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BIFURCATIONS OF LIMIT CYCLES
FORMING COMPOUND EYES
IN THE CUBIC SYSTEM
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Abstract

Let H(n) be the maximal number of limit cycle of planar real polynomial differential

" gystem with the degree » and C% denote the nest of % limit eycles enclosing m singular points.

By computing detection functions, tne authors study bifurcation and phase diagrams in the

. class of a planar cubic disturbed Hamiltonian system.In particular, the following conclusion

is reached: The planar cubic system(Z3) has 11 limit eycles, which form'the pattern of

compound eyes of C302[C32(20%)] and have the symmetrical structure; so the Hilbert
number H(3)>11. ’ ’

§ 1. Introduction

In 1974, ¥, Takens™ listed “all bifurcation” of two parameter nodegenerate
Hamiltonian disturbed systems on plane. But, as P. J. Holmes and J. E. Marsden™
said: “Tt is not strictly correct to speak of a “list” of two-parameter bifurcation, since
the various analyses have not been conveniently gathered in one article”. In this
paper we will give some bifurcations that have not been listed by Takens.

Let H (n) be the maximal number of limit eycles for planar ploynomial differen-
tial systems with the degree n. In the past thirty years, many results have been
obtained if n=2(Séé [81). 0. 8. Coleman in “Hilbert 16th problem: How many
oyoles?’™ said: “For n>>2 the maximal number of eyes is not known, nor is it known
just which complex patterns of eyes within eyes or eyes enclosing more than a single
crifical point can exist.” It is important that for n=3 thege problems are congidered.
As W. A. Coppel™, to use vague analogy, we have something corresponding to odd
funetions. Can we understand something corresponding to even functions?

Let OF, denote a nest of k limib ¢ycles which encloses m singular points. The sign
“5” ig used to show enclosing relations between limit cycles. And the sign “4-” is
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used to divide limit cycles enclosing different critical points. Denote simply that OF,
+ Ok =20k, ofc.
We discuss the two-parameter family of disturbed cubic Hamiltonion system:

dépending on A, w:

%W(l—cy?)ﬂhw(mw”ﬂyg—w,
R @D,

where g>¢>0, 0<u< 1. Using the theorem of Pontryag_in and Zhang Zhifen and
Melnikov’s Method, and studying detection curvs®™of (1, 1),, we obtain bifurcations
and distributions of limit cycles of (1.1), listed in Table 1.

Table 1

NPEYYE

- §2. Qualitative Analysis of (1.1),

System (1.1),.0 has 9 finite singular poinﬂs. 8¢ (0,1/~/¢)83(0, —1/~¢), 82
(~1/~/a, 0) and 8(1/~/@, 0) are saddle points; A4S (1/~/@,1/x/C), A3 (~1/
Na 1N, A (~1/Na, —1/N ), AL A/ @, —1/+/ ¢ ):and the origin 0(0,0)
are centers. For 0< w1, (1.1), also has 9 critical points S;, 4;(¢6=1—4) and 00,
0). Except 0(0, 0), all the 8 critical points lie on the curve

aw*+ oyt — (& +y?) =0,
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T acos*@+csintf * @.1

S, and A, take respectively Shght displacements from 8? and A3, as p varies slightly |
Write (&4, 1) and (€, ms) as the coordinates of critical points 4; and 4,. From
the right side of (1.1),, we have

{gi—iN a@ + [u/23/ ¢ +0 ("] v~ (m/a+n/0)], 2.9

m=1/~"¢ — [p/2~ & +0(u*)] A~ (m/a+n/e)]; '

{ o=—1/Na + [w/2~/ ¢ +0(u®] A — (m/a+n/c)], (@2.8)
ns=1/~"¢ + [w/2Na +0W) A~ (m/a+n/c)]. o

Since the vector field defined by (1.1), is invariant under a rotation overt s,
critical points 4 and A4 have similar formulas. It is easily seen that if u—0 or A—>

(l”—+i”-), then Ar>A?, 8>S0 (5=1—4).
| System (1.1), has a ﬁrst integral

 H(s, Y) =—ax —cy4+2(m +oyf) =k, = 2.4)
By use of polar coordinates, (2, 4) becomes ’ :
_ 1+~/T—h(acos O +csm0) def 1+\/V(0 DR :
ri=r*(0, h) = acos*f-+csin* @ u(9) (2.5)
Denote 7%= +\/ 4 ,ri= 1'«—;/? . With 2 varying, the quartic algebraic ‘curves
defined by (2.4) can be divided to 4 ‘ ,
types (See Fig 1), i ‘ .

