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THE HIGHER ORDER APPROXIMATION OF
SOLUTION OF QUASILINEAR SECOND
ORDER SYSTEMS FOR SINGULAR
PERTURBATION

LN ZoNacHI (AhE#)®

| Absti'act

In this paper, using the theory of invariant region, the author considers the
existence and the asymptotic behavior of solution of vector second order -quasi-linear
boundary value problem: .

&Y' =f(@ 9, &)y +9(, Y, &),

y(0, &y=A(s), y(1,8)=B(e)
as the positive perturbation parameter & tends to “zero, where y, g, 4 and B are
vector-valued and f is a matrix function. Under the appropriate assumptions the author
obtains, involving the boundary layer, uniformly valid asymptotic solution of higher
._order approximation.

§ 1. Introduction

Many physical and chemical problems can be studied as singularly perturbed
two-point vector boundary value problems of the form: '
gy =f(w, y, )y +9(&, y, 8), 0<a<l, ' @€.1)
y(0, &) =A(e), y(1, &) =B(s), (1.2)
where ¢ is a positive perturbed small parameter, y, g, A and B are vector valued and
f is a matrix function (cf. e.g., Amundson™ and Cohen'). Scalar problems of this
form are analyzed quite thoroilghly (cf. Howes™, Chang and Howes™). An
enlightening case history of such analyses was given by Erdélyi®™, and important
early work includes that of Ooddington and Levinson' and Wasow™. Vector
problems of this form, when boundary is unperturbed, were considered by K. W.
Chang™ and W. G. Kelley™”, but they did not actually obtain higher order terms or

complete boundary layes behavior. By applying the theory of invariant region o

the vector boundary value problem (1.1), (1.2), however, the higher order
approximations of solution are obtained.
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§ 2. Some Preliminary Results

In this section we collect for the convenience of the reader the results to be
used in the proofs of our main theorems. Let us consider the two-point boundary
value problem |

o =gt &, ), (2.1)

x(0)=4, «(1)=B, 2.2) .

where ¢: [0, 1] X BR"X R'—>R" is continuous and 4, BER".

For ¢=1, 2, .-, N, lot ri(t, @) be of class 0% on [0, 1] xB", W,(%, ») the
gradient vector of r;, V(t, #) the gradient veclor of or;/df, where these gradients
are taken with respect o , and P,(%, ) the Hessian of r; with respect to @. Let the
first and the second derivatives of r, with respect to (2.1) be denoted by

1 =0r;/0t+W o, (2.8)

1 = 0%+ 2V ot + @ Pyot' +Wieg | (2.4)

for =1, 2, ---, N, where the dot indicates the usual scalar product in R". Define
D={(, &, v): 0<¥<1, (3, #)<0 for ¢=1, 2, ---, N, yER'}.

We give two types of Nagumo conditions for ¢:

Ny There exists a sequence {@;};; of positive, nondecreasing continuous
functions on (0, o) such that

® sds
J FZONN
[9C, @, 9) | <eu([9']), for (4 @, y) €D, i=1, 2, +=+, n.

N,: There is a positive, nondecreasing, continuous function ¢ on (0, oo) such thatb

and

$?/p(s)—>co, ass—>o0

I£ & 2 ) |<e(lyl) for (¢, @, y) €D.
The following theorem is a special case of Theorem 4 in [10].
Theorem 1. Assume {(¢, ©): 0<<t<<1, ri(t, ) <O} és ¢ bounded set and
(a) the functions r; described above satisfy for =1, 2, «+, N
ri >0 when r;=0 and r} =0; (2.5)
(b) there is a fumction of class O% on [0, 1] which satisfies (2.2) and whose
drajectory is contained in D;

and

(e) éndtial value pfrobZerms for (2.1) have unique solutions;

@ g satv)sﬁés either Nyor Ny on D.
Then the boundary value problem (2.1), (2.2) has a solution «(t) with ri(t, (¢)) <0
Jor 0<i<<l and 4=1, 2, :--, N.
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§ 3. Singular Perturbation Problems

We begin by considering the system (1.1) on the interval [0, 1] with boundary
perturbation conditions (1.2). For simplicity, let us assume that f and ¢ are
infinitely differentiable in .y and & and that f, g, A(e) and B(s) possess asymptotic
power series expansions in s as e—>0. We shall first consider the vector problem
under the assumption that the reduced problem

