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Abstract

In  this paper, using the theory of invariant region, the author considers the 
existence and the asymptotic behavior of solution of vector second order quasi-linear 
boundary value problem: ./

Щ" —f  (x> У, s)y '+g(x, y, e), 
y(0, e )= A (e ) ,  t/(l, e )= £ ( s )

as the positive perturbation parameter e tends to zero, where y, g, A  and В  are 
vector-valued and /  is a matrix function. Under the appropriate assumptions the author 
obtains, involving the boundary layer, uniformly valid asymptotic solution of higher 
order approximation.

§1. Introduction

Many physical and chemical problems can be studied as singularly perturbed 
two-point vector boundary value problems of the form:

ey"= /(> , y, s)y'+g(a>, y, s), 0<ж<1, (1.1)
2/CO, e )= ^ (s ) , 2/(1, (1.2)

where s is a positive perturbed small parameter, y, g, A  and В are vector valued and 
/  is a matrix function (cf. e.g., Amundson1-1-1 and Oohen1-23). Scalar problems of this 
form are analyzed quite thoroughly (cf. Howes1-3-1, Ohang and Howes'-43). An 
enlightening case history of such analyses was given by Erdelyi'-53, and important 
early work includes that of Ooddington and Levinson1-63 and WasowC73. Vector 
problems of this form, when boundary is unperturbed, were considered by K. W„ 
OhangC83 and W. G. Kelley1-93, bu t they did not actually obtain higher order terms or 
complete boundary layes behavior. By applying the theory of invariant region to 
the vector boundary value problem (1.1), (1.2), however, the higher order 
approximations of solution are obtained.
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§2. Some Preliminary Results

In  this section we collect for the convenience of the reader the results to be 
used in the proofs of our main theorems. Let us consider the two-point boundary 
value problem

co”=g(t, 00, %'), (2.1)
x (0 ) ^ A ,  x ( l  )= B , (2.2)

where g: [0, 1] X12" X R n->Rn is continuous and 4 , S G R n.
For i = l ,  2, • ••, N, let r f t ,  a?) be of class O2 on [0, 1] x  Rn, W f t ,  sc) the 

gradient vector of r<, V {(t, a?) the gradient vector of drfdt, where these gradients 
are taken with respect to oo, and P f t ,  x) the Hessian of with respect to x. Let the 
first and the second derivatives of r 4 with respect to (2.1) be denoted by

г[ =  d r fd i+ W  i-x’, (2.3)
r'l =  d \i /d t2+ 2V t’x'+x'P, ‘x'+Wi*g (2.4)

for i = l ,  2, •••, N , where the dot indicates the usual Scalar product in R n. Define 
D = {(t, x, у): 0<£<1, r f t ,  x )< 0  for i= l ,  2, ••*, N, y£R?}.

We give two types of Nagumo conditions for g:
N x: There exists a sequence of positive, nondecreasing continuous

functions on (0, oo) such that
Г  s d s ___
i ?>,(»)

and
2/)|<Р«(|2/{[)> for (t, x, y )£ D ,  i - 1 ,  2, —, ».

N a: There is a positive, nondecreasing, continuous function <p on (0, oo) such that

s2/?>(s)—>oo, as s->oo
and

||/(2, №, у) I <cp(IMI) for (t, X, y) 6 D.

The following theorem is a special case of Theorem 4 in [10].
Theorem 1. Assume {(t, xj: 0 < i < l ,  r f t ,  x) <0} is a bounded set and
(a) the functions rt described above satisfy for i  = l ,  2, •••, N

r’l> 0  when r 4 = 0 and r\ = 0; (2.5)

(b) there is a function o f class O2 on [0, 1] which satisfies (2.2) and whose 
trajectory is contained in  D;

(c) initial value problems fo r  (2.1) have unique solutions;
(d) g satisfies either N x or N 2 on D.

Then the boundary value problem (2.1), (2.2) has a solution x(t) with (t, x ( t ) )< 0 
fo r  0 < i < l  and i  = l ,  2, •••, N . >
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§ 3. Singular Perturbation Problems

We begin by considering the system (1.1) on the inter vial [0, 1] with boundary 
perturbation conditions (1.2). For simplicity, let us assume that /  and g are 
infinitely differentiable in  у  and x  and t h a t / ,  g, A{&) and В (s') possess asymptotic 
power series expansions in s as 8—>0. We shall first consider the vector problem 
under the assumption that the reduced problem

/(as, uR, 0)u'R+g(x, uR, 0 )= 0 , ив(1)=у(1, 0 )=B (0) (3.1)
is stable throughout 0< as< l in the sense that uB exists and

/(as, MB, 0) < 0  (3.2)
there (i.e., /  is a strictly stable matrix having eigenvalues with negative real 
parts). We first realize that uB cannot generally represent the solution to (1.1) near 
as=0 because we cannot expect to have Mb(0) =y(0, 0)= A (0). Instead, we must 
expect boundary layer behavior to occur near as=0, providing the required 
nonuniform convergence form y(0, 0) to uB(0) as s-»0, the (very) small “boundary 
layer jump” ||^(0, 0) — mb ( 0 ) |  is needed. We must require an additional “boundary 
layer stability”, namely the inner product