(i) {I%: —oco<h<l/a. It is a
family of global closed curves enclos-
ing all the 9 singular points. b

(i) {I3:0<h<l/a. Tisaclosed ===fA{4-{~€
family surrouding the origin 0(0, 0). \\

(i) {7 1/e<b<l/e. Itis two
closed families surrouding respectively f'/). ¥,

‘three singular points A2, A3 and §9 or
9 and S9
Gv) {I%}:1/e<h<1/a+1/c. TIhis

four closed families surrouding respe-

= o aoiff e §

ctively one singular point A (3=1—4). ) :
For h=1/a, (2.4) is four branches . Fig. 1

of heteroeclinie orbits connecting two critical points S§ and 8}. For A=1/¢, (2.4) is

two homoelinic orbits with a figure of eight, connecting respectively in §? and §%.
As h inoreasing, the curve I”z‘ extends outside, but the other curves constrict

inside,
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*. By means of the definition of detection functions, we consider four detection
funotions A, (=1 (h) /o:i(h) (6=1— 4), corresponding to {1”‘} Let g(#) =meos™d+

:nsm“ 0 From Fig. 1, for 4=1, 2, we have
w/2 -
W® =" 1@, mg@/[] 126, D, (2.6)

where 6=1, ri=ry, —-00<h<1/w, §=2, ‘7'2—-/]'_, O<h<1/a
For 4= 8,4, We have .

am =" - ) 9 @8 /(" (v -a2)a0
_ Jvaf(m 2\/79 " Jm(h) \/— a9, 2.7

ot U 0 U

wheré 01(7&)"=%- are cos{[Z( “_}l;c —ao)i/af (@—¢)]/(a+0) }, and if4=38, 03(h)=a'v/2,

1/a<h<l/e; if 4=4, 1/e<h<l/c+1/a,

04(h) =—%‘- a,r,ocos{— [2( a;-}!b—o ——ac)i/,2+ (@—c) ]/(w+c) } |

From (2.6) and (2.7), we easily see that every Ai(h) is a one-valued and
differentiable function when A varies in its domain. Using-the theorems of bifurcations
for closed orbits and homoolinic or heteroclinic orbits”, we have the values of

parameters related to global and local bifureations as follows:

b= (1/a) j 2 ( g(@)do/ 26, 1/a)do

=[m (21,+21, - _i— 1) + (n—m) (214+219— L, /(11+I5), @.8)
Ba=ta (1/a) = j:”' (6, %>g 6)d6 / J:’” 200, 1/a) @b
- [m (27,-27, -1 1) + @ -m) (21,-21,-1 12)] / (Ty~Ty), (2.9)
b= o) =[ [ VTG TR 9@ @) /[T VT T/ (0)) a9
" =20mIy+ (m—n) Is] /I, (2.10)
T (e 2«/V(6 1/0)9@) 49 /(7 ~VE, 1/0)
=hs(1/0) =a(1/0) —J 0:(1/0) 2(0)c / J 01(1/0) u(#) - df
=2[mI8+ ('n—m)Iio]/Ie, (211)
Bt () =2( ), - @12
where I, — I are following integrals:
w/a  df /2 gin?f
Ii:Jo m’ Iz:j’o u(g) b,
(w2 df : @/3 gin®@
L=|" <y L) ey

~

f

r/z NV, 1/a) 44

_(* NV, 1/e)
o ) ““j T,

L oct/o w(@)
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e[ TCTD gy J«f/z vV(f(g)l/o)
01(1/0)
=2 NV (@, Taysin®g | _ (7* ~/V (8, 1/0) sin?
~[ zo W T fo 1

These definite integral can be computed exactly by caleulus or computer,

§ 3. The.Case of m—~= —1,n=1

Consider the system with numerical coefficients:
dw

o —ya- 2‘)+/wo(y ~a? =),
: B.Nu
B o (120%) 4y (g~ 5.

