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SURFACE IN R3 WITH PRESCRIBED 
GAUSS CURVATURE

H o n g  J i a x i n g

A b strac t

Assume that a smooth function К  (x, у) vanishes on a simple closed smooth curve A  
and dK  Ц=£0. Then the result of the present paper shows that there is a sufficiently smooth 
surface z —n(x, y) defined in a neighbourhood of A  with curvature K.

Let К  be given 0 ” function of (x, ж2) E -й2. Is there a local graph z —z(x1} xf) 
near some point p, in  R 2 with curvature JKT? As is well known, the problem was 
solved in [1, 2], for the case К (p) Ф0, and in  [3] for the case K (p )  = 0, dK (p ) Ф0. 
As a continuation of [3], the present paper is devoted to the study of the case: 

i f  = 0 and d K  Ф 0 on a simple smooth closed curve A:
х{ = х{(и) (i=* * *l, 2), x2(u)+x$(u) ФО, и £  [0, 2л;]. (0.0)

Our main result is the following theorem.
Theorem . Let (0.0) be fulfilled. Then there is a sufficiently smooth graph 2— 
a>2) defined in a neighbourhood o f A  with curvature K .

The Problem discussed here is very closely related to the local solvability of 
Monge Ampere equation with mixed type. The section 1 is devoted to reduction of 
Monge Ampere equation to the sum of an ordinary differential equation of Fuchsian 
type and a nonlinear perturbation. The technique used in  this section and in  section 
3 is similar to that in [3]. To author's knowledge, the theory of the positive 
symmetric system given by [4] and later generalized by [5], so far, has been the 
most powerful tool to attack the mixed equation. In  section 2, based on this theory, 
a priori estimates for solutions to linearized equation are given. In  section 3, the 
application of Nash-Moser methods completes the proof of existence.

Finally, the author would like to express thanks to Prof. Gu Ohaohao for his 
suggesting this problem to the author.

§ 1. Fundamental Equations

W ithout loss of generality, we assume that К  = K (u , v) is smooth in  [0, 2гг] X
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[ —of, зг] with period 2% in it. Throughout this paper, we always suppose
К  (и, vr/2) =0, K v(u, sjv/2) > 0 . (1.1)

In order to find the graph with curvature K , one may seek “generalized Torus”
r  (u, v) = (rdcos и, Го sin u, p(u, v) sin v) (1.2)

with ro= (1+р(м, v) cos v) as the object to be investigated. Now we proceed to find 
the equation p (u, v) satisfies.

The metric on (1.1)
dr2 =  (r2+pt)ck2+2pupv dudv+ (pi+ p2)dv2, (1.3)

The equation we expect may be written in the form 
0 =  «^’(w, Vy p, Pm pi» ■ Pmi> Pm» Pvv)

=  (pvv -  2plp~X -  p) (pm -  r0 cos V -  Spiro1 COS V -  РоГор~г sin v)
-  (puv -  p u P vp -  РиГо1 (pv cos V -  p sin v) ) 2 -  К  (и, v) Ф (v, p, pw pv) , (1.4)

where Ф is a smooth function of its arguments and
Ф(яг/2', p, 0, 0) ==p2. (1.5)

Take a change of variables

u=cc, io—'&2y Jr%]2, jo=po+w-(2,y — ov)2p2(u) + s5W, (1.6)
О

where p0 and p2(u) are to be determined. Denoting by JF(w), after changing the 
variables (1.6), the right hand side in  (1.4), we have

«^*(0) =  -  ((pa(®)~po)2+ K v(x, w/2)p3o)s2ypo1+eil (e, x, y). (1.7)
Here I(e , x, y) is a smooth function of s, x, y. Particularly, choice of

P o = — Pa(®) = P o(l + (1*8)

gives

With
•F(0) =64I ( s ,  x, y). 

Jo op
we rewrite (1.6) in  the form

+ s3# 3л + 85̂ PuuWm+ + 8ЬЖ Pvwу 
s5̂ pw + ^ (0 )  =0.

