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THE PERIODIC HARRY-DYM EQUATION

Wane CuNQr (24 2)*

Abstract

The development of the inverse scattering transform (I. S. T) has made it possible to
golve certain physically. significant nonlinear evolution equations with periodic boundary
conditions. Date and Tanaka!® have considered kdv equation; Ma and Ablowitzl®! have
discussed the cubic Schrodinger equation. In this paper, following closely the analysis in
[2, 8] the author considers Harry-Dym eqution

(@®)s= — 30y @
where q(#, t)is periodic in # with period w for all time ¢(w, t) =q(a+m, 1), g(®, ) =7"1(g, |
>0 _

§1. The Direct Scattering Problem

‘We consider the eigenvalue problem
broe=—Eq* (@) p1, E=F. ' 1.1y
We denote the solutions of (1.1) by O(z, x, ), S(ax, #, £) which satisfy '
0(%, o, £) =8¢ (%, %, £ =1,

O, (o, ®o, &) =8 (w0, o, &) =0, (1.2)
From ¢(#+) =g (x), it is easy to show that :
@(w-}-av, Zo, f) =@(w: %o, g)TQvO: f)) (.‘"3)
. O(w) Lo, 6) S (w; %o, 5)
where 20 0=(0,0 0 % o)

| T (wo, &) =D (@wo+mw, @, £)-
Using (1.2), we obtain det 7'=1. ,
Let m be an eigenvalue of the matrix 7. Then
m2— (br T)m+ det T=0,
i.e. - -
mi— A(E)m+1=0, 1.4y

1

where 4(¢) =0(=, + w, o, &) + 8y (wo+m, 20, £) « Liob < : > be an eigenvector belonging,

2
to m. Then solution
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u(@, §) =v10(w, @, £) +v28: (2, @0, §)
of (1.1) satisfies . :
u(w-+w, &) =mu(e, £). (1.5)

By (1.4) and (1.5), we have
u(@+m, §) = tu(e, () ==+2.
Next we desoribe a series of results™,
(i) O@o+m, 2o, £) and S (wo+wmw, wg, £) are entire functions of £, therefore so
is 4(8). |
(ii) Zeros {£o, &1, +-+|ordered from left to right} of 4°(¢) —4 and zeros {ry, rs,
o-orderd from left to right} of S'(wo+a, @, £) are real. |

{&£@-1<0}=0 7,

{&: £ -4>01=U I,
where Io= (—o00, &], I;=[€aj-1, £a7], T 5= (Eas_a, Eas-1), j=1, 2, +--. All intervalsare
finite with the exception of I,. In theintervalJ;, all solutions of (1.1) are bounded;
in the open interval I3, (1.1) has no solution that is bounded; when £=¢;, at least
there is a bounded solution of (1.1). Therefore the intervals J; are called the zones
of stability, the intervals I; the zones of instability.

(iii) £o, £sj-1, E4 are zoros of A(E) —2 and us_s, E4i-2 are zeros of A(€) 2. These
zeros are simple exoépt for the cases &4 1=E4 O Es-3=Esy-a When these zeros are
double. 1, €1, j=1, 2, ---,

Eo<<E1<riKEa L s <ra<Es<<e o <Ly a1 <<€y <L e,

In the following we consider the case when finite zones of instability I; degener
ate t0 points except exactly N of them. We call such potential g (#) N-band potential.
Renumbering them, we order these I; and r; from left to right

Lo, Iy=[Eni-a, Eail, 0‘4‘€Ii,_ J=1,2, .

