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THE IMPROVEMENT OF THE KNESER
THEOREM AND ITS APPLICATIONS

ZHU DFMING (iﬁ» H}J )*

" Abstract

In this paper, first it is proved that on the Mébius strip M thers is a unique periodic . |
orbit of the continuous flow f which is the generator of the fundamental group my (M), o
where f is tangent. (or transversal) to the boundary and has no fixed point on M. Then
the results of thé Kneser theorem are augmented. On the base of. these two results, the
classification theorems for M and the Klein bottle are given, which are some more
profound than those given in [1]. At last . applying the improved Kneger theorem to
s.  some continnons flows on torus, the author gets the results that there exist per10d1c orbits
the number of Wh1ch is even (at least 2), and deseribes some qualitative behaviors: of the
' orbits. Moreover, Some s1mp1e apphcatwns to the general nonorientable 2-manifold, '
particularly to the.projectiye plane, are also mentioned.

§1 Periodic Orblts of Contmuous
 Flow on Mébius Strip

Denote I=[0, 1], I'={(s, v)|»€[0, 1], y& [0, 2]} and action o (@, y)>
(1—-2, y+1).

. Usually, the quotient space M =I"/« ig called a MOblllS strip.

In this section, if no specification, we always denote by f the continuous flow
on M tangent to the boundary and without fixed points.

Definition 1. The following seven domains are named normal regions and
denoted by I, II, III, I’, IT', III', IV’ respectively.

I is homeomorphic to a closed plane annular domain, the tnmer and outer
boundaries are the only two periodic orbits and they have the same positive direction,
the w-limit set and oa—limit set of other orbit in the domain are the boundary periodic
orbits;

II is the same as I except the difference that the boundary periodic orbits have the
opposite positive directions;

III és homeomorphic to @ closed plane annular domain filled with periodic orbits;
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T" is homeomorphic to a Mobius strip M, the flow f is tangent to the boundary and

<3 e,

possesses @ undque periodic orbit which is-not situated on the boundary, this orbit
represents the gemerator of fundamental group wmy (M), it has the same positive
‘direction as the boundary periodic orbit {see Figure la); ‘
- IT'-4s the same as I', but the two periodic orbits have the opposite positive direction

(see Figure 1b);

I s homeomorphic to a Mobius strip filled with periodic orb@ts (see F@gwre le)s

IV’ is @ “half” domain of type II', corresponding to a novorientable direction
- field (seo Figure 1d). ' ST '

Definition 2. . A periodic orbit L is called a 1-periodic orbit if 4t represents the
generator of mi(M); 2-periodic f it is the square of the generator of w1 (M).

If notice that any continuous flow is orientable, then, by the classification: of

.[1] Ch:. 8. 6. 10, we can get the following theorem. B Do
Theorem. 1. M is divided by the orbits of f imto several normal regions, each o f
them belongs to one of the six types I, 1L, 11T, I, IT’, TIT'. SN
- The next theorem plays-an important role in.the paper.

Theorem 2. If the continuous flow is tangent to.the boundary of M and has no

 fiwed points,. -then there is emactly one periodic orbit representing the gemerator of
: w1 (M), and the others (at least one on the boundary) must be 2—periodic.

Proof Suppose there is no l—penochc orblh we ‘show -it will lead to a
- contradigtion. - ‘ L B L

.. Consider the o-limit set (co('y)) and o-limit set (a(fy)) of arbltrary one orbﬂ; ¥y
which is not situated on the boundary. Since there is no fixed -points-and non-
Arivial recurrent orbit, both w(y) and a«(y) are periodic orbits.. If w(y)*a(y),
~there is at least one periodic orbit which is different from the boundary; if a)(y) =
a('y), then w(y) is a periodic orbit different to. the boundary.

+ ;Bacause there are only two kinds of non-null-homotopic Jordan curve on
«M:. either the generator of wi(M) or the square of the generator, it follows that,
from the above assumption, there is a 2-periodic orbit which is different from the
:-,boundary and divides .M into a~.cylinde'r- and a Mdobius strip M.