For (3.1),, 9(6) =sin®§ — c0s? = — 008 20, u(6) =2 cos* @+ sin g,

6:(1/¢) =-;— arc cos %— _
Using (2.8) — (2.12), we have 3 -
bi=1(1/2) =1.7682/2, 69237 0.654885,
bo=12(1/2) = —0.0819787 /0, 496508 = —0. 0644079,
53 =1s(1/2) =2 0.448794/1.09794=0.817528,
ba=ns (1) =As(1) =2%0. 26425/0 496482=1. 06452

- b= (8/2) =1.

Olearly,. b>b5>bs>by>ba. Write #() =2sin6+ cos*d, 7(0)—(1—&(0)}&)%..
Lemma 8.1. 2,(R)>0, Jim g (b) = +o0, lim iy (h) = +oo.

h1/2—0
Proof Since gs(h) is the area inside I, we have @, (k) >0. To prove Ay(h)>0,
it suffices to discuss iy (h) >0. Note that

P () = jo " 4 (—00326) cz0=jo 14 (—c0826) 36 +j°’;: 14 (—cos 26) d6.

By using the transformation § =—;£ ~6 %o the second integral, we have

P () =r a 00820 [u(1+\/ru)+u(1+\/fv)] [cos26’+u\/fv —u\/fv]dﬂ (3.2)

Whenae( ) 008200, u(0)>#(d) and 1—hu>0, 1—hir>0 for all AC (oo,

1/2). It follows that u~v » —u~/ v >0. Henoe, the 1n’ﬁegrand of (3.2) is posﬂnve So
i (B) >0,
- Similarly, we have - o
w/2 /4
‘Pi(h)=J 2(9)(19 JW Ut (1—]—\/’2)26;—%(14-\/’()) (33)
It is evident that the ratio of the integrand of (3.2) to that of (3.8) appronches
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+ 00, ag hA—»—oco, Thus 11m A1 (k) +00. We see that

o ==["" SL, = [ L)oo g
e 8) = A ) —ha ) g (WY e ). (3.9

If h=1/2, =0, then v(f, h)=1—h(2c08*d+sin’g) =0, It follows that integrals
o/ N o/ _ -
L ’ dd/~/ v and jo ? d9/un/v are divergent when A—>1/2 and §—>0.

L (B) = A () g (B) = jo 0;?92)9 9+ j:” Z"j%? d6+2a (h) jo”‘ 2:'1/9? '

r__{”"/g 00526 d0 . J‘“/” cos20 d@—l—?\.i(h)J/z do ]

0 (9) w/4 ’U:\/fv | NS
+U:* Z‘:S/%a_ d@%;(h)jb’.” _2;%_] (3.8

In (8.5), three integrals in the first square brackets are conver gent, but two integrals
in the second square brackets are divergent if A~—>1/2—0. So h'm 7\,’1 (h) = +oo.

In the same way as the proof of Lemma 3.1, we have the follz)Wlng lemma,
Lemma 3.2. M(h)<0 11m A,z(h) = — 00,

Lemma 8.8. A;{(%)>0, hm 7»3(h) + 00, hm}\,a(k)——-oo

1

Proof For h& (1/2, 1), s (h) >0, we prove i3 (h) >0. Since 6 (h) <——arcuos-?;«

<w/4, we have
w/3 .

0:(h) u2
_["* —2c0s20 ,— w/2 20820 '
J' om U Vvt J /4 u? Vo dd
=zj 05 26 ] Vi \/— |as-+ f‘(h) 00520 /v dl
' u?