§2. The Inverse Scattering Problem

Introduce the function ¢s=ds,, and rewrite equation (1.1) as follows

(o o) o

Making the transformation
$=gF ()™ OBY, £, @2.2)

where B= < —t v >, P =v<4'1>, 0(x) = r g (¢)di. Following the transformation
kg (@) kg (), 2 & |

(2.2), (2.1) can be written as follows
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0 —qw/2.q)
—g./2¢ —2ikq /'

Solutions f= < :;:1 ) and g=< gi') of (2.8) which satisfy
2 g2

f@o,' o, k) =< ; >: 9'(“/'0-,‘_‘ o, k) = < ?_)

are equivalent 0 integral equations :
[Feta, a0, 1= 1+ (- fzolt

f}a (m, o, lc) ~=6—2zko(t)j . :é%@%m“)fidt

&o

o=, A=< @.9)

91(a, o0, 1) = —j (/20) 91,
and

ga(a, mo, k) =e 2’7“’(‘”[1 j. (ﬂg /2q) 2% ®g, d¢],
By use of the method of successwe apprommamons it is easy o derive the followmg
lemma. ' '
Lemma, Let () be an enough smooth function, &=k + @702, 702<0 @ € [a, wo+
@]. when | k|—>o0, we have the following asymptotic series:

(g:)® 1 2 (o) gw(‘”)%(wo) ¢~ 2iMo(e
Fale, @0, b) =1+ sucj g di-: 16]09[34(@0)' (@ ¢ (wo) k”]

__1 (qm(@_qa(wo)) 1 /L., g ’dt) +0(1 )

8282 \¢* (@) q¢*(wo)/ 128K\ B
Fo(o, a0, 1) = (e — L onone)
— 1 ww( )___ 2%( ) -aiko (e Qa:oa(wO) ZQg(w )
8k* K%“(Z) 4(;)} ) o )( q* (@) g“‘(m;) >]

1 g.,(®)(° Qt 1 s (o) —mke(w)J __92_ - _l_
T (@) e g T B g lae) o ‘ZHO( W )

1 (g.() g~2me@) _ do (o)
gi(m %o, k) = 4@]0 <g (w) é.w g2<w0)>
1 (9s(®0) | go(@) o~ 2%0(@) ® g
+ 32k2<g ) T @) ¢ ). e
1 T( geo(@) 2% (@) ,-simg(@ _ { oe (o) 2% (o) __1___
T8k [< q% (@) q* () ) ’ ( qs_(wo). q* (@) >]+O (Ia3 )’
2ike(a=) 27;769(0;) 2 2 ’
= p—2ik0() __ Qt - g
93(@, @0, b) =&~ 8k J Tk o (f rd ‘Zt)
+ 1 ( ga(@o) o~ 2koe) _ Jo (@o) 9a (97))
16k% \ g*(2o) 9* (o) ¢* (@)

_ g2 (g5 (@) _ ga (@) 1
395 (g4<m) g"‘(wo)>+0 (k3 )-
From (1.2) and (2.2), we have
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0, 50, &)= LB 11,@) —f @) 1) +95@],
29* (w)

8o, an, £) = — L@ s f2<m>+gi<w> B@)],
27041 (w)q(aso)

8, 20,8) = (L2 ) o L£2®) +F2(0) + ga(6) + s @]

Using the lemma, we get

4 (§) =4[ 008" O+ - sim kf cos 1~ 64/0‘4‘ (cos® b9 —sin* B)o* | +0 ( 2;3219),
2 =__..l__ 2.2 1 Qw(wo) 9
82 (wo+m, @o, £) Wy ( )[sm 0 — 4k sin 5 cos b+~ e )sm 10
ks
ey D)

- qt Qoo (%0) _ 293 (%o)
where 0=0(2+®), O= Lo e dt, D Pl g

Using asympotic estimates of 42(¢) and 8?(wo+, @0, - ), we find that

s-p@)  HETm
SHCEEA N | P

> 4¢%(wo), a8 |k|—>o0,

4____ A2 (5) II(§ "'i)
=1 is.an entire function of ¢, by Liouville’s theorem,

S%(wo-+, o, f). H(f—fi)

Since

we can conclude that

ﬁ(f —&)
4—LE) _4p0
8% (wo+-17, wo, §) 49° (o) m for all &, 2.4

Using the asymptotic forms of 4?(¢) and 82 (o -+, %o, ) , cOMparing the cofﬁcmn‘ii
of the (1/¢) term in (2.4), we obtain

Geo <wo>a~3<wo>=2&a—2%fra. 2.5)

