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AND CLOSENESS OF AMARTS
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Abstract
In this paper the author proves that the econditions (D): sup‘ E,|z,| < and (C):

E|2,|Icny <oo, Vv € T are equivalent, if (v, #,) is a semiamart, where T is the set of
all stopping times. Therewith the regularity and closeness of amarts are discussed, some
known results concerning the martingales are shown to remain valid for amarts.

§ 1. Introduetion

Let (Q, &, P) be a probability space and (F}),.1 an increasing sequence of
sub~o-algebras of #. We denote respectively by T, T, and T the sets of all stopping
times, a.s. finite stopping times and bounded stopping times. An integrable
sequence X = (@,)n>y Of (real-valued) r.v.’s adapted t0 (F,)mx is denoted by
(@) Fo)ns1 OT (@4, F,). Yamasaki™ indicated that if (2., &) is a martingale then
the conditions (D): sup E|a,) <00 and (0): B |@:|Lncmy<oo, Vo €T are equivalent,

but not equivalent for mils or sub (super) martingales. This naturally raises the
question whether the condition of martingale can be weakened? An integrable
adapted sequence (@, Z,) is said t0o be a semiamart if sup|Bw,|<<oo™. The
_ following discussion shows that if (@, &,) is a semiamart then the conditions (D)
and (O) are also equivalent. Therewith: the regularity and closeness of amarts are
discussed.

§ 2. The Expectation of Stopped Semiamarts

Put _
T(0)={r: v€T, v>0}, Vo€,

- Ti(0) ={v: v€Ty, v=>0}, Vo €Ts.
Definition 1. An integrable adapted sequence (x,, F,) is a sub(super)
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o

semiamart 6f sup(He,) ~H<oo,
T

Lemma 1. Suppose (w., Z,) is a subsemiamart. Then ,=y.-+2, nw=>1, where

(yw F2) is @ submartingale, 2:>0 a.s.. If lim Bo,< oo, thenlim Bz, =0 and lim 2,=0
T T n

a.s..

Proof. For any n, sob »

yn=0s8inf B (&, Z.), =0n— Y

TE€T(n)
Then (y,, %,) is a submartingale, z,,>0 a.5. and lim Hw,=0if lim E»,<oco. Therefors
- -
lim 2,=0 a.s. by Proposition 4.2 of [8] and the proof is finished.

Lemma 2. S_uppbsa (@a; F) 18 @ subsemiamart. If sap Hey =0, then

11m Ew =00,

Prroof It follows: from Lemma 1 and Theorem 3 6 of [7] that w,,—y,,—l—zn, n>1
and sup Bu}=oc0, where (y,, Z,) is a submartingale and 2,20 a.s.. Since D =>n, WO

have sup By, =oo. But (y,, %) is a submartingé,le.- Hence s%p(Ey,,)‘<00. Thus
Sup E’y,’{=_oqzby ‘Theorem 3.6 of [7]. Since (yi, F) s also a submartingale, if

follows that Eyﬁ (nT), ‘and hm By =oco0, Therefore llm Eat=oc0 and the assertion

holds
Lemma 3, SUMJOS@ (@, Z, ) is @ subsumwmart Then“ for any & and any
'BE Fo Sup (Ew,IB) <oo o R

Proof le BeF,. It follows from Lemma 1 tha.t :v,.I = g/,.I B+z,,I B, n=>1 and
'(y,.I B ﬂ' " n>lo) is a subma.rtmgale Hence '

sup(EfvaB) <Sup (E.%IB) <°°

and the proof is completed. - . .

- Theorem 4. Suppose (m,,, F,) s o subsemiamart. If sup By =co, the're is
+€ T such thatj | @, | =oc0.

(T<00)
Proof Put Oy=Q. Since lim Ha;=co by Lemma 2, we can choose ny such that
J @ >1, j oy >1.
Co Co

Honce 4, Bj, 04, Dy can’ be cﬁbsen as the pfgof of Theorem of [1]. If we define my,
A;,, Bk, Ok and _Dk for 1nteger k>1 by 1nduct10n then choose ity Apat, Bk-(-i; Cret

" and Dk+1 as fol]:ows Since supf =00, i follows that hm(Em,TI ;) =00 by Lemmag

8 and 2. Hence there is .1 >ny; such .t.ha,t R
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- +
j Brpy = 1, j— AN
C¢ o Ok - .

AThus we can choose Ay, Byry, Opp1, Dips and the theorem can be proved in the:
same way as the proof of Theorem [1]
Lemma 8. Suppose (x,, F,) is an mtegmble adapted sequence. Lf sup Bz <o,

tl_zenj wt < oo for any vET.

(1'<°°)

Proof Assume the contrary, that is, there exists & T such that

0

+ o + —
J w: = 2 ka I(r::k) = Q0o,
(T<0o0) 1/

k=
Then for any » there exists &, such that
%

2 Jw;I(T=k)>no

k=1

Let wy=vAk, Then 7. €T and Hzt>n, We getb sup Ea;,,,—-oo This yields a

contradiction and the proof is finished. _
Now we can apply Theorem 4 and Lemma 5 to semiamarts.
Theorem 6. Suppose (v,, F,) is a semiamart. Then conditions (D): sup B|z,]
n

<o and (O):J'( ).|a>q,-|<<?o, Ve €T, are equivalent..
Proof (D)=>(C). If (@, F,) is an L*-bounded semiainart, then sng la, | <oo

by Proposition 1.8 of [2]. Therefore (©) holds by Lemma 5.
(0)=>(D). Assume that (D) fails, that is, sup B|a@.|=o0. If sup Ha; =o0, by

Theorem 4 there exists 7 €T such thab L |@,] =c0. This contradicts (0), and

sup Hu; < oo holds. su;p Bat<oo can be showed by the above assertion for (~—a,, Z,)

and the proof ends.

