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NECESSARY CONDITIONS OF L-CONVERGENCE
OF KERNEL REGRESSION ESTIMATORS™

SuN DoNGOHU (5] & 47) **

Abstract

Let (X1,Y1),e+ ,(X,,,Y,,) be iid. and R?x R-valued samples of (X,Y). The kernel estima-
tor of the regression function m(x) AE(Y | X ===) (if it exists), with kernel K, is denoted by

m(o=Fr(B2) /SR (F2)

Many authors discussed the convergence of m,(#) in various senses, under the conditions

n =0 and nhd—>co agn—> oo, Are these conditions necessary? This paper gives an affirmativea
nswer to this bprolemuithe case of Lj—conversencs, when K gsatisfles (1.3) and
E(|Y|log*|Y|)<ceo. '

§ 1. Introduction and Results

Let(X,;,Y,),é=1, -, nbearandom sample from the (¢-1)~-dimensional distribu-
fion of (X, Y ), where X is a d-vector and Y a scalar. Let m(z) AH (Y | X =«) be the
regression of ¥ on X (assuming it exists) . Kernel estimators of m (&) were introduced
by Watson ™! and Nadaraya'. They proposed the estimator as

o) = ZVE(H=2) [ BE(Z52), .1

where kernel K =0 is an integrable function on RB? and window size A, is a sSequence

of positive numbers; we will treat 0/0 as0. Criteria measuring the closeness of m, to
m include the distance in Ly,

Tom [|ma(@) = (@) | 4F @), @

where F is the (unknown) marginal distribution of X . Recently, an increasing amount
of attention is being given to the convergence of J,. Devroye™ proved the following
theorem.

Theorem. Suppose that B|Y |<oo and there ewist positive numbers B, Oy, Oy,

such that
O o1y < K (%) <Ol qay<py; 1.8

where I is the indicator function. If
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h.—>0 ag n—>o0 S 1.9
and . o
- nhi—>00 as n—>co, (1.5)
then
B J,=E|m, (X) —m(X)]-—->0 as n—>00, (1.6)
Ii; is easy o see (1.6) implies ‘
J,—0 in probability as n—>00, (1 7)

We remark that all norms are either all L., or all Ly ﬁhroughout the paper,

" In addl’nlon, many authors discussed the yarious convergence of m, () (see [4,
B] ete.). But all of them based on the same conditions (1.4) and (1.5): Intuitively,
condition (1.4) needs the information of samples which is ag near as possible to =,
and condition (1.5) the information of samples as much as possible, i. e., the speed
of h, tends to 0 must not be 0o fast. In the present paper we discuss the inverse
problem of the Li—convergence of m, (%), i.e., whether or not conditions - (1.4) and
(1.5) are necessary when (1.7) holds. : :
~ Throughout this paper we 1mpose the following condmons Assume that the
kernel function K satisfies (1.8), that the marginal distribution F of X has a density
function f, and that B |Y |log*|Y | <o, where

_ 1,Og+w={10ga&, Aas w>1,u
0 as 0<a<l.

Our first theorem is used to prove the hecéséify of (1.5).

Theorem 1. Under the above conditions, 4f (1.4) holds, then (1.B) és necessary
when (1.7) holds. | o |

--Our next result deals with the necessity of (1.4).

Theorem 2. In addition to the above conditions, if f is bounded, K is continuous

én the nesghbor of zerq, amd for every r>0, F{X: g(n, r, X) =m(X)} <1, where

_msy X -~ na
9n, 1, 0) =BHY K (F2) g; (=2, e B,
then (1.4) s mecessary when (1.7) holds. '

To read smoothly, the following basic notations will be used Whenever they are
needed. Let S,,,={u:ju—=|<r} be the closed sphere of radius r centered at o,

.V(rn;, r, o) =§;K((Xi—m)/rr) , and Wyu(e) =K (X;~a)/r)/V (n,r, ©) for every

2

¢>>0 and » € R%, For simplicity we sometimes write & for /.

§ 2. The Proof of Theorems

In order to prove these theorems we need some lemmas. For the proof of Lemma
1, see Theorem 3.1 in [8]. '
Lemma 1, If E|Y|<oo and K satisfies (1.8), then there ewists a positive
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constant O independent of F, € R, r>0 and positive integers n, such that
B{EE (X =a) /D) |V /7 0, 7, 0) |

<oomp{[ (Y| | X =) (@) [T (Ser) |

AOm* (v). @.1)
Furthermore, &f E|Y |log*|Y | <oo, then Em?* (X) <oo,
Proof of Theorem 1 'We assume first that limnhl=0€ (0, o) and prove by

contradiotion, By Fatou’s Lemma and Fubini’s Theorem, we have
EJ,.=E <J|m,,(a,) —m(x) |dF (z) )=jE|m,, (@) —m(z) |dF (x)
| >J] Em, (@) —m (@) |dF (z) =j]g(n', ha, @) —m(2) ]dF(a:) .