- Repeating the above discussion on M;, we get anether 2—-per10d10 01b1t Whlch‘

\sphts up M; into a cylinder and a Mébius. strip M-~
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Repeatedly, we obtain a sequence of Mobius strips: MO M DMyD---DM,D--~.
Denote their intersection by 4,. The set 4, is non-empty, compact, closed and
invariant, since each M; does. »

Because there exists a minimal set of f on 4, and, from [3] or [6] (p. 816), ib
must be a periodic orbit; we see there is a periodic orbit LwCAw and, by the
assumption of no 1-periodic orbit, it is 2-periodic.

- For any positive integer ¢, the closure of M;~ L, consists of a cyhnder and a
Moébius strip M,,. It followsa that M, A, '

Proceeding again as above, we can get another Mobius sbrip M1 CM,,.

Let B be a transfinite number. Suppose we have got a Mobius strip M, for each
w<B. Denote 4z=. ‘Dﬂ M,. For the same reason as above, we have another Mobius
strip Mz A,. ' .

Thus, we get a transfinite sequence of Mobius strips. contained one by one:
MOM, 5 DM+ DM,DOM, 1D DMgDe-e _—

It follows that, from the Cantor-Baire theorem ([4] p. 458), there is a
- transfinite number w of second class, such that M,=M, 4=M, 3=+ .

But the preceding proof says that there should be a Mobius strip M*c M, and
M+ M, A

This contradiction implies that there exists at least one 1-periodic orbit on M.

" On the other hand, by [1], there is at most one 1—per10d1c orbit on M, so the
theorem follows immediately. '

Corollary 1. Ewery continuous flow transversal to the boundary OM has ewactly
one 1-periodic orbit, 4f without fiwed points.

Proof 1t is easy to see that M is invariant in either positive or negative
direction. So there must exist a periodic orbit L. Since L is non-null-homotopic, we
may ag well assume L is 2-periobic, and it culs down a Mébius strip M; from M.
Since the restriction of f on M, is well defined, we see that, by Theorem 2, there is
exactly one 1-periodic orbit of f on M;. The uniqueness of 1-periedic orbit on M
follows from the proof of Theorem 2.

Remark 1, Corollary 1 strengthens the results of the Proposition 6.9 of [1]
{p. 126). From the above proof, moreover, we can see that Corollary 1 still holds if
there exists a point 2 € 2M, such that w(a) <M or a(z) M.

Similarly, we can apply Theorem 2 to sirengthen the conclusion of [1] Ch.
8.6.10, IV): “there is at most one component which belongs o one of the four
types I, IT', III* and IV’ (corresponding to nonorientable flow)”.

Corollary 2. A direction field tangent to boundary and without fived point
divides M into some normal regions, exactly one of them belongs to one of the types I',
Il', III' and IV’. The necessary and sufficient condition under which nermal regionsof
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types L, 11 and II1 ewist is the ewistence of 2-periodic orbit different to the boundary.

Proif Since onrly regions of types I’, II’, III’ can contain 1-periodic orbit, the
corollaoy follows directly from Theorem 2 and its proof if f .is orientable. Now
suppose that f is nonorientable. It is easy 0 see that there is exactly one normal
region of the type IV’, and the others are of types I, II, III. Moreover, there exish
regions of types I, II and III if and only if the boundary of region IV’ is different
from oM. : _ : A

In the sectlon 2, we will apply Theorem 2 to improve the Kneser theorem and
sharpen the classification of [1] Ch. 4.2.8.

§2 The Improvement of the Kneser Theorem
and the Classification on K2 |

For u, v€ER, deﬁne transformahons on R% _
by (u, )>(u+1, v), kb (u, e)H( u, v-+1).

Denote by G the transformatien group on R? generated by % and k. The
quotient space K2=R?/G (the orbit space of group &) is called Klein bottle.

For arbitrary integers m, n, p, g, there exists the following relationship:

(th»> (k”hq) = Jtop(-Dente b
(kmhn) 1 fmmp(-L™in - : (1)

Gis 1somorphlc to the fundamental group a:(K?) (cf. [l] Oh IV, p. 137)

Let T* be the two—fold covering space of K? corresponding fo the normal
subgroup of &y (K?) generated by h, k. Then T? is a torus obtained by 1dent1fy1ng

11
DX 2]"[ 113

the opposite sides of the rectangle [—— |

Suppose f-is a continuous flow withou? fixed points defined on K2 Denote by f
the flow on T2 induced by the two-fold covering map: T*->K? from f. _ :

By the Kneser Theorem and the Lemma 8 of [1] Ch. 4.2.8, we have the
following lemma. - _ .