F(, ug, O)up+g(®, up, 0)=0, wup(1)=y(1, 0)=B(0) 3.1)
is stable throughout 0<<a<1 in the sense that uy exists and
f (@, ug, 0) <0 . (3.2)

there (i.e., f is a strictly stable matrix havmg eigenvalues with negative real
parts). We first realize that up cannot generally represent the solution fo (1.1) near
©=0 because we cannot expect o have uz(0)=y(0, 0) =A(0). Instead, we mush
expect boundary layer behavior o occur near =0, providing the required
nonuniform convergence form (0, 0) 0 uz(0) as s—0, the (very) small “boundary
layer jump” [y(0, 0) —ug(0)| is needed. We must require an additional “boundary
layer stability”, namely the inner product

&2 70, ua(0) +s, 0)ds<0 (3.9
remains negative for £-+uz(0) along all paths connecting uz(0) and y(0, 0) with

0<|€]<]y(0, 0)—ug(0)| (Here, T represents the transpose and fz| = (:sz)%’),
Indeed, (8.8) direetly generalizes the (minimal) hypotheses used by Howes for the
scalar problem and it is weaker than the common assumption that f (0, g, 0)<0 for
all y. -

The results of Howes and O’Malley™" and others suggest that under such
hypotheses, (1.1), (1.2) will have a solution y(=, &) of the form

y(w, 8) =U(w, &) +V (v, &), (8.4)
where the outer solution U has an asymptotic expansion .
U(s, )~ Us(@)¢’ (3.5)

providing the asymptotic solution for >0, while the boundary layer correction ¥
has an expansion

V (%, &) ~g Vi(v)é | (3.6)
whose terms all tend to zero as the stretched variable
v=u/8 3.7

- ternds to infinity. , . :
 The terms U,, U; (j=1, 2, --) of outer expansion U must satisfy the reduced
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problem and linear problems, respectively,
f (@, Us(@), NU(#) +9(w, U (#), 0)=0, Uo(1) =y(1, 0)=B(0), (38.8)
f(@, Us(e), 0)Uj(w) +fy(w, Us(®), 0)Tj4 (w)U;(w)+gy(w, Uo(-’v), 0)T;(w)

'—hj—i(w), u,)=8, = ) (3.9)
where (. 4118 known in terms of &, Up(a), -, _1(m), B,—-——— ——igée—- o

The stability a,ssumphon (8. 2) 1mp11es that (3.8) and (3 9) are nonsmgular
initial value problem, so they have a unique solution thoughout 0<a<1. Thus,
there is no d1fﬁcu1ty in generatmg the outer expansion U(w, &) with-

U(a, 0)=Ux(w) =Us(w).
The terms Vo, V; (=1, 2, --) of boundary layer correction ¥ must necessarlly
be a decaying solution of the nonlinear problem and linear problem, respectively
i Ua0)+7 o), 0) G2 Wo -, . Vo(0) =900, 0)-To(0) = 4(0)--Uu(0),
. | (8.10)
e 02t~ 1,0, Uo0) +¥a(s); OV ()
'~=k1—1(7)>-Vi(0)-=Af'—Uj(0;; o ' e (8

where k;_; is a linear combination of preceding terms ¥; and their derivatives dV,;/

E Y
‘dv, 1<j, with coefficients that.are functions of » and V(z), A’—T ags(f> .

"The decaymg solution of (8.10) must satisfy

‘g’O J (0, Uo(O)+Vo, 0) %o ‘W‘) dr=0

’ and thereby, the initial Value problem
‘ aVo _
dw

L”‘ ’f@’ Ts(0)+W, 0)dW, v>0, VO(O) (0, 0)—To(0). (3.12)
‘Miltiplying by »V’f the boundsry layer stability condition (3. 3?) implies that
L@ =73 [ 50, Uo(0)+5, 0)da<0 (3.13)

for nonzero values of Vo('v) satisfying. |V o(7) | <]y (0, 0)~Ur(0)] =[Vo(0)|. Thus,
‘our boundary layer stability implies that |V(#)| will decrease monotonically as =
increases until we reach the rest point Vo(7) =0 of (3.12) at v= oo, Ultimately,
V(%) will bécome so small that (8.2) (for #—0) implies that" the 'eigenValiie‘s of
F(0, Uo(0) +V6(0), 0) will thereafter have real parts smaller than some — k<0 and
' (8.12) then implies that

Vo(’u‘)=0(6'_7”9, caroral T s (8014)
‘i.e.:V, is exponentially decaying as ¢—>co. Although we can seldom explicitly

~ integrate the nonlinear system (8.12), we can approximate its solution arbitrarily .

: closely by using a successive approximations procedure on (8.12) (cf. Erde'lyi"®),
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Knowing V,, we' next integrate (8.11) for j=1 and then proceed termwise.

