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THE EXPECTATION OF STOPPED 
SEMIAMARTS AND REGULARITY 

AND CLOSENESS OF AMARTS

W any  Zh en pen g  <$m m * * *)*

A b strac t

In this paper the author proves that the conditions (D): sup En|»„| < °o  and (0)?

E |xT\I^<n) <oo, Vv€ T are equivalent, if (xn, &~n) is a semiamart, where T is the set of 
all stopping times. Therewith the regularity and closeness of amarts are discussed, some 
known results concerhing the martingales are shown to remain valid for amarts.

§ 1. Introduction

Let (Q, P ) be a probability space and (^l)n>i an increasing sequence of
sub-cr-algebras of fF. We denote respectively by T , T f and T  the sets of all stopping 
times, a.s. finite stopping times and bounded stopping times. An integrable 
sequence X  =  (xn) n>1 of (real-valued) r .v .’s adapted to (J&~n)n>i is denoted by 
(xn> or (x„, Yamasaki1-53 indicated that if (x„, # ”„) is a martingale then
the conditions (D): sup P|a;n| < o o  and (0): E \x v \ I (T<co)<co) V-r £  У are equivalent,,

Я

but not equivalent for mils or sub (super) martingales. This naturally raises the 
question whether the condition of martingale can be weakened? An integrable' 
adapted sequence (xn, ^~„) is said to be a semiamart if sup|P®T| < o o C4]. The 
following discussion shows that if (xn> J ^ )  is a semiamart then the conditions (D) 
and (0) are also equivalent. Therewith the regularity and closeness of amarts are- 
discussed.

§ 2. The Expectation of Stopped Semiamarts

Put
T(<x) =  {v: т £ Т , v>£r}, Vcr€P,

= v ^ T f) ^ > 0 -}, V<r£2V;
D efinition 1. An integrable adapted sequence (xn, # ”„) is a sub (super У
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sem iam artif sup(Exf) “^ C o o ,
T

Lem m a 1. Suppose (xn, #*„) is a subsemiamart. Then xn—yn+zn, n > l ,  where 
(yn, Ĵ ~H) is a submartingale, 2„>0 a.s.. I f  limEx^Koo, then l i m =0  and lira 2„ = 0

г r  n

Proof. For any n, set

yn= ess inf E (xr \ ^ n), zn=xn- y n.
T 6 T(n)

Then (y„, jF~n) is a submartingale, 2„>0 a.s. and lim Exr —0 if lim Exv< oo. Therefore
T T

lim 2„=0 a.s. by Proposition 4.2 of [3] and the proof is finished.
П

Lemma 2. Suppose (xn, Жп) is a subsemiamart. I f  sup Ех„—оо, then,

lim Exn=oo,

Proof I t follows from Lemma 1 and Theorem 3.6 of [7] that x„—yn+zn, n>  1 
and sup E x t  =  oo, where (yn, is a submartingale and »„>0 a.s.. Since хп~>Ум weП
have sup Еуп=°о. But (y„, Ж~п) is a submartingale. Hence sup(JS«/r) “<oo. Thus

и T

sup E y t^ o o  by Theorem 3.6 of [7]. Since (y%, JPn) is also a submartingale, it- n ' ' i ■ , : '
follows that Eyt"\ (wf ), and lim E y f —oo. Therefore lim E xt — oo and the assertion

, П n
holds.

Lemma 3. Suppose (xn, JF„) is a, subsemiamart. Then, for any In and any 
В 6  ^le, sup (ExvI B)"<o=>.-rercfc). ;

Proof Fix В  £  I t  follows from Lemma 1 that ж„1в=уДв+2п1в, 1 and 
<!vJ b, <^n, w>#) iS a submartingale. Hence

sup (ExvI B) -■<sup (EyvI B) ~ <  op
,  TOO "  TOO i

and the proof is completed.
Theorem 4. Suppose. (xn) is a subsemiamart. I f  sup Ex~ = co) there is

n

t G  Г such that I |®J = o o .J (Г<оо)
Proof Put O0=Q. Since lim E xf  = oo by Lemma 2, we can choose % such that

I I < > 1 .