. Lemma 1. Every continuous flow. 'wq,thout ﬁa:ed pormts on K? hws pefmodw orbits,
as a. nov—null-homotopic Jordan curve, each of ‘them represents one of the following
dements of wi(K*?): b, b7, ¥, k™%, k**h"(cf. Figure 2).

From [1] Ch. 4.2.8 we have the-following-.lemme.

Lo gt
€< - <€ €

A A I S ' A%\

> ¥
¥
¥
3
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.Lemma 2.. If fisa continuous flow without fived posnts on K2, then K2 4 -

divided into several normal regions by the periodic orbits (one is denoted by L) of f. If
Ii represents the element h** of wi(K?), then these regions are of -types I, I, I1I; 4f 'L
s of class k*2, then they may be of types I, II, 1II, I’, II' and III'." When - there ewist
evactly two periodic orbits and both belowg to ‘the clwss k“h" the normal region has
type 1 or IT'. ' . '
In this section, we always assume that we have defined a confinuous flow
without fixed points on K2 Now we apply Theorem 2 o prove the miain reSuIt of
the paper. o E Do '
Theorem 3. I f there is no periodic orbits of class h**, then there owists & unique
imbeger s, Such thét. there are ‘ewaotly two periodic orbits of dass &k, moreover, the
vothefr peoriodic orbits (8f-ewist) must represent class k*2,
 Proof By Lemma 1 and the hypothesis of the theorem, we may assume that
there exists a periodic orbit I of class either £*2? or £*1h", IR
If I belongs to0.class &+, then K?ig cut up by L into two Mobms strips My and
‘M ;. From Theorem 2, it follows that there are- two periodic orbits L; and ILj; and
L, is the genorator of mwy (M) for 4=1, 2. By Lemma, 1, L; represents the class k*2h™,
Thus wé may as-well assume that L is of class k*'A", - ST :
Denote by 7' the regular covering space of K? corresponding to subgroup Gy
generated by k*?, i.e., T' is the quotient space of R? under the action of group Gi.
As described in Figure 8, 7T is the quotient space of the strip region {(a, y) |0<y\
i} under the action k&, and K2 is ‘the quotient 9pace of the unit square

{(w,mle[ zvenu}

under the action k. Ly and Iy (Li—hLo) are two prelmages ‘of I under the éoveri}i:é
map w: T->K?2. The shadowy région M in Figure 8 is a Mobius strip. It is easy to
see from the figure that w: M — Ly U Iy—>K?— L is'a honiéomorphiSm. Therefore, - to
~yegeatrch the periodic erbits-on -K? except-L we need only fo. consider the periodic
orbits different from the boundary of M. Now Theorem 2 says that there exists
exactly one 1-periodic orbit Ls on M, and the other periodic orbils (dénoted by L,),
if oxist, must be 2-periodic. Since the ‘abscissa increases by = along L, the image

B A P B | 4

. —————er—T _'Ilo >) L1=hLo’

y S B - . R R B .