Rearrangmg (8.11) and m’uegra’omg, we obtam

‘W 0) V;-{-z

where o
W(®) == [ £,0, To() +V(r), o ¥.te) o Vs ()~ o) V(1) |+ byeso Vi

is known whenever V, and dVo/dv commute 'I‘hus, V; satisfies the integral

equation

Vi(z) = P(x)U,(0) +JZP('»-)P“1(¢)Zj(a~)dr, . © (3.15)
where P(z) is the exponentially decaying fundamental magrix for the linear sys’uénri
dV /dv—f(Uo(0) +V,.0,0)V =0, +=0, V(0)=1I.
In general, (3.15) must also be solved via successive approximations, though it
directly provides the solution of (3 11) when the commutator [V, dVo/dv]=0.

We would have to limit' the expansions to finite order approximations, under
weaker smoothness assumptions on f and ¢, and we. would have the followmg
result. . L .

Theorem 2. Assume o :

(a) the reduced problem (3 1) has a O(’"“’ [O 1] solutwn uR(m) so that

f (@, uz(2), 0) <0, MOTEO0ver . the tnmner product ’ :

J s, uR(O) +s, O\ds<0

remains negative Sor £+ug(0) along all paths comrmectmg uz(0) and (0, 0) 'w@th 0<

l€l<ly(0, 0)—uz(0)[;
(b) . f,-9, A and B are sufficiently d/bﬁeo"entwble b

B={(2, 9, ¥, &): 0<a<<1, [y~ Yul?< (0™, y'€ B, 0<e<sen}, -
where O is some positive constant, Y 26 [0, (w) +V; (,,)] &%
(c) there ewists @ constant 8 >0 so-that :
Lyt ———___—~<f><f*> ~aT50

Jor all (o, y,.9/, 8) EE, wherre f* denotes the adgo'mt of S
(d) the “bousidary laye/r Jump” |y(0, 0) —up(0)] és sufficient small S e
Then for each g, 0<e<ey, problem (1.1), (1.2) has a solution y(a, s), wivwh sat@sﬁes

Iy, - ;;w)s’ ZOVj<v>s’|lz<(Os’"“)2

for 0<<o<1.
Proof *-Let zm(w, &) =y(a, &) - Ym(fv, &), From the. precedmg derivation- we' |
can see thab the following forms hold:: EIERE IR P :
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tn=f (%, tn+Yp, &) @n+Y )+ 9@, tntYm &)
—f(@ Y, Y —9(@, Y, &) (8.16)
2 (0, &) =0(e™?), 2, (1, &) =0(e™*), (3.17)
Fix s 50 that 0<e<ey and define
: (@, tn) =|2n|®— (O&™*)?
for 0<o<1 and #,€R". Among the hypotheses of Theorem 1, only (a) is not
_immediate.
For this choice of r, we have W(z,,.) = 2, V(z,,.) =0 and P(z,) =2I for all 2, G

Zm) = Oo

| R, Thus, if #(&, 2,) =0, then we have |z,]?= (Gs™**)2, therefore, 6 .
Thus’ in E we obtain »
r”=2zm°z,,,+2zm~—— [f(@, 2n+Ym &) @+Y, )
+g(a, tntYm, 8)~ (@ Y &)Y n—9g(@, Y, 8)].
= 2210 2, +»2z,,.-—§—- {f (&, 20+ Y m, )20+ [f(®, 2m+Y m, 8)
—F (@, Yy 01T )+ [0(@, tmt Yy €) =40, Ty &)1}
By applying the mean value theorem, we have

r"=2z{,,-z!,,+22m-—]—"-[ §(@ 2w+ ¥ sxz;,,)ﬁﬂ%'@@ (L)

M(% ] zm—}————f({v, ~m+Ym, 8) (z’n)l

oy
+ 2 [(L ) >+_-»—-—<f> @ e

&
>'2§m‘,[(3f) v+ 2 ay (f)(f)](zm)>—8||zm||2>0 5>0.

Theorem 1 applies, and the problem (3.16 ), (8.17) has a solution z,(w, 8) which
satisfies r(a, 2n(®, 8)) <0 for 0<w<1, that is, [z.|><(0s™?)?, or
m Lo f2
" y(w, 8) t—%U}S’ —gé:Vj&’ lt Q(OS’"’H‘){
‘We could also consider the reduced problem

f(w, u, 0)us "4“9 (m, ug, 0) =0,

 u(0) =y(0, 0)=4(0).
Then the stability condition (8.2) and the-boundary layer stablhty condition (8.8)
would be replaced by

/(% w(2), 0) >0
for O<<#<1 and the assumption thab

afj £, up(L) +2, O)dz>0

for all +uy(1) on paths between u;(1) and g/(l, 0) satisfying 0< [0 <|y(1, 0)—
ur(1)|. Nonuniform convergence ef the solution 0 (1.1) would then take place
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near #=1, depending on the stretched variable

o= (1*47)/8;

and the limiting solution on 0<e<X1 would be u,(z).
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