Changing the point @ to wo+-dwy, We get O (w, wo—l— day, £). Using the Taylor 8
theorem, we have
D (w, mo-+dmo, &) =D (&, mo, §) (I +Q(wo) dwo) +0((dao) ™, 2 -6)
where Q(2o)is an unknown 2 X 2 matrix. Since @ (x, @o-+day, £)is a solving matrix of
(2.1), Q(«y) is independent of «.
Replacing @ in (2.6) by «-+& and using (1.8), we get

aT( 0y §> e L — .
——%‘)—-—TQ Q1. @.7)

From (2.6), we obtain Q(z,) =Q5¢° (@, o, &) | s=co It is casy toderive @, (s, v, E)
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5

. 0 -1 0 -1
=0 (z, u,, £) <§g2 @ 0 > Therefore Q (o) ==< (@ 0 >

By (2.7), we got ?Aé%‘l’—-@—=0. Hence £;(j=0, 1, :--, 2N) is independent of .
. ~enc
Taking the square root of equation (2.4), we see that

S(w0+av; %o, E) — G/E<§—¢‘)
WEOE a6y €6

where the square root is defined so that the real part of it is positive and o'= 1,

(2.8a)

Using (2.7), we get

Kt T, o0, 1) 5, (@otw, @y, 1) ~ 0@+, 2y, 1) =)/ PGy —&  (2.8b)
0

with a, =1, Combining a differentiation of (2.8a) with respect to 2, and (2.8Db), we
show that

i, sigtee, ‘/lei(w&) ,

d{vo T ;;EJ[(q'j_()'-i) (2.93:)
j=1, 2, %0y N; o= +1. Then
H(‘ra gz) '
g(wO) = i d/rj (2'91))

dwo ¢

2%0‘5 JE)(!I‘,- - f,,)
From (2.9b) and (2.5), we may get the differential equation of r; with respect to .
This gives the motion of r; with respect to ,.

§3. The Time Depedence of Spectrum

Associated to equation (I)and the vector function ¢ of (2.1)thetime dependence™

261, () —4r (z) \©
$i=N, N =<2§frw (@) +48% ()  —2Er, (@) . .1
For the solving maitrix of (2.1), we have
By (o, t, &) ~ND(, t, &) =B(a, 8, £) 4, (3.2)

A
where /1=< ;) is independent of a. To keep @ (wy, ¢, ) =1 for all time we take
i

A =—N (wo> .
Replacing # in (8.2) by =, and using (1.3), we obtain
.%t@=m_/m‘n - (3.3)

From (3.3)we have —2>< A@) =0, Therefore ¢;,j=0,1,-,2N,is time independent.

(%) The ¢ of formula-(45) in [4] should be 2k%r,,+4%%0.
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If ¢ (&) is an N-band pobentiai initially, it will be an N-band potential for all time 2.
Using (3.8), we get

aS(wo—;;'ﬂ, 3, &) N =4q‘,rr5cr’,'~/A'_ 2(r)) —4 (@), - (3.9

o}j=+1. Combining a differentiation of (2.8a)with respectto § and (3.4),we conclude

AL
Y

A
dry _ " 80'4"‘5\/&(’7‘5—&)
dt L (rj—or) 4

5§ :

(3.6)

j=1,2, e N; oy=%1.

- For an N-band potential periodic Harry——Dym equatlon (I) can be solved by fol-
lowing procedures. First, we solve the equatipn (1.1)1%0 get spectra £, «*+, £ax and ry,
g, <+, 'y a8 £=0, Second,' considering these r;(z) as initial conditions at t = 0, solving
equation (3.5), we get (s, £). By (2.9b), we can obtain the solution of the periodic
Harry-Dym equation g («, £) with N-band. |

On the other hand, because an arblﬁrary periodic potential can have mﬁmte
number of zones of instability I;, here we give a method $o find an N-band potential

for the equation (I). At a certain point w,, given Teal &, 7, 7w and riy, that satisfy
properties in part 1 as boundary conditions, then solving the third order systerm of
7;; we can obta.in »;(w). By (2.9b) wereconstruct the potential ¢(z), this ¢(x) is an
N-band potential at =0,
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