Fig. 3
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w(Ls) of L on K? belongs to class £, And sincs T, is homotopic to Lo U Ly on M,
the image w(L,) is of class (F*'h")2=p*2 (cf formula (1)) Thus we' have
completed the proof of the theorem. :
Now we have obtained a strengthened Kneser Theorem:
Theorem 4, If f is a continuous flow without ﬁ:veol pomts on the Klein bottle
K2, then there must emist periodic orbits and each o f them represvn,ts one of the elements
of wi(K2): h*3, k*2, k*h» (n€ Z). Moreover, 5f f has o periodic orbits of class h*%,
then there ewists @ unique tinteger s such that f has emaetly two periodic "orbits of
class k**h%, and if there emists any other erivdic orbits elés, i must be of eZass k*2,
Remark 2. The following two-examples show respectively that a contmuous
flow f Wlthout fixed points on K? may have a unique periodic’ orbit of class b1
(must be two-sided and half stable) or arbitrary number of penodm orblts of class
J*2 besides two k*h* periodic orbits when f has no A*! 91‘10le orblts o
Heamglo 1 f=1(1—1), t=-(t_~.%)”, T )
6, t€ [0, 1]. If we identify (0, ¢) and (4, 0) with (1, £) and (1 g, 1) respechvely,
then system (2) defines a contmuous flow on Klem botﬂe Wh1ch ha.s a umqué a.nd
half stable periodic orbit. - 8 s
Example 2 Construct an oppositely directed homeomorph1sm f on" ;S'i—-R/Z
f(&) =1—ug, for any 2 € [O 1], where we idéntify 0 with 1 ' '
Obviously, f2(#) =f(f(#))=f(1-a)=w, V& €0, 1], and only points 0 and
1/2 satisfy f(#) =a. Thus all the pom’us on ;S" but “the ﬁxed pomts 0 and 1/2 are
2-periodic points of f. ‘ B o = -
Taking a fundamental square {(z, ) ]o<¢,‘ y<1} on z—y plane, ‘and id‘entify'-
ing the points (0, y) with (1, y), we get a cylinder H. Let S{, 8% be'the upper and
lower boundary ¢ircle.réspectively, and & the coordinate of S} and Si: Now we first,
twist the generatrix of H n cycles counter clockwise and keep ‘H- itself mvarlanf:
then identify the points of « on S} with f(o) on 83 such that H becomes a Klein
bottle K2. Clearly, the generatnx of H deﬁnes a continuous flow on K2 all orbits
are closed and: belong to class k*2 as well as two k*'%" periodic orbibs.
By & similar way, for any given integers N>0 and s, we can construct &
continuous flow on K2, such that there exist exacﬂy N+2 per1od1c orblts, where
wo are of class k**A* and N pieces belong to class 5*2.

BN
)

Using Theorem 4 and . Lemma 2, ‘we have the followmg ‘classification theorem, '

for continuous flows without fixed points on K2
Theorem 5. - Suppose f is ¢ continuous flow without fiwed points on K2, Then K2

is divided by the orbits of f into several mormal regions, and the ‘set F of wll these
normal regions has one- of the following four types: '
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1) F only consists of the regions of types I, II and III, and at least one is of type
II (corresponding to the case that f only has h** periodic orbits);

2) F only contains one element and it belongs to type I’ or II or III' (the first two
corresponding to the case that f has no h*' and k*2 periodic orbits, the last one
corresponding to K? filled with periodic orbits); '

3) F has emactly two elements and they are either of types I and II' or of type III
(coo responding to the case that &** perreodee orbits are either unique or ﬁlled with @
Mobius strip); , ' , :

4) F has evactly two elements of types I, II wnd 11T, and at loast one element of
types 1, 11 and III (corresponding to other cases). .

. Proof COase 1. Because each region of types I, II', III' contains a /**4" periodie
orbit, F only can consist of elements of types I—III when f has only A*! periodic
orbits (denote one by L). Evidently; K?—1 is a cylinder, and both periodic orbits
 situated at the upper and lower boundaries have opposite positive directions. Hence
F possesses ab least one normal region II.

The Case 2 is intuitive. . L _

Oase 8. If we cut up K? along the unique (or the boundary of the Mébius strip
filled with &= peI‘IOdlc orbits) k** periodic orbit into two Mdbius strlps, -then the
agsertion, follows directly. , : :

Case 4. Now K? has at least two k*“‘ perlodlc orblts "Ly, L,, which are not
contained i in the same one normal region III'. K? is divided by L; into two Mobius
strips M, . »aq&l,‘_M 2, .and one of them is cut up by L, into a Mdbius strip and a
‘eylinder' Thus we see F has at least one element belonging to one of the types
I—III. Since :a region of types I, II, III does not contain %**A" per10d1c orbis, F
has exactly two elements of types r— III’ :

- Corollaxy 3. If there is no h** periodic orbits, then K* contwins at least one cmd
at most two normwl regions of types I'—I1IT'.