—af 2\/'0;2\/—00529&9—{—]&()00820\/ @, (3.6)
0 UU

T4 is easily soen that u?~' 2 —u?~/ v >0 if € (0, w/4) and A€ (1/2, 1).

From (8.6), it follows that yi; (h) >0. Thus, Az (h) >0.

» wa d9 o (w2 cos2f
P s (h) =~ J’o PN ¥a(h) _Je‘(n) u v 9. 8.7)
If 0=w/2 and h=1, v(d, A) =0, . 11123+0 6:1(h) =0. Two integrals of (8.7) have

singularity in §=0,(h) and §=w/2 as ~—>1/2+0 and ~A—1-0, We have
' g () =[5 (h) — s (B) @3 (B) 1 /s (B) (8.8)
Take 6,: au/4<ao<.”2£ such that |c0s26o| =0.8. Thus,
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P (h) —Ag (R) @5 (k) =r/2 cos 20 o+ 3(}5)J w2 G

0 un/ v om 28 v
_[{* _cos 26 j dg
U om U d0+1s (h) 0x(h) 2«/_ ]

+U:°’2—°%‘?—ida+xa(h)j%’” o= ]

If h—>1—0, integrals of the first square brackets are convergent. Consider the
second brackets. For § € (90, w/2), (—Q%)—)>l, —c0s26>0.8. Hence

Y [ o[ [ Y. 6o

Because lim ——?\.3 (h) =—-><1 06452<0.8, the right side of (8.9) approaches —oo as

=10

h—> 1-0, Since lim g, (h) congtant, from (3.8) hm Ag (B) = — oo,

h-1--0

Similarly, we have hm Ay () = —oco,

By using the analogous me’ohod We can prove the following Lemma.
Lemma 3.4. A.,() >0, ;.hino?”‘* (h) = — oo,
-1+

- Note that in saddle points 83, S, and 83, 8, the saddle values ¢4,,>>0 and 03,4
<0, The above conclusions of A;(2) (§=1~4) conform to information obtained
from these saddle values. |

By virtue of preceding discuss and differentiability of detection funchions, we
can obation some local knowledge of detection curves. Usmg computer to determine
global detection curves, we have the result in Fig 2. By using the theorems of (61,
it can indicate the number and positions of limit eycles of (3.1),. Hence, we have

the following theorem,
‘ pA

) f l
”‘____,.._ l‘.__ | 1.0g283

"""'",:'—"l '_'""—9054
fi- - k- --Tobzms
e »h
F-o.'s l 0.13' [} -0106%079
| hay. '\"5’;
=

Fig. 2 Ditection curves of (8.1),(m=—1, n=1)
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N=1.06452 +0C} !

A>1.08258 +ocf)

A=1,08258+ o)

ioﬁéﬁz{oqo<i\<m8£58+oqb

A=~0,0644+0lf) -

Fig. 8
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Theorem 1. For fived u, 0<u<l, as the parameter A wvaries, System (8.1),
has the bifurcations as follows. .

(i) IfA>b3=b3+0(uw)=~1. 08258+0(/.o) then theq*e em@sts one unstable Zfz;m@t
cyele of (3.1), with the distribution of Of; s L

(ii) If A=03, then there ewist 81imit cyclesof (8.1) ,with the distribution 05D 20%;

(i) If be=0,+0(w) <A<Db}, then there ewist B limit cycles of (8.1); with the
- distribution 0§203;
Gv) If b5=55+0(,w) <A<y, then theo*e ewist 7 Zfam@t cyctes of (8. 1) » With the
- distrébution O3D2[035201]; ’ . e

(v) If by=bs+0(w) <A<bs, then there ewist 8 limit cycles of (3 1) “ /w'z,th the
distrébution O3D20%; '

(vi) If bi——51+0(/.a) <7\.<b3, then thew ewists one unsiable Z'bm'bt cycle of (3.1),
with the distribution Of; '

(vii) If by,= 1*—|—O(,u,) <A<LDb, then there ewist two limit cycles of (8.1), with
the distribution OF

(viii) If A=~by,, then there ewists one semistable limit cycle of (8.1), with the
distribution OF; ,

(ix) If O<A<by, or A<ba, then System (3. 1) u has no limét cycle.