Hence J-i, B±, Ox, B± can'be chosen as the proof of Theorem of [1]. If we define щ, 
An, Bh, Oje am1 Dje for integer &>1 by induction, then choose nk+1, Aki.i, Bk+1, Ok+1

and Dk+1 as follows. Since supj x~ = oo, it follows that lim (E xt I  a) = 00 by Lemmasn J Ok ■,
3 and 2. Hence there is %+i> %  such that ..... .....
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j ж»*+1 ^  [
J e t J Ok

X+ =̂1

Thus we can choose A k+1, Bk+1, Ok+i) Dk+1 and the theorem can be proved in  the 
same way as the proof of Theorem [1].

L em m a 5. Suppose (xn, <̂ "„) is an integrable adapted sequence. I f  supI2a4<co}

then I x $ < .o o fo ra n y v £ T .
J ( T < ~ )

Proof Assume the contrary, that is, there exists v £ T  such that

~ 2! I i(t-ic):1. = oo.
" ( т < » )  f t= l  J

Then for any n there exists Jt>„ such that
fc« г 
si=i j

Let 1г„=т;/\1еп. Then -rnG У and E xia>n. We get sup Extn — oo, This yields aП
contradiction and the proof is finished.

Now we can apply Theorem 4 and Lemma 5 to semiamarfcs.
Theorem 6. Suppose (x„, is a semiamart. Then conditions (D): sup E \x n\

<oo and (0): fJ '(T<eo)
| xv | <oo, Vr G T, are equivalent.

Proof (D)=^(0). If (xn, is an ^-bounded semiamart, then sup А?|жт | <ooт
by Proposition 1.8 of [2]. Therefore (0) holds by .Lemma 5.

(0)=^(D). Assume that (D) fails, that is, sup E\ajn\=oo. If sup Ex~ — oo, byn n
Theorem 4 there exists r  £ T  such that i \xr \ =oo. This contradicts (0), and

J ( T < « )

sup E%n<oo holds. sup like* <oo can be showed by the above assertion for (~ x n, #*„)n n
and the proof ends.

Suppose X  =  (xn, ^~n) is an integrable adapted sequence. Let
T f ( X ) = { r: r  G Tf, Exv exists}.

The sets T , Tf  and T  are directed sets to the right. But in general the ordered set 
T f ( X)  does not have this property1-33. Obviously the case of T f ( X ) = T f is 
interesting.

C orollary  6.1. I f  X  = (xn, is an L 1-bounded semiamart, then T f ( X ) =Tf.
C orollary  6.2. I f  X = ( x n, JF„) is ah IE-bounded amart, then lim E xv existsГ/

and is finite.
The proof is obvious from Corollary 6.1 and Theorem 4.4 of [3].
D efinition 2. An integrable adapted sequence X  = (xn, is said to be a

T f(X )-am art, i f  T f ( X ) is a directed set and lim E xv exists (finite).
r y (X )

Krengel and SuchestonC43 indicated that there are ^-bounded semiamarts
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converging to zero in  L 1 and a.s. which are not amarts. This naturally raises the 
question: what are these sequences? The assertion given below answers this
question.

T heorem  7. I f  X — (x„, <#"„) is an IE-bounded semiamart, then that (1) 
lim cc„(a.s.) exists and (2) (xn> JFn) is a Tf-amart are equivalent.П

Proof (1)=>(2). Since T f ( X)  —Tf by Corollary 6.1, it follows from 
Proposition 4.8 and Theorem 2.1 of [8] that lim E xx = E (lim x„). So (xn, J Q  is aTf n
T^-amart.

(2)=Ф(1). Since sup E \x n\ < o o ,  E (lim  xn) and E (lim xn) exist. Thereforen —n~ n
lim x„ exists and lim xn £ IE  by Theorem 3.1 of [3].П П

§ 3. The Closeness and Regularity of Amarts

Amarts are an important generalization of martingales. The great majority of 
fundamental properties possessed by martingales remain true for amarts. Now the 
closeness and regularity of amarts are discussed.