- §3. Apphcatlon

In thls sectlon we apply Theorem 4 to a class of d1ﬁ'erent1a1 equations defined
on the torus, and give some simple applications of Theorem 2, Corollaries 1 and 2 to
nononentable surfaces, particularly, to the projective plane.- .

We still take the notations K2, f, T2, F used in section 2, where f is a
continuous flow without fixed points on: K2 Denote by L the periodic orbit of f and
T the ltftmg of L on 7. ' S !

» Lemma 8. . Let k'l and (m, n) represent the elements of w1(K?) and avl(T”)
q’espectwely, where s, t, m, n € Z. If L represents h**, then L has two preimages L, I,
on T? and they represent the same ‘element, (1, 0); of L represents k*2, then L has also
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two preimages Ly, Lj on T? representing (0, 1); 4of L represenis k**h", then L has only
one preimage L on T? and i is of elass (0, 1). |

Proof 'The first two assertions are obv1ous, we only prove the last one. Since
T? is a regular two-fold cover of K2, the lifting of L on T* is equal to the square of

L. By formula (1), we have (5*1h")?= —#*?. If we notice that the transformation k*2
‘acting on 7" is equivalent o the transformation defined by the J ordan curve of class
(0, 1), the lemma follows immediately. ' ' '
Lemma 4. f has non—ero even number of periodic orbits on T? and they
represent one of the generators of wy(T?). Moreover,
(1) If F has (1, 0) periodic orbits, then T? contains at least two frwfrmwl o*eg@om of
type 1I;
(i1) If F has emactly two (1, 0) pemod/w O'I‘b%ts, then T? consists of ewactly two
regions of type 11; .
(iii) The necessary condition 'wnder which T consists of finite number of normal
regions and each of them belongs to lype II is that F has maotly 2k p@modw Ofrbwts,
where k s od,d :
| (v) If f has (O 1) periodic orrbfbts, then thefre is @ nmnegatwe fmtegefr s such

that overy periodic orbit winds around the torus first s cycles in positive d‘b’l‘ect’bon, then
again s cycles 4n ‘negabive cbwectwn, or 20 the reverse O’I‘d@’r The (1 0) pemod/w orrbfbt of
 F has not any sp@ml phenomenon. ' '

Proof The firgt part of the conclusion is a direct consequence of Theorem. 4
and Lemma 8. The (i) and (ii) in the second part of the conclusion are intuitive,
- we only need to notice that Ly, L (the same meaning as in Lemma 8) have opposite
directions and the boundary periodic orbits of regions I and II have the same
positive direction. :

The assertion (iii) follows from the fact that if k is even, then there must exish
- Tegion either of type I or of type III. For simplicity, we may assume f,=2. Now
there are periodic orbits Ly on T?, 4, j=1, 2, such that”m;(ﬂj) =L;, where Iy and Ly
.are h*! periodic orbits on K2. Since the positive direction of L is opposite to that
of L, there exist at least two (exactly two as k=2) regions of types I and 111, no
wmatter what positive directions T4s and T,y take. _

The assertion (iv) can be deduced from Lemma 3, Theorem 8 and its proof.

‘Let X bea O"(r=0) vector field on T defined as following.

X =(X4, X,), where X3 and X3 have no common zero pomt and satisfy the
condition H:

Xy(w, ) =~ Xs(~w, y+1), Xilw, y)=Xa(—=2, y+1),

X(“‘;_’ ?/)=X<%“) ?/>’ , X(m, ""1)=X(w: 1),
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1

*forany wE[ 513 2] ye[—1,1].

- By Lemma 4, we got the followmg theorem
Theorem 6. Suppose YisaO(r >0) vector field on T"’ without s'mgular points,

: and topologwally conju gate %0, X, then Y has non—zero even number of homotopw
_pemodw orbits, and. they frepresent tke genemtor of ar:i(Tﬂ) Moreovefr the flow f dejmed

by Y has the same behawior and structure as described i Lemma 4.
Hzample 8

é%Bsinmwiysmauy,

®

g}=1+asinavweos:wy, :

|a[ <1 and B#O as |oa|
- g=Bsinmy—y cosmy, = S (4
y 1+asmmm:cosavy, ’ |

'where |a]<1 and,3+y=;é0 as a=1; B— 7%0asw—-——1

"It is'easy to see that under the glven conditions the systems (8) and (4) are

smooth, have no singular points, and satisfy condition H; (change P 1nto 2).
Hence, for each system there exists at leash a couple of perlodlc orbits.