(x) If by=bs+0(uw) <A<0, then there ewists one limit cyole of (3.1), with the
distribution OF.

Bifurcations and phase portrails of (3.1), are shown as Fig 8.

§4. The Case of m=1,n=-8 =

, OOnsider. the system

gz =y (1—9®) + pe (a? —3?/2 ?»),

a :_(4,1),&
- = —.w(l—?w +w/(w —3y.—7\,),
Note that for (4.1),, g(ﬂ) 4 cos?@ —8. Computing (2 .8)—(2.12), we have
b= (1/2) ~ —8.94528/2.69287 = —3.82245,
Ba=1s(1/2) = —0.0978258/0. 4965508 = —0.19708,
Bs =g (1/2) = —2 21184/1 09794 = —4.0291,
Ba=Ag (1) =As(1) = —1. 19281/0.496482= —4. 80305
bs=1e(8/2) = —5.
We see that bs>b,>0,>b,>bs. For the detection func’nlons ?w (h) (@ =1-4) of “4. 1) s
we also have following lemmas. - : :

Lemma 4.1. M (%)<0, l1mx1(h)——w l]m xl(h)=-oo

h—>—oc0 ~»1/2—0 -
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. _&Proof Since

>0 for 0<0<m/6,
) ~4c0s*0 -8
SRR . A 9(0) =deos (<0 for m/6<0<m/2,
letting g (4) =4sin90 8, we have '

0 . v x/6
+r/2 g<0) (1:;\/',;)2, 4.

%/3

@/0 0)‘1+\/—)2‘ w/8 (8 1+\/ 2
=J g( ('u,2 v ‘MJ g()( O

' (4.2)

For the thitd integralof (4.2) , by changing the variable 5%—”2?——0, 4.2) cbnverts into

= [ 10D | 56) <1£v'z‘>*};w

JW/S 9(0)(1-1—\/—)2 . - 4.3

w/6

. H0€(0,x/6), thon u(f) >u(d). For h>>0, ~/ v <~ o, it follows that
@g(0) L+~ ) 4§ ) A+~ TV < (O) (14~ 5) g 0) +5 (O)]
' = — 2 (0) (1+~%)2<0,
For h>0, v >~ , we have
a2g(6) (L+~0)2+u2g () (1+ v )2
<] | BPA+~ D)2 —ut @+~ T )]
=1g@® A+ Vo) +ud+v )] [— (w—) — (w5 —in/ )] <O,
So the integrands of (4.8) are negative for h€ (—oo, 1/2), namely, i (k) <0. Since
01(h) >0, M (h) <0 is proved. |
Imitating the proof in Lemma 3.1, we have lim Ay(A) = —c0, To prove Lim M (A)

h—co ~1/2-0
?

= — o0, We See thatb

CH®=mmem =]~ L8 a j”’” SOB oy [ D]

u@) w8 u o /6 2/
(5 g(8)dh w2 gy |
+[ Jo u\/—fv—,—l_%i(h)jo 2\/7]' -<4.4)

For all h<<1/2, the part in thefirst brackets of (4.4)is bounded. Ash->1/2—0,inf=0
the integrands of the second brackets have singularity Because g(8) >0,0 € (0, /6)
lim Ay(h) =—38.82245, hm K2 () =2 69287 it follows that Hm Aj(R) = —oo,

:and R->1/2—0 h~1/2~0
Similarly, we have the followmg Lemmas.
_ Lemma 4.2, A (k) <0, ]im ?»Q (h) = oo,
Lemma 4.3. 2s(R) <0, ]Jing 07\.’ L(h) = — oo, hlifnbké (h) = +o0,
Proof The first and second conclusions of the proof are similar o that of Lemma
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4.1. Leb us prove the third part. Because

taking 0o with w/6<0,<w/2, such that|g(8) | = |4cos?d —8|>2.5, from (4.5) we have
. 80 , flo :
B -ra by =~ [ LOB g gy (" G ]

oty un v um 20 0
_[** 9&)df w2 _dd
+[ J‘Go u\/—’v— +?‘J3<h> jOo 2\/—’1—; ]. (4'6)