Since (1.7) holds, by Lemma 1 and the Lebesgue dominated convergence theorém;
we know (1.6) also holds. Hence

JI 9 (m, by, ) —m (@) |&F ()0 ag n—>oo, _ | (2.2)

Ejlmn(w) —g(n, h, @) |dF (€)—>0 as n—>co, (2.8)
Let 1€ (0, o) be a number. Deofine A={X;ES,,u, =1, «+, n}. Clearly
E [|ma(@) - g(n,h, @) |4F () = [B|ma(@) ~ g (n, b, @) | 4F (@)

>[19@, b, )| P(A)AF @) — [ | BLLoma @)} |47 (o) |
eW,—Ve | 2.4)
By Lemma 1, we have
lim igfj |g(n, B, @) |37 (3) <C3Bm*(X) <oo.

From (2.2), we get
9(n, b, X)—>m(X)

in probability as n—>oo. Note that 0P (4) <1. By Fatou’s Lemma, we have
lim inf W, (lim inf |g(n, &, @) |liminf P(4) dF (2)
, B v, £(2 n :

=[|m@) | tmint{1— P (S} dF (o)

o

> lm(w) | soxp{—lim sup [nF (Sem)/
(1 ~F(8em))1}4F (@) - (2.5)
Because the density f of X exists, we get -
F (Seym) /M (Se,m)—>f (@) as n—>o0, a. 8. #(A),

where A is a Lebesgue measure on R?, Noting that nh®—>d as n—>oco and A(S,,») =
MPh?, we bave




No. 4 Sun, D. . NECESSARY CONDITIONS OF L;-(ONVERGENCE 4138

nF (Seu) —=>M1Pbef () a8 n—>o0, a. 8. #(A). (2.6)

From (2.5), |
tim in W,,>j’|m(m).[exp{-mzd»b« £ (2)}aF (2). e
Also V,,<-X'E|IA SmX)E ( Xizo ) / V (s, by ) |4F (2)

<[o{B[2 T 15, %) ] J | [P @)} [P @),

‘where Z ='min‘{1," Os/V (n—~1, b, )}, and (s)° denotes the complement of a set.
Clearly, E(Z*) <H(Z). By Cauchy-Schwarz's inequality .
B2 1% |<{nzen [T 15, X0 )}
§=1 ’ §=1 '
< ( E Z) 1/2 [1 —~F (So;,hz) ].(n—l)/z. .
It follows from the proof of Lemma 2.1 in [8] thab

BZ< 66:2 { (=1 F (San0) }

menoo Vi< e F ]
j W< u~dl<hB Im(u) ldF () }dF ()

- Geltr] e G o] <15 - £ S

1
F(Sm,hg) Jm<nu.~ﬂ<h§

1
F(So,e) J M<lu-ol<h8 |m(u) |&F (w)

1 _
<7 J,. Im@|ar @

<sup g ), BUY [ X =0)ir @,

|m () |4F () }czF(w),

Note that

>

From (2.6), _ ’ -
F(Som) /F(Sens)—>(1/B) as >, a.8. w(A). _ 2.8)

Therefore {[nF (Sene)1Y2 exp[ - '"’; 1 F(Ssn) ]} is bounded. By Lemma 1 and

Fatou’s Lemma

tim supl, <592 [1im sup {0l )1 20xp] ~ 251 7 (e |
n Cy n 2

olim sgp{mn’%ulm(u) |dF (w)

~[, Im@ |ar@ }dﬁ ®).

From [6] we know that when (1.4) holds, for every ¢>>0, there exists a Borel
gel B, such that F(B) =1 and # & B implies
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F(,S'w M) j o | (w) | &F () —>m ()

as n—>c0, From (2. 8) and the Lebesgue dommaﬁsed convergence theorem we cOnclude
that

lim sup¥,< 52 M%B%b%ff% (@) oxp[ —1/2M1%f (2) ]
lm(m) |@F (@)« [1~ (1/,3)d]
Beocause sup{ [ (@) exp[ - % M f (x), ]} is bounded, there exish posifive numpers e
and 1€ (0, B), such that the right hand side is bounded by &, but J |m(x) |exp[ — MI?
bf (@) 10F () =280, From 2.4) and (2.7), Wwe gob
lim me[ |7 (@) — g (n,h, @) | AF (@) >8>0,

which conirradmts (2.8). Thus, no subsequence of nh? can tend %o a finite limit b,
and (1.5) must holds. The proof of Theorem 1 is completed.