(1.9)

(1 .10)
The direct computation yields

д ^ / д р ^  -  (p2(x) — po)po1 +  sF2) (1.11)
0J V 8pm = (p2 (X) - p 0) d-ei^u, (1.12)
W y d p m =e2F 12, (1.13)
8JF18pvv = s2y (1 -  p2 (x) /  po) +  s3F 22. (1.14)

Here and later we always take F i} Fy  to express some smooth functions
of e, x, y, e2w, s2wa, 8<wwy, z2wm, wy, wyy. (1.15)

After inserting (1.11)—(1.14) into (1.10), dividing both sides by s3 and noting 
(1.1), (1.8), (1.9) we obtain
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JF(<w) =  (y+ sF 22)w yy+s2F 12way+ (\p 0\ +sFn )s2wm
+ 82F iwa(l+ sF 2)wy+82F w + sI(s , x, y) = 0. (1.КУ)

It  is easy to see that the derivative operator of FF (w) 

llm ^ ,(4 + « w ) -^ ’(«)
t-+ 0 t

= (y+ 8 F  22) Wyy+ s2F 12way +  (1 po I +  sF n ) s2wwe;+a2F 1wa 
+  (1 + sFz) wy+ s2Fw  4- s i  (e, x, y), (1-16)

where, after и is replaced by w, F i} F i} are also the smooth functions like (1.15).

§ 2. A Priori Estimates for Solution to Linearized Equations

The purpose of this section is to establish a priori estimates for solutions to the 
linearized equation of (1.10'). The framework of the positive symmetric system 
given in [4] is adequate. Let G denote the bounded domain {(ж, у) |0<ж^2гг, —2 <  
y< 2}. Consider a symmetric system defined in  G of the form

B V  = A ^ f -  + B ^ + C V = f ,  (2.1)dy ox ■
where.

A = А°(ж, у) + sA 1(s, x, y ),
B=B°(x, y )+ sB 1(8, x, y),
0-O °(® , y) + e01(e! x, y)

and A 1, B \ 0 { («.=0, 1) are smooth matrices of period 2o<t in x. It is evident that the 
following differential operators

= I ,  D t=d/dx, B 2=«2(y)a /dy, D3= «3(y) (y - 2) 8/dy} (2.2)
form a complete system of tangential differential operators on G if а2+ссг=1 on G 
and a2= l  as у < 1/2 , a3=--l as y > l  (see [4, 5 ]).

Assume that
det A 0(x, 2) Ф0 as x £  [0, 2л;], (2.S)

which implies the boundary g/ = 2 is not characteristics for (2.1) if s is small enough. 
In  the sequel, we always impose this restriction on g. Under this assumption, by 
the results in [4, 5], one can find smooth matrices P„T, ta such that the 1 —st 
enlarged system of (2.1)

RD„ = — 2  F (rcD-e -h (Bu — t<r) R- (2.4)

Similarly, the argument of induction gives immediately the following lemma.
L em m a 2.1. Let (2.8) be fulfilled and let 8 be small enough. Then the s-th 

enlarged system o f (2.1)
RDax-• • Д,а = -  2  -Роу* Дл* • •Аг„-1АгДггт- ..Д,8

If

+  2  • -D ^t^D vP^D vD ^ • - ЛТг+ П (Д ,- W R (2.5)
r < s - 1 i= l
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with the integers satisfying qi+-°° + q i^ l ,  qi+ °°° + q i+ l+ r  — l~>s. According to the 
definition in  [4], a symmetric system like (2.1) is said to be positive definite if and. 
only if on the region discussed у  = 0 + 0 {—8А/ду — 8В/дx is positive definite.

L em m a 2.2. Let (2.3) be fulfilled. I f  there exists a'positive integers such that 
the s-th enlarged system of R° =  A°8/dy+ B°8Jdx+0Q is positive definite, it follows that 
the s-th enlarged system o f (2.1) is positive definite too, when | s | < e s for some positive 
constant ss.