If h—>1—0, then the part in the first brackets of (4.6) is bounded. Consider the p@rt

in the second brackets, we have

w2 —g(6)dd jm d9 _ (%3 2.5d9 . (=2 df
I uo e, 5y g vt v G
Since hﬁfgoj23(i>=%x4.80305<2.5 and, as h—~>i—0, the integrands of (4.7) have

singularity in @ =m/2, the right side of (4.7) approaches +oo as A—>1—0, From

i}_‘gm K2 (k) = positive constant, it follows that lim Aj(h) =+ oo,
— h->1—-0

Simz‘larly, we also have the following Lemma.
Lemmam 4. 4. )\, (%) <0, liino A (B) = +oco.
: h->1+

It is eagy t0 see that in saddle points 83, §» and S, 84 the saddle values ¢4,5>0
and o3,4<0. The conclusions drawn from Lemmas 4.1—4.4 also conform to the
information given from saddle values.

To sum up, it is similar 0 the discussion in Section 8. We obtain detection curves
of (4.1) shown as Fig. 4. On the basis of the invariance of vector flelds under a
rTotation over , by the behaviour of the detection curves and the theorems of [6] we
have the following theorem. '

'of ~—
4 ~0.40703 ol

T T T ~0.206039

Fig 4. Ditection curves of(4.1),(m=1, n=—3)
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A<-~5+0(f

~5+O(MI< A< ~4.80843] A=-4.80843 +oiy

AR O0< A< B0t ol

3354 +ef<A<-0.206039

E><0)

Fig. .5
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Theorem 2. For fived p, 0<u<kl, as A varies, (4.1), has distributions of
Yimit eycles as follows.

(i) Ifa<bs= bo+0 (w), (4.1) , has one stable limit cycle with the distribution of Cy. -

(i) If bs<A<Lbg,=bs,+0(u), (4.1), has b limit cycles with the distribution
of O5>40L. -

(iii) If A=bs,= —4.80848+0(u); (4.1), has T Wimit oycles with the distribution
of 0§o2[{0io201].

(V) If ba=by+0(u) >A>bs,, 4.1), has 9 limit oycles with the distribution of

Oio2[08o20%], |

(V) If bi=—4. 794:18—!—0(;1,) >?\,>b4, CR 1) has 11 limit cycles with the distribus
$ion of O3D2[03D0E].

(vi) If A=10by,(4.1), has T limét oycles with the d@simbutq}on Oio2[0>201].

(vid) If by=bs+0(w) >A>bi, (4 1, has 8 limit cyoles with the distribution
09320’3.

(Vm) If 61—51+0(/,o) >7u>b3, (4 1) u hws one stwble l@mw cycle fw@th the
distribution O,

(ix) If bj=—8.815484+-0(w) >A>bs, (4.1), has two limit cycles with the
distribution O3. ' - o

&) If A=0i, (4¢.1), has one semistable limis cycle with the distribution OF.

(xi) If A= 62*—b2*+0(,u,) or O>?\.>bz—52+0(,u,) (4.1), has one limit cycle
with the distribution OF. :

(xii) If ba>A>bs,, (4. 1) u has two limit cycles with the dwstmbumon 0.

(xiii) If bs,>A>Di ox A0, (4.1), has no limit cycle,

In Fig. 5, we give the bifurcations and phase portraits of (4.1),. From Theorem
2 and Fig. B, we may come fo the following conclusion.

Theorem 3. For the planar cubic system (E3) the Hilbert number H(8) =11 and
limit cycles of (Hs) ccm-._ form the patterns of compoundeyes and have the symmeiric
Structure. -

We would like o thank professor Yo Yangqgian for his valuable suggesfions,
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