Lemma 2. Suppose that B|Y |log [Y |<oo K sat@sﬁes (1.3) wn,cl the density
functwn fof x és bounded. Then

J]g(n, h, &) —g(n, b, @) |dF (2)—>0 as»ﬁ—>oo | 2.9
whenever hin h,=b€ (0, o0), '
Proof From Lemma 1, we get
j[ g(n, b, 3) —g(n, b, %) |dF (&) <20:Hm* (X) <co.

By the Lebesgue dominated convergence theorem, it suffices to prove that

lg(n, k, ) —g(n, b, ) | >0 as n—>o0 a.8. x(F). (2.10)
Note that ' :
Ig(n: h) d}) —g<'n'; b:‘”) I .
=nIE{ m(X,) K ((X,—2)/h) m (XN K ((X,~2)/b) H
E(X,—o)/B)+V a—1, b, 2) K ((Xa—)/0)+V (n—1, b, )

<nl lm (X ») I (Vn—1s b €)=0) I +nl l m (X n) I Vn-15 b; )=0) |

K ((u—) /h) ~ K ((u—2) /b)
L T m)] L D) E ™) )'dmmow(w.)

K ((u—2) /B) L yp-1,m,0>
+'n,ij m[ |m () | ‘ K((u—qfa;)a}h)—l-T}((nil, )hf)m) :

__K ((w—~2)/h) Liya, », ¢$>0)
K((u—2)/b)+V (n—1, b, o)

P T N S " (2.11)
If » is in the support of X, i.e. F(8,,,) >0 for every rr>0 then
' P(K(Xy—2)/r)>0) = P(Xiesw,m) F(8s,08) >0,

ar@ [lare)

Hence
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Lu<aB|Y | [L-P(K ((Xy—%)/h)>0)]"*
<nE{ Y| -(1»—F (82,88) )*"+>0 ag n—>co0, (2.12)
Similarly '
In2<n E|Y | (L—F (S8s28))" 1—->0 a8 n—>00, (2.18)
Since H|m(X)|<E|Y | <oo, from [7], for any >0 there exists a bounded
continuous function g vanishing outside a compact set, such that
(9@ ~m@ |87 @) <s. @.19)

Denote Op=sup|g (@) |. Then

Ls<nE {V' a1, bf,‘ ) L w1, 15 0)>0) H

<%E{V(n_-}_ b w) I(V(n—i) by €)>0) }J'

(52 ar

+OAT gy T w oo | K (5 -

Denote p,=F(S,, ), for r>0. Then for n sufficiently large

nE{V (n__i ) I vm-1,0, a)>o>}

‘Tb n—1 -1
O E{[ E T, (X0 ] I [':-?1 Isz'b(x‘)>0]}

— o 1 (?’b—-l)‘ ‘] - ek B ]
E’:E § dl(n—1—4d)! Bhs (L =os)

2 z n!
O’ipm ezz Bl (n—a)!

=)

phs (L —ppe)™ ™

1 —ppe) * — 1y (L —poe)™ 1}

O’ 1Dve v
<4/(C1pea) - (2.15)
In the lagt inequality, we use 0<py,<<1. '
Since K <0,, we get

4:02 [ u""w l
La<-goi- ot Cipwj & ( =2 ) |aF (). (2.16)

U—
( >I(V(n—i» by @)>0)

| (“h )V (=1, ha)

Also J Jm (u) | »

nf
Vin—-Lshy @)=0

)I(V(n—i; by ¢)>0)

K(“b >+V(n 1, b, )

aF () Zﬁ; 3F ()
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|m ’$‘|K 5
- fvm-m«» J - ( ’ )

4 s K(ubw)—l-V(n -1, 0, a:)

<O,E|Y |nE {V(n_i 5, %) Iiytamis b =05 Vin—ds b ¢)>0]}

AF (u) [[ dF (x)

<-g—-i— E|Y [nB{Iyp-1, » ey=02}

G2 B|Y |n(1—hps)" =0
oN :
as n~>co, Similarly,
U—
K <T> L vnton o)>0y

nJV(n—:l,bmbO J’Rd 'm(u) | K< u;‘” >+V(nf1, h, %)

h. )I(V(n—-i,b» >0

3F W) T1 aF (5)—0
K(YZ2)+V (n=1,, ) =1
as n—->c0. Hence
gy O () (45 )+:f<n_1,, bo
_ 1 ‘ n—1 i
K( ne )+V'(n—1, b, 2) e L ar )
<nJV(n—1bm) 0lm<u> g(U)l K(uhw).
V(n-—lhm)>0 ‘
K(ug”)-l-V(fn 1,5, ) — {K(uh )—!—V('n—i h, w)} dF(u)’ﬁldF(wé)
[K(ubw>+7(n —1,h, %) ][K( )+V(n i, 9, w)] i=1
+nagazj J (u w)—i—V(n 1,6, ) — K( 7 )—-—V(fn.—l h, w)l
‘5‘(5:%%2&8[ (uhw>+V(n i, h, w):H: ( —Z; )—l—V(n ~1,0, w)]
a7 @) T1 P @)