Suppose X = (w,, £, is an integrable adapted sequence. Let

| | .Tf(.X') = {7 TETf,. Bw, exists}.

The sets T, T, and T are directed sets to the right. But in general the ordered set
T:(X) does not have this property®. Obviously the case of T4(X)=T}; is
interesting. _

Corollary 6.1. If X = (w, %,) is an L'~bounded semiamart, then T{(X)="T;.

Corollary 6.2. If X =(, &) is an L*-bounded amart, then lim Ha, evisis

and s finite.

The proof is obvious from Corollary 6.1 and Theorem 4.4 of [3]

Definition 8. An integrable adapied sequence X= (4, F,) is said 0 be &
T,(X)-amart, 5f Ts(X) is a directed set and 7}}1&9} Ba, exists (finite).

Krengel and Sucheston™ indicated that there are L'-bounded semiamarts
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converging 1o zero in L' and a.s. which are not amarts. This naturally raises the
question: what are these 'sequences? The assertion given below answers this
question. ' '

- Theorem 7. If X=(w, &, iés an L'-~bounded semiamart, then that (1)
ll;’m w,(a.8.) ewists and (2) (@, F,) is a T—amart are equivalent.

Proof (1)=>(2). Since Ty(X) =T; by Corollary 6.1, it follows from
Proposition 4.8 and Theorem 2.1 of [8] that I;m Bo,=H(im ,). So (w,, Z,) is a

T~amart.
(2)=>(1). Since sup H|z,|<co, E(lim z,) and H(lim @,) exist. Therefore
n e [

Iim iv,. exists and lim a,, & L* by Theorem 3.1 of [3].

§3. ,The Closeness and RegUlarity of Amarts

Amarts are an important generalization of martingales. The great majority of
fundamental properties possessed by martingales remain true for amarts. Now ihe
closeness and regularity of amarts are discussed.

Define a;,,=1i?i , for a-sequence (w,) of r.v.’s.

Definition 8. An amart (w,, F,) is called a right-closed amart, &f
1nnI[E(m”[f,,) — @] =0.

. Definition 4. An amart (v, F,) is called a Tsregular amart, if
llm E|w7|>hm PSR

Obviously, the regulanty and closeness of amarts are weaker tha.n the regularity
and closeness of martingale. 7 N

Theorem 8. Suppose (v, F.) is an Li-bounded amart. Then the followq}ng
assertions are equivalent.

Q) (w,, F,) is a Tregular amant.

2 h-m Ela’vl =B|a.|.

3 (m,),,ez- 4s und formly integrable.

(4) (@orn Fonn) s @ right—closed amart for any v €Ty,
(B) (w,) is uniformly énsegrable.

(6) (wn, F.) is a right—closed amanrt.

(7) There evists y € L* such that lim JlE(g/I%) —,| =0,

Proof (3)=>(5)==>(6)=>(7 )=>(5) are obvious. We only have to prove (1)=>(2) -

=>(3)=$>(4)=#(1) and (6)=>(1). Now m“=1i? @, and o,E€L' by the convergence
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theorem of amarts™,
(L=>(2). Since (|z]|, F,) is also an L'*-bounded amart'®, (|@,|, F.) is a
T'y-amart by Corollary 6.2, It follows from Theorem 8.1 of [8] thab
‘ E|o, =1}'mE|w,|=li¥1El_m7|. '
(2)=>(8). Since |2 |—>|2.| (pr.) (c€T), from [|o.] —[o0] 1" <|2.] €L, we
see thab lfipm j’[lwml ~|@s|1* =0 and I;m J[Ia;,,[— [ma|]'<1;m J[ 0| — |@0|1* +
1i11'n ]J[a:w| —g'[w,,| |'=O. Therefore (@) ser is uniformly integrable.

(8)=>(4). It is evident that @, \—>z.(n}) and (@4 no1C @oro) cer™ (@o) aer, S0
" @eany Fwnw). is.an amart by Theorem 4.2 of [8]. Since @, € L* by Theorem 6, we
have

tin | B o] Fere) ~ e al < 1 [ [0 = 2000 =0,
by the uniform integrability of (@;1.). Therefore (w;ss Fran) is a right-closud

amart.
(4)=>(1). Since (|@|, F,) is an amart, we see now thab liITDJIw‘,l oxists. Lot

a= hl,lfnj |@,| and §>0. Then there exists ny such that

Ul%l —w‘<—§—, o €T (ny), (8.1)

for any fixed v &€ T;(ny). Since @yre, Fwan) i8S a right—-closed amart and so (@44,) i9
uniformly integrable, we see that (|@yaul, Fwas) is also uniformly integrable. Thon
there exists ny such that

[1BUzl| i) = 20l | <&, 5 8.2)
Now we choose n>>max (ny, ng). Thus by (8.1) and (8.2)

j[az,l —a ) <8, TETi(n).

Therefore llgnjlwfl =g and (1) holds.

(5)=>(1). Let @,=y.+2, be the Riesz decomposition of (z,)"®, where (yn, Z,)
is a martingale, 2,>0(L* and a.s.), lim |z,| =0. Hence li,L.nE»l 2-| =0 by Proposition
T Fa

4.1 of [3] andCorollary 6.1. Since (w,) is uniformly integrable, it follows that (y,)
is also uniformly integrable and (y,, #,) is a Ty—regular martingale. Thus

5 <5 .+ <
<r1n3j|m7| +1m | 2 | =Eﬁj1w,|.
Ty Ty Ts

The proof of the theorem is completed.
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