- Smce y=0 and it takes Zer0 Value only ab several pomts, the ﬂows deﬁned by (3)

and (4) have not any (1, O) per10d1c orbits. And from y=1 as ly| = é, We see thab

~every periodic orbit has. $he’ same ‘positive direction. It follows that there are not
.'-‘any regions of type IT on -T2, ’

- At last, we give ‘an’ application of Theorem 2 and Corollaries 1 and 2. Each

" nonorientable closed surface with genus g may be regarded as a sphere with ¢ holes

to each of them glued one Mdbius strip™®. The next theorem follows directly from
Theorem 2 and its proof. L ' ' - 8
Theorem 7. Suppose f is a continuous flow defined on @ nonorientable surface

- M?. If there exists a closed region DM 2 homeomorphic to & Mibius strip, such that: f
* has no fiwed points situated in D and region D contains-a half-orbit of f, then there is

a one-sided periodic orbit of f on M.
Particularly, when the genus-of M2 is 1, we have the following corollary.

- Corollary 4. Suppose f is & contintious flow defined on a -projective plane P2. If
there emists a two-sided Jordan curve Li'suck that the fiwed points of f are situated b
the same side of L, then the condition that L is either a periodic orbit or ¢ closed
tramsverse implies that there exvists @ unique non—null-homotopic periodic orbit on P2,

Proof By [6] Lemma 4(iii), L is a null-homotopic Jordan .curve and bounds
a simple connected region D. Hence, P*—D is a Mdbius strlp Since there must exist,
fixed points in D whether L is a closed orbit or transverse, f has no fixed points im
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P2— D, Thus the existence of non—null—homotoplc (equwalent 0 one-sided) periodic
orbit I*is a direct consequence of Theorem 7. The uniqueness follows from the fact
that P2~ L* is homeomorphic to a disk. - ' .
. Remark 3. In [8], we have shown that every continuous flow deﬁned on a
2-manifold (pro;jectlve plane) has either (one—S1ded) periodic orbits or smgular
‘closed orbits if the get of cluster pmnts of the fixed points is countable.

Theorem 8. . If a continuous flow f defined on projeciive plane P? has unigue
and elementary fiwed point, then only one of the following two cases cam occur:

i) f has unigue wnd non—null—-homotopw pemoclw orrbfz,t the whole P? is @ S@mgple
-eonnected spiral region™ _

ii) f has at least one null—homotopq)c persodic orbit besides o non—null—homotopic
one. P? is cut up by the orbits of f into seweral mormal regioms, one s a simmple
-conmected spiral region, one is of the type either ' or 1I' or IIU', and the others are of
types I, 1L, III. There ewist regions of types I, II, III on P? if and only if there
ewist at least two wull-homotopic periodic orbits.

Proof Let S be the unique, elementary fixed point of f. We may assume § is
:a source, since the Euler characteristic number of P? is 1. We can easily construct a
.closed transverse T around §, and see that P?—T consists of a disk and 2 Mdbius
“strip. Then Corollary 1 implies that f bas exactly one one-sided, non-null-
homotopic pericdic orbit L.

If L is the unique periodic orbit of f, then .P? wholely is a normal region—a
:simple connected spiral region. In fact, if we denote by X the single point
.compactization of P2—1I, x(X) the Euler characteristic number, then from the

formula
2(2)=x(P*—L)+1=x(P*)+1=2,

we see Y is a sphere, so P2— L is homeomorphic 1o a disk.

Now suppose that there exists at least one two-sided periodic orbit Ly as well as
L. It follows that, from the proof of Corollary 4, L is null-homotopic and bounds a
unique simple connected closed region D. We may assume there is no periodic
.orbits at the inner of D. Then D is a spiral region, and M=(P*~D)UIy is a
Moébius strip. The flow f is tangent o &M = L;. Then the theorem is a consequence
.of Corollary 2, if we notice that every two-sided Jordan curve on P? is null-
‘homotopic and every 2-periodic orbit on M is two-sided.
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