£*■£/(0, Mb(0 )+ s, 0)ds<0 (3.S)

remains negative for £ + mb(0) along all paths connecting мд(0) and y(0, 0) with

0 < ||£ |< l|y (0 , 0 )—Мв(0)I (Here, T  represents the transpose and 'flzfl =•
Indeed, (3.3) direetly generalizes the (minimal) hypotheses used by Howes for the 
scalar problem and it is weaker than the common assumption that /(0 , y, 0 )< 0  for 
all y.

The results of Howes and O’MalleyC11] and others suggest that under such 
hypotheses, (1 .1), (1.2) will have a solution y(x, s) of the form

y(x, s) =  U(x, s) + V (v, e), (3.4)
where the outer solution U has an asymptotic expansion

XJ{x, s) (3.5)

providing the asymptotic solution for &>0, while the boundary layer correction V  
has an expansion

F(v, e)~gF ,(v)e* (3.6)

whose terms all tend to zero as the stretched variable
t —x/& (3.7)

ternds to infinity.
The term s 170, U) ( j —1, 2, •••) of outer expansion U must satisfy the reduced
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problem and linear problems, respectively,
/(* , Uo(»),;0 ) ^ ( e ) + K » ? U'o (sc), 0) =0, Z7o(l) =2/(1, 0) = 5 (0 ) , (3.8)

/(®, I7o(*), 0)E^(«) +Л(®> I7o(a>), 0)l7,o(e)Dri (a?)+sr,(«-, Uo(«), 0)С7,-(ж) 
- W e ) ,  17#( 1 ) - 5 „  (3.9)

where й,-_а is known in terms of cc, Uo(®), •••, U,-_a(ce); = у! ов3 8=o
The stability assumption (3.2) implies that (3.8) and (3.9) are nonsingular 

initial value problem, so they have a unique solution thoughout 0 < » ^ 1 . Thus, 
there is no difficulty in generating the outer expansion U(x, s) with

U(cc, 0) = XJr{x) =  Uo(a>).
The terms Fo, V , ( j = l ,  2, •••) of boundary layer correction F  must necessarily 

be a decaying solution of the nonlinear problem and linear problem, respectively

• ^ - - / ( 0 ,  V .(0 )+ F .(r ), 0) ^ ± - 0, Fo(0)-s,(0, 0 )-U o (0 )-4 (0 )-i; .(0 ),

(3.10)

^ - - / ( 0 ,  Uo(0) + r . w ,  o ) H ) - / „ ( o ,  f , ( o) + F oCt) . 0 ) F ,wdr2
cZFo
dir

■Vn(*)> F,-(0) = A j—TJj(p (3.11)
where ^_a is a linear combination of preceding terms Vi and their derivatives dVi/ 

dr, K j ,  with coefficients that are functions of-r and Fo(v), As= -4- JLALiL
8b3 6=0

The decaying solution of (3.10) must satisfy

F .( ° H F „ ,  0 ) ^ * - 0  

and, thereby, the initial value problem

^  = XĴ Q,')+ W ’ 0')dW} r> 0 > F «(0)=K 0, 0)-Г7в(0). (3.12)

Multiplying by Fo, the boundary layer stability condition (3.3) implies that

¥ J H Fo^ )l|2" F 4 o  . № Ш + М ) Л < 0  (3.13)

for nonzero values of FoO^) satisfying ||F0(ir)fl<||?/(0, 0) - U b(0)| = ||Fo(0 ) |. Thus, 
our boundary layer stability implies that ||Fo(F)|| will decrease monotonically as r  
increases until we reach the rest point Fo('y)= 0 of (3.12) at r  — co. Ultimately, 
F o(r) will become so small that (3.2) (for so=0) implies that the eigenvalues of 
/(0 , Uo(0) +Fo(0), 0) will thereafter have real parts smaller than some —lc< 0 and 
(3.12) then implies that

F o (F )= 0 (e -^ ) , >0.: : : (3.14)
i.e. Fo is exponentially decaying a s  r-»oo. Although we can seldom explicitly 
integrate the nonlinear system (3.12), we can approximate its solution arbitrarily 

;■ closely by using a successive approximations procedure on (3.12) (cf. Erde-lyi1-123),.
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Knowing Vo, w e;next integrate (3.11) for j —1 and then proceed termwise» 
Rearranging (3.11) and integrating, we obtain

^ - - / ( o ,  P„(0)H-F„Gr), 0) r , + ! , - 0, :

where

h(*) -  -  £{/,(o, o,(o)+F»0), о) [ г м  W ~ ^ r W r-M ]+*«(«•)}*•■■
is known whenever Vj and dVo/dv commute. Thus, V, satisfies the integral 
equation

Г ^ - Р ^ и ^  + У р ^ р - К г у м а г , '  (3.15)
Jo

where P (r)  is the exponentially decaying fundamental matrix for the linear system
dV/ d t —f(Uo (0) +  V,  0, 0)F  = 0, v>0, V  (0) =  I .

