6, is increasing. Consider the
boundary value problems of linearized equation (1.10')

g,(un)Wn‘:'"g(un)’ (35)

a W, 29,) =0, W, (0, y) =w, (2w, y) Iyl <27 (3.6)
anda’

‘ u0=01 uﬂ+1=un+ann- (3'7)

By Theorem 2.1 it is easily seen that (8.5), (8.6) admits a unique solution in
H,(@,) for given s if |g|< e, Moreover, the solution obtained satisfies (2.14),
(2.15) for g=g,=—.%(u,) and tho integration related to the norms in (2.14),

(2.15) are taken‘6ver @,. Besides, the constants ocourring in (2.14) (2.15) are .

independent of n. For the solutions to (3.5), (8.6), (8.7), we have the following
estimates. o :
Lemma 8.1. Let wyo@o<1(k=0, -, n). Then

l9el ze0 =1 — & @) | 1@< Os (| gols+ ] 1,10000) (3:8)

N1 eia@re <OV 0541 ] g0 s (3.9

Sor some constant B=9 and k=0, -+, n. Here and later the integration of |u], is

and

always taken over Gy. :
Proof It is easy to see that
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I gl e =& (i) — & (o) + 2 (o) | @) < ([ goll s Oslotr] yuuian) -
Now we proceed to prove (3.9). From (3.7) it follows that if =0, -, n,
Dt 1| 2@y S ] rs@rrnd | T 508 ] 210G << || Haratueny T O | | i@
<O ([ts] 1,1aa0 + | 9ol ) G- (8.10)
In gelting (8.10) we have used (2.14), (2. 15), (8. 8) and the assumption in this
lemma. Hence .
%01 Eciy < (B 1) Okﬂazs 3190 us ' ' (8.11)
Ohoosmg 60, as a new constant U, and the constant 8>9>38/(v— 1) (2>7>4/3), by
(3 11) we can derive (8.9) without difficulty. _
Lemma 8.2. Let |uy|o@o<l (k=0, -, m). Then there ewists a consiant
£>6/(2—7) such that for any s*>B+24yxv, the @naquwlrz)ty
l9ustl @ <OcZsl golee  (B=0, -+, n—1) - (3.12)
holds when 0>0% and | 8] <ei(0) for some constants 0* and g (6).
Proof Obviously
= Ons1="F (1) =L () + L' () J k’wk+Q(uk) J k’wk)
=" (up) (Jo— D) wy+Q (s, ka;a):- ‘
where @ is the quadratic form. Application of (3.8) gives, when s*>2,
1L ) Vo= Dwn 2@ <OO%™ | Wil 100y <O (I ollsr + 4] m0srs000) 5
which is bounded by

CBO3"+4] go | o

* gince with the aid of (3.8), (8.9) the norms in last ineqalily can be controlled by

the norm in H. (@) of go. On the other hand, by Nirenberg inequality

1
z
l o*J Wy l ‘do dy ) <0/ H kak H %'o (G0

<C"0¢|wi| ke <082 gul 3 an-
Summing up, we have obtained the estimate

1@ (ugy Jrw) | H(Gm)<0/ “Ez (J

Gin

With Isalaa <O~ glet Ollgliae -~ @1B
_‘ . - Gea=max (0, 1)0a] gusil meun
one has the inequality o
| Guss <+ ol (3.14)
if o | °
1 '8+ (r—2)<0, s >2+ B4 _ (3.15)
an .
: 4max(C, 1)0% <9“”‘<**‘2~ﬁ—m (8.16)

ThlS ig possible to choose first x then s* in (3.15) and later 6" in (3.16). Noting that
Jo=—L () =—8 I(s, @, y). Therefore, Take such a small s,.(@) that if |s|<
Egr (0)3
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“90“8*= “ sl (81 @, y)
|se/4<<1/4. Inserting that info (3.14) we get
<k=0; *t 'n‘),

[+<<1 and max?(0, 1)6 gl <—1f,

which gives d3<[go

Tur<g Lol
Wthh implies (3.12) immediately.

. The end of the proof of the main theo¢em To prove the convergence of bhe
1terat1ng sequence constructed by Nash-Moser methods, ib is necessary to control the
norm in 0y (G) of u<<1, or the norm in He(Gh);- '

|| woeo<I (8.17)
for some eonstanh I'. We shall next reason by induction. It is trivial that (8.17)
holds when %=0 and s is sufficient small. Now (3.17) is supposed to be true when
£<n. If 6<<s<8*, by (2 14), (2.15) and Lemma 3.2 one has

[thsa] @ << % [T w0 2oty <O’ 2” wyl| Hs(Glc)\O” Z“’wk“ Yo | wil &S

<0" 31(lgo
‘which is bounded by

o) O gol) 1

ot “’dk,

B8+%)

n - .8G
03106,
' 0
4
3
=28+ 0(8), s<s*/2, whan & is small enough (8.18) converges and for some
constant O independent of n, :

Zﬁ [T 21y <Ol gol| o2 (3.19)

'provided that § is big enough. This just completes the proof of the induction if we
‘take a smaller sy 50 that O] go]«<I" when |g| <ex<ex(d).

- The conclusion we have reached means that u, converges uniformly to a
function » in H,(G..) ©H(G,) C0s(G.,) if s* satisfies the assumption mentioned
above. So u is a solution in Oy(GL..) to (1.10") since (8.12) implies that & (w,)—>0=
Z(u) in H(G..,). Now we have the following theorem.

Theorem 3.1, Let K €02 satisfy (1.1) (s*>23). Then (1.4) admits o local
solution p € C°~2 of period 2w in u 5f s<<s*/2.
_  In order to complete the proof of the main theorem in this paper we have fo
:show that the “generalized Torus” (1.2) obtained is a graph. It is easy to get

) 1 gole  (3.18)

+3, x=94+0(0)>

for another Ou. If we choose 8=9, 7= 2§7 and §*>24 B+ 7

0 (@, @) /0(u, v) =+p(u, ) on V=7
‘which does not vanish if & is small enough. Finally, we should show how te
determine the integer s involved in the construction of j(y) as the kernel of

mollifier. If we expect o find the solution €0°, then we choose s=20+8.
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We have proved the main theorem if A is a circte. The remainder of the proof
is omitted since there is no principal difficulty for them.

References

[1] Nirenberg, L., Comm. pure Appl. Math., 8 (1958), 387—394,

[2] Bozniac, L. G., Usp. Mat. Nauk, 172 (1973), 47—76.

[8] Lin, C. 8., The local isometric embelding in R? of two dimensional Riemannian manifolds with Gaussian
curvature changing sign cleanly (to appear).

[4] Eriedriches, K. O., Comm. pure Appl. Math., 11 (1958), 838—418,

[51 Gu, C. H., Acta Math. Sinica, 14 (1964), 503—516.