Define а5м=1ип xn for a sequence (xn) of r.v .'s.
П

D efinition 3. An amart (x„, ^ n) is called a right-closed amart, i f

limj* | E  (xm | # ; )  -  xn | =  0.

D efinition 4. An amart (x„, JFn) is called a Tf-regular amart, i f
lim E \x J  > lim  E \хаI.

• Tf T

Obviously, the regularity and closeness of amarts are weaker than the regularity 
and closeness of martingale.

T heorem  8. Suppose (x„, &"n) is an IE-bounded amart. Then the following 
assertions are equivalent.

(1) (xn, JFn) is a Tf-regular amart.
(2) lim E \x r \ = E \x„ \.т
(3) («,) T6y is uniformly integrable.
(4) (xrAn, JFTA„) is a right-closed amart for any r<STf.
(5) (x„) is umformly integrable.
(6) (xn, AFf) is a right-closed amart.

(7) There exists y £ lE  such that lim j | E  {y \ —xn \ =0.
П J

Proof (3)=^(6)=t>(6)=>(7)=>(6) are obvious. "We only have to prove (1)=ф(2) 
=Ф(3)=Ф(4)=К1) and (5) =>(1). Now = lim xK and x„£IE  by the convergence
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theorem of amartsC23.
(1) =ф(2). Since ( |аз»| , #"„) is also an ^-bounded amartC23, ( | te„ | , #"„) is a 

Tf-amart by Corollary 6.2. I t follows from Theorem 3.1 of [3] that
J B |a d - l im .0 |a U - l im t f [ a J .

Tt T

(2) =»(3). Since [ a;,,. | —> | | (pr.) (crgT ), from [ | ж J  -  | | ] + <  | | £  I*1, we

see that lim -  |av|] + =  0 and lim j  [ | |  -  |а;0. |] " < И т  |[|<c„| -  |a;ff| ] + +

lim | j  | a5M | — j  | xa 11 = 0. Therefore (pca) a&T is uniformly integrable.

(3) =>(4). I t is evident that жГЛп->жт(тг|) and (жтА« ) ( a w ^ e r C (ха)„^т, SO 
(а?тш J^An) is an am artby Theorem 4.2 of [3]. Since xv £ L x by Theorem 6, we 
have

lim | $ ( я * | ^ лв) -a>*An|< l im  |®т-£СтЛи| =0,
71 J П J

by the uniform integrability of (ccvAn).  Therefore (a>rA„, SFrAn) is a right-closed 
amart.

(4)=>(1). Since ( | xn | , #~n) is an amart, we see now that lim J | xa | exists. Lot 

a =: lim J  [ C0(x | and s> 0 . Then there exists % such that

a <Y> <r€T(m), (8 .1)

for any fixed v £ T f (%). Since J ^ a») is a right-closed amart and so (avAn) is
uniformly integrable, we see that ( I ^ abI, ^ tA») is also uniformly integrable. Thon 
there exists »2 such that

j  ! E (I Vv 11 ̂ л») ~ Клн|! <Y> n>n2. (8.2)
Now we choose »> m ax(%  n2) . Thus by (8.1) and (8.2)

fi -a < s, v £ T f (n)'

Therefore lim J |av | =  a and (1) holds.

(б)=Ф(1). Let a>n=yn+zn be the Riesz decomposition of (ж„)C2], where (yn, &~n) 
is a martingale, zn-̂ >0 (L1 and a.s.), lim E\ z a \ =0. Hence lim E\%r \ = 0  by Proposition

T  Tf

4.1 of [3] and Corollary 6.1. Since (a?„) is uniformly integrable, it follows that (yn) 
is also uniformly integrable and (yn, JP~n) is a ^/-regular martingale. Thus

Hm J, 1 ajo-1 <Hmj* I У* I + EjnJ I я* I < ̂ j  I Уг |

^ lim j"|oof | +  lim j| гг | =limj|o;T|.

The proof of the theorem is completed.
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