In  general, (3.15) must also be solved via successive approximations, though it 
directly provides the solution of (3.11) when the commutator [Vj, dVo/du] =0.

We would have to limit the expansions to finite order approximations, under 
weaker smoothness assumptions on /  and g, and we; would have the following 
result.

T h eo rem ^ . Assume:
(a) the reduced problem (3 .1 )  has a 0 (m+1> [0, 1] solution uB( x )  so that 

f ( x ,  ив (т), 0)<0, moreover, .the inner product

^ ^ / ( 0 ,  uB (0) +s, 0)ds<0

remains negative for  £+мл(0) along all paths connecting uB(0) and у (0, 0) with 0 <
Ш < 1 К 0 ,0 ) - Мв(0 )|;

(b) / ,  g, A  and В are sufficiently differentiable in
У, У', s ) : 0<ж<1, I у — F m 12 <  (Osm+1) 2, y '£ R '1, 0<s<Si},

ftn
where О is some positive constant, F m= ^  [E7) (x )+ V  fir)'] s’-,

(c) there exists a constant S > 0  so that "■ 1

fo r  dll (®> у, у', ,в )€ Д ! where f*  denotes the adjoint o f f ; <  ■> >. :
(d) the “bouAtdary layer jump” fy(0, 0) —uB(0j || is sufficient small. . i,, -
Then for each s, 0 < s< s i, problem. (1.1)., (1.2) has a solution y(x, e), which satisfies

||j/(% «)- g  a J« 8 ' - g F i (T)8'P < (O e -« )2

for  .
|

Proof Let zm(x, s ) —y(%, e) —Y m( x ,s ) .J  From the;preceding derivation we; j 
can see that the following forms hold: л
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^  f  (®, ~t Y m, s) (zm~\~Ym) "Ь С/ (x, ЙщЧ"!Гда, s)
Y m, s)Y'm- g(x, Y m> a) (3.16)

*»(0, e) =  0 (sm+1), ^ (1 , e) =  0(em+1). (3.17)
Fix e so that 0 < 8 < 8 i and define

r ( a ,  zm)  =  | M 2-  (Osm+iy

for 0<ж <1 and %m G R n> Among the hypotheses of Theorem 1, only (a) is not 
immediate.

For this choice of r, we have W  (zm) *=2zm, V  (йт) =0  and P(zm) =  21 for all 

B n. Thus, if r(x , zm) =  0, then we have |gm||2 =  (Gsm+1)2, therefore, -|^-(a5, гот)= 0 . 

Thus’ in А/ we obtain

г"= .24*4+ 2гот*4' C/(®> S« + J7’»», s ) « + F ^ )C
+д(я, zm+ Y m s ) - f ( x ,  Y m, s )Y ’tn-g { x , Y m, s )].

“ 2 +  2eM«-i- {/(ж, zm+ F m, б )< +  [/(a j, 2m+ F m, a)

-/(a? , F m, s)](F ^ ) +  zm+ Y m, s ) -g ( x ,  F m, e)]}.
By applying the mean value theorem, we have

г " - 2г!,-^ + 2 г.+Г„, « ) Ю + ® ^ « Х П )

+ -^ feA i»iI(o]-2[ i+A-Zfe s.+r„, »)(«.) I’

+JH ( f  (/*>]«>

>^ 4 ( ^ ) т а  + ' % “ ^ - ( / ) ( -г ) ] (г’ ) > Т 8||г” ||а!*0 ’ 5 > 0 -
Theorem 1 applies, and the problem (3.16 ), (3.17) has a solution zm(x, e) which 
satisfies r{x, zm(x, s ) )< 0  for 0 < « < 1 , that is, |гот||2< (О ет+1)2, or

m m 112
y(x,  8 ) - g U ^ - g F ^ | |  < ( 0 s m+1)2.

We could also consider the reduced problem1
f{x,  м£, 0> £  +  у(ж, мь, 0) =0,

«i(0)=2/(0, G) =  A(0).
Then the stability condition (3.2) and the boundary layer stability condition (3.3) . 
would be replaced by

f i x ,  Mi (a;), 0 )> 0
for 0 < a j< l and the assumption that

0 * £ /( l ,  M i(l)+ 2, O)ds>0

for all 9+ Mi(1) on paths between мь(1) and y( l ,  0) satisfying 0 <  |0[|<|[з/(1, 0) — 
M i(l)|. Nonuniform convergence ©f the solution to (1.1) would then take place
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near aj=l, depending on the stretched variable
cr= (l - x ) / s ,

and the limiting solution on 0<ж <1 would be uL(cc).
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