Proof F irst we have to find the relation between both of the s-th enlarged 
systems of R° and B. In  doing so we split Pav into two parts

Par =  Par (я, У) +  sP„r (s, X, y) , 
ta=t„{x, y )+ 8tv (s, X, y),

where the matrices occurring in  the right hand side of the last two equalities are all
smooth in  their arguments. Denote by R° and R  the s-th enlarged systems of R®'

8 8
and R. Thus

« 8y 
8 ,•Й—A  . s & 8y

s OX s

■b 4 - + ( O ° + s0 ) .8 OX 8
Here A0 (BP, A , B) is the matrix with A 0 (B°, A, В) as diagonal elements and 0°,

8 8 8 8 8

<3 are smooth in  x, y. Hence 
8

7= (0°+  (О0) * -  8А°/ду -  8B°/8x) +  0  (s) = y°+ 0  (e). (2.6)
8  8  8  S

The positivity of y° implies the positivity of у  if e is small enough. This completes

the proof.
Now we tu rn  to the linearized equation JF'(u)w—g. Consider a boundary value 

problem
Se \u )w = g , (2.7)

w(x, 2) =0, [0, 2яг] and w(0, y) = w (2%, y), |y |< 2 , (2.8)
This is a boundary value problem of the equation of complicated mixed type. Tb> 
specify the type of (2.7), we first make some assumption. Suppose that

| sF& | < 1 , | sF-xi | | sF i21

when (x, y) £(?, |w|0,< la n d  |s |< e 0, (2.9)
for some constant e0> 0 . Here and later, |w|c0, |m|0i*** stand for the continuous 
norms of the function и and its derivatives. (2.9) guarantees that (2.7) is elliptic 
near y = 2 and hyperbolic near y —— 2. W ith the aid of a transformation of variables

V  = exp y j  (dw/8y, w, e 8w/8x) * =  (а>0, v, %) * (2.10)

(2.7) may be reduced to a symmetric system
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R V = A  ^ - + B  - § L + 0 F =  (g, 0, 0)*,dy dx (2 .11)

where

a =

A  =

B=

i - 1 : ^ + s ( f 2 - 1 f 22)  s2F

y + sF 2a 0 0
0 - 8  0
0 0 — (IPo| +S-F11) _

s2Fx 2 0 ( I p o l + s ^ s
0 0 0 

- ( IPo 1 +  s F u ) s  0  0

sFx

18

0

8 8 0

0 ig-(|pol 4-eFn) _

fo r some positive constant 8 to be determined. Letting 8 = 0 in (2.11) gives

W

n  1 1 - ^ - 2 / 0
0  1У 0 0 8

0 - 8 0 T  + 8 0
d y 8

0 0 -  Ы . 1 , .
0 0 j$ \p o \  J

V (2.11')

=  (</, o, oy.
II should be emphasized that .(2:11') is independent of F h Fu: For (2.11')

± ~ t y: 8

8

0

4

0

0

o -4-IP0IJ

(2 .12)

which is positive definite if 8 is small enough. From now on we fix the constant 8 
which makes (2.12) positive definite. In  fact, we can get much sharper result. We 
claim that for arbitrary s, the s-th  enlarged system of (2.11') is positive definite. 
In  doing so, we evaluate the commutators

№ = а д ° ,

в 0л >- - ^ - в >+ - + ( в а +  - ^ - ) в л, (2 .IS)

Я>Д >-- Щ -  D „ + -  + ( b s +  ■— (*><*-2 » ) b “,

where the terms omitted, according to the remark in  [[4], part II], will not affect 
the positivity of the 1-si enlarged system of (2.11'). From (2.4), (2.5), (2.13) it 
follows that the positivity of s-th  enlarged system of (2.11') is determined by



diag (70, • • 7°) +  diag(n* • • •, nP

with p=3»4S and [0, 1, •••, $], l < j< p ,  which is positive definite. ■
Theorem  2.1. Assume that и ^0°°(G) and |w|c4< l .  Then for arbitrarys, there 

esist constants 8s< s 0, and Os> 0 such that for any g £ GY“ (G) , (2.7), (2.8) admits a 
solution W in H s (G) satisfying

|Ж Ц .<О .Ы . («-0 , 1, .2) . (2.14)
and

1 Ж |!,< а ,(Ы |,+  |М .« .1 Л ), s>3. (2.15)
Proof Let us first study the boundary value problem of (2.11) with

v (ea, 2) =  vt  («, 2) -  О, V  (0, y) = F  (2%, y), |?/|<2. (2.16)
Under the assumption (2.9), (2.16) is the stable admissible boundary condition of 
(2.11) (Refer to [5]). In  order to get the differentiable solutions to (2.11), (2.16), 
we have to investigate the positivity of (2.11). Application of (2.5) to (2.11) 
gives

П  (Дг, -  О  R = BDax-• 'T)„s+ 2  ̂ «vrAn* • Dv D<rPn‘ • *Дгв<=i p
+ 2 D b^ (0 ) -D ® -* ^ l (0 )2 ^ Р ^ т ( 0 ) а д ^ - 2 ) Гг ' •' '

+  2  (2.17)e»+™+ei>ie j+ - + 8 i+ l+ r - J < s

with J\F]8 = F (e) -  P (0 ), trT{ =  ZCT<(0) +  р^=Р<гт(0)+8р„т. Evidently ta(0),
P<rr (0) are all determined by the enlarged system of R° and independent of u. As 
mentioned above, the positivity of (2.17) is completely determined by the first 
three terms of the right hand side of (2.17). Combining Lemma 2.2 and the fact 
that for any s, the s-th  enlarged system of 22° is positive, we can find a constant es 
which only depends on the norm |м |Са such that (2.17) is positive if |e [ < s s. The 
existence of solution in  H S(G) to (2.11), (2.16) follows at once from the results in.

[5]. Thusw —exp^— y'j v is the solution to (2.7), (2.8) in H s(G)czO2 if s> 4 .

Now we prove (2.14), (2.15). In  order to do so, we introduce another kind of 
norm for V. Set

jfiii2= 2  ia^.-D^T.
0«s!«ss

If l<2, the Z-th enlarged system of (2.11) only depends on the derivatives cPA dpB  
& 0  of order j/S|, | a |> |7j < 2. From the energy inequality for the positive 
symmetric system and the assumption |w |c ,< l it follows that

|F I i< 0 , |J 8 F |,< a I| flr|I (Z=0, 1, 2). ■ (2.18)
From how on, unless stated otherwise, constants Oi, 0 2, •••, Os, ••• are all independent 
of e and the derivatives &*u of order j« |>4 .  The case of Z=0 in (2.14) is the 
trivial consequence of (2.18), i.e.,
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Direct computation, yields
d_
dx - A , (2.19)

A  = (R ~ ОD0 ~ BD±) . (2.20)

Denote by & each of derivatives with respect to x, у  of order |a | =s. It is easily seen 
that (2.20), (1.19) can be rew ritten as

d1= '2E v(a>, y)D r + e'2F vDv+ F iR. (2.21)
Ft (<£=0, •••, 4) only depend on the derivatives driu of order |« | < 3 . Furthermore

r,+- 2  F„Qc, y ^ i e ^ F ^ + F t R ) ,  (2.21')
lilS s l a i < s - l

By (2.21) and (2.18) we can derive that
1П ,<1Г |1<о!(11Г|И-||дг||,-1)< а 11«|1! ( ! - i , 2). (2 .22)

To prove (2.16) we have first to estimate the norms ||| V  ||| i. As claimed 
previously, the system composed of the first three terms in  the right hand side of 
(2.17) is positive when | s | < e s. Analogously, application of the energy inequality 
for positive symmetric system yields

|F |1 .< 0 ,(

q i+ ‘-  + qi> 1,
q i+ ’” + q i+ l+ r-l< ,s .

Because the last terms in the last inequality are the sum of certain terms which are 
of the form

s DP,F  i* • • DPlF  iDvDi+1- • • DrV  
with Ft related to dau of order |« | < 4  and integers satisfying px+ ’--pi+r — l ^ s —2, 
we see that the term we are evaluating is pounded by

б2 П  I Fj I ||F t II spiT_1) | F  | '"+ft)/(s~1) || v  18-i - 1

< 8 0 ,( |F |,- i+ H ,+8|F |e.). (2.23)
In  getting the last inequality we have used Nirenberg inequality. From the similar 
argument, the inequality

IIП (Д* -  О I2F ||< as (II 11 s + II м 1 s+31 I J , (2.24)
follows without difficulty. Summing up, and using the embedded theorem and 
(2.22), we get

1П .< а.(Ы .+  М „ аЫ ,+ 8 |г и ) ,  »>a. (2.26)
T urn  back to (2.21'). Dealing with the last term in (2.21') in the same way as done 
in  getting (2.23), one can obtain



iF ||8< a s(8 |F ||s+||^||a+||M||8+3||sr|2). (2.26)
Choice of a smaller constant s8 yields (2.15). This proves Theorem 2.1.

§ 3. Proof of the Main Theorem

This section is to complete the proof of the main theorem by proving the 
«existence of sufficient smooth solution of (1.10') in the region {0<ж<2стг, —1<^/<
1}. If 9 is a constant > 8 , then rjn= ( 1 -  (9~x-\----- \-9~(n~1)) ) > l /2  and (?„ = {(ж, у) |0 <
«<2яг, — 27?„<2/<297„}cz(?. Let m£ 0°°((?) be of period 2% in со. Then

oo — -
u(co, y) =  2  ai(y) M p ( \ / - l j » ) -  (3.1)

j= -~
with smooth coefficients % (y) . Denote the mollifier by

Л м -  2  (j(9ny)91a,(y) ) exp ( V ^ T  jx) (3.2)
\j\

with 9n = 9'*n ^ - < v < 2 ^ ,  N n>9„ and j(y) £ 0°°(B1) satisfying

J) (y) dy= 1, ^ypj  (y) dy=0, l< p < s

(s to be determined), and supp jc z (  — l ,  1). As well known, for any u£0°°(G),

!'A^|flsl(G„+1)<0(Sl, S2)^n-Sa||M||HSs(G„) if S2<$1<S (3.3)
and

II ( I - J )M \H Sa(Gntl)< 0(s1} s2) 9sn~Sl||'m||hs1(g(1) if s2<Si<s. (3.4)
The constant in  (3.3), (3.4) will not change when 9„ is increasing. Consider the 
boundary value problems of linearized equation (1.10')

s e x v ^ w  (3.5)
Wn(x, 2t]n) =0, Wn(0, у) = ад„(2яг, у) | у | < 2о7„ (3.6)

and
щ —0, un̂ .x~un~\~Jnwn. (3,7)

By Theorem 2.1 it is easily seen that (3.5), (3.6) admits a unique solution in 
H s(Gn) for given s if | s | < s 8. Moreover, the solution obtained satisfies (2.14),
(2.15) for g=g„ = — ££(un) and the integration related to the norms in (2.14),
(2.15) are tak en 'iv e r Gn. Besides, the constants occurring in (2.14) (2.15) are 
independent of n. For the solutions to (3.5), (3.6), (3.7), we have the following 
estimates.

Lem m a 3.1. Let u*|et<s,)<l (к=0, •••,»). Then

115,»11я,«?*) = | -^(Wfc) ||я8(е><С,8(||5»о||8+||% ||я3,аш )  (3.8)
•and

I«Й+iIIffs+3(G*u)̂ o r v s *!II f f o l j s  (3 .9)
for some constant /3>9 and k ~ 0, •••, n. Here and later the integration of [m||8 is
•always taken over G%. 1

Proof I t  is easy to see that
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I flfo 1 HS<G*) — II &  (щ ) — (% ) +  (щ )  I Ha(Gji) <  ( II go IIS+  0SIIЩI ff«+a(G*)) •

Now we proceed to prove (3.9). From (3.7) it follows that if & = 0, •••, n,
1 Uk+1 II #s+s(Gm) <  II Щ> I я8+3(в*„) +  I J kWk I Ha+a(G*+1) <  1 U]c I H«.a(G*ti) +  IIЩ || Hs(Gt)

<Os(IM|ff5+a(G*) +  Ц̂ оЦаЖ* (3.10)
In  getting (3.10) we have used (2.14), (2.15), (3.8) and the assumption in  this 
lemma. Hence

I ^ +ilHsn<Gm)<(A +  l ) ^ +1̂ ” ^o||Po||8. (3.H>
Choosing eOa as a new constant Os and the constant /3> 9> 3 / (v —1) (2 > r> 4 /3 ) , by 
(3.11) we can derive (3.9) without difficulty.

Lem m a 3.3. Let |мй|С4(ад<1 (& =  0, n ) . Then there exists a constant
Z > 6 / (2—v) smch that for any s*>fi+2+%v, the inequality

1 IH(Gs+i)^ @ic+i 1 9q 1 s» (A =  0, •••, n — 1) (3.12)
holds when and j s | < s s* (9) for some constants 9* and es. (6).

Proof Obviously
-  gk+1= i f  (uk+1) =  i f  (uk) +  i f '  (uk) J kwk+Q (uk> J kwf) 

^ ^ ' ( и к) ( 1 к- 1 ) и к+Я(ик, J kwk),
where Q is the quadratic form. Application of (3.3) gives, when s9> 2,

W  (щ) ( J , - J ) w k\\mGK+l)< 0 'e i- ^ «W k I я„(в») <  09k~s* ( || go I«»+  INUw g ,)), 
which is bounded by

since with the aid of (3.8), (3.9) the norms in-last ineqality can be controlled by 
the norm in H s*(Gk) of g0. On the other hand, by Nirenberg inequality

IQ (uk, Jkwk) I ff(G*+1) 2  (L 1 ^kWjt I 4 &y) ^ l̂l J I Я»<№»0l«l<2 \J0Htl /

0"9k I wk J h(gk) ^  G9k J gk I я  (G*)«
Summing up, we have obtained the estimate

■ IU(G*+1)<C^.0ft S*+'S 19o 1 s» +  091II (/fellЯ«3)в° (3.13)
With

one has the inequality
= max (0 , 1) 9l+i || gk+1 | H(G*ta)

4+i<dI+-i-||^ofl8» (3.14)

if

and
' б + х ^  —2)<0,  s*>2+)8+xv (3.15)

4max(Cf, l)C&<0T*(s*-2-*-*4 (3.16)
This is possible to choose first % then s* in  (3.15) and later 0* in  (3.16). Noting that. 
Po= -if(Mo) =  -  s I ( s ,  x ,y ) .  Therefore, Take such a small 8#»(0) that if | s | <  
s «*(0)»
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Ы |з»= I e l  (8, Ж, y) ||S.< 1  and т.ах2(0, l)do1#o((<^p 

which gives do<(|</o||s«/4<l/4. Inserting that into (3.14) we get

4 + i< v ~ M S’ (Л-0, •••, «),

which implies (3.12) immediately.
The end of the proof o f the main theorem To prove the convergence of the 

iterating sequence constructed by Nash-Moser methods, it is necessary to control the 
norm in 0 4(0 fc) of «*,<1, or the norm in  i f  6(0fc) , ■

ЦУлЦнвК?*)*̂ -̂ 1 (3.17)
for some constant Г . We shall next reason by induction. It is trivial that (3.17) 
holds when # =  0 and s is sufficient small. Now (3.17) is supposed to be true  when 

If 6<s<s*, by (2.14), (2.16) and Lemma 3.2 one has
u n n

||w»+i| 2  I! I 2111 II на(вк)0 0 . 0

< 0 " ± (\\go l-+0
which is bounded by

П f S(<?+J£)
~ ^ Ы 1 з .  (3.18)0

fo r another 0 S.. If we choose /3=9, v = 4 -+ S ,  x =  9+0(<5) ^— and s*>2+/3+rs*
о 2 —т

= 23 +  0(3 ), s<s*/2, vhen 8 is small enough (3.18) converges and for some 
constant О independent of n,

2  ii J II < 0 II 9o II s*, (3.19)lc-0
provided that в is big enough. This just completes the proof of the induction if we 
take a smaller ss. so that 0||yo||s*<-T when |s | < e s.< e s«(в).

The conclusion we have reached means that u„ converges uniformly to a 
function и in H S(G„) c zH ^ G J )  d O &(Gco) if s* satisfies the assumption mentioned 
above. So и is a solution in  0 9(0M) to (1.10') since (3.12) implies that (u„)->0=

(■и) in H  (Goo) . Now we have the following theorem.
Theorem  3.1. Let K £ O s*+2 satisfy (1.1) (s*>23). Then (1.4) admits a local 

■solution p £  0 s-2 of period 2яг in и i f  s<s*/2.
In order to complete the proof of the main theorem in this paper we have to 

show that the “generalized Torus” (1.2) obtained is a graph. It is easy to get

d(xb oc2)/d(u, v) = +p(u, v) on d= ~

which does not vanish if s is small enough. Finally, we should show how to 
'determine the integer s involved in  the construction, of j(y)  as the kernel of 
mollifier. If  we expect to find the solution £О а, then we choose s=2cr+8.
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We have proved the main, theorem if A  is a cirete. The remainder of the proof 
is omitted since there is no principal difficulty for them.
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