<Cin J‘V(n—ibw)>0 V (n— 1 h, w;[V(fn,_.l 2 w)HdF(wDJ’lm(u) —g(w) |dF (w)

V-1, b, @)>0
1
+0:0gn J}?&‘:Hzﬁ;" V(n—1,h, w)V(n —1,b, %) i= [[dF(w;)

|

x(t5)-x(%5

) !dF ()
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‘ __»__ _r(¥=% "
TI—O'gO'gn('n,-—l) ,[;m-um»o V|(f 1, h, Z)Vlig f b?‘> dF(u).‘l;[:oZF(wg)

n—~1,h2)>

n—2

' 1
+O20g'n'('ﬂl—1) jvg:::g bw)>0 V('fb 2 h w)V(% 2 b w) II d‘F(wé)
S (2= _g(v=2 -,
JK< A ) K( ) ) dF (u) +-2:2 0 (n—1) (L—F (8,,8))
An argument similar to that leadlng to (2.15) gives
WP E{I ym-1,0,0-00/V (n—1, b, 0) }*<0, <0,

W2 E{I yp-rt,may>00/V {n—1, b, ) }’<O < 0
for n large enough. By Cauchy-Schwarz inequality . '

020

1
2
w yV(n—ibw)>0 Vin—1,h, o)V(n-1,0,) ]:[dF(m;)

Vin—1,h,a)>

s | Lovm—ts b, a:)>0)} 3 ([, {I(V(ﬂ—i, By 2)>0) }2 1/a
<(wm {V(«n.-——l, ) ) (e V (=1, h, @) )
Observe that the above also holds when n—1 is replaced by n—2. From (2.14) and
n(n—1) A—F(8,,5) )" 20 as n—>o0, we get |

T,.<080:8+0(1) +0”K< “;w )—K(i;—“) ’dF(u),

where C is a positive constant. From (2.11)—(2.18), (2.15) and the arbitrariness
of &, it suffices to prove

.HK(—“—;—”E)—K(“ o ldF(u)-»Oa,Sn—»oo (2.17)

Since J.K (u)du< oo, there exists a continuous function K*(<C0p) on RY, such that
j;K(@» K" () |du<s. (2.18)
Note that X has a bounded probability density
[1K (w-a) /1)~ K (@—0)/5) |7 @)

<[IK (@=a)/m) - K" (@-a) /W) | f )
+[ 1K (@=a) /8) K" (@—a) /1) |f )3

+[ 1B (@=0) /W) - K (w-2) /5) |f @)

The first two terms on the right hand side of the inequality can be arbitrarily small
by (2.18) and the boundedness of f, and the last term tends to 0 s n—>00 by the
Lebesgue dominated convergence theorem, and this implies (2’.17) . The Lemma is
thus proved.

Lemma 8, Suppose that E|Y | <oco, K satisfies (1.8) and f is continuous at
zero. If
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h—>co as n—>co, (2.19)

then for every o € R%, we have _
| B, (&) ~ EY |0  as n—>oo, (2.20)

Proof For any € R?, : :
| Bm (@) — BY | <J1+Ja+T5+J, (2.21)

¥ , )
where Ji=n’E K T} (naj)}{’h;f;n(X) Lvcn-1o b 0¥=0y |5

¥ L |
J2=n)-E{m( ”) [K (V(rib” hwzvéh) K(())] I(V(n—i» B &)>0) } ?
- [ m(X m(X,) }
J3=nK (0) lE{ ECND) K’(O)—}-V(cn,—-l, ) ]I(V(n-i. b &>0) (s
— - Tty w250 1 H
ni(0) lE{m(X")[ K©) +V (n—1, h, @) nK(O):I ‘
An argument similar to that leading to (2.15) gives -
J1—>0 ag n—>00. (2.22)
Since B |m(X) | <o, for any e>>0 fhere oxists a large positive number 4, such that
| Jm | () | dF () <. (2.28)

Also, K is continuous at zero. We can find >0 such that |u| <8 implies | K (v) —
K (0) | <s. From (2.19), we know h,>>A4/5 for n large enough, so that

| K (u/h) ~K (0)|<s as |u]<A4.
From (2.28), we get

[1% (@-0)/m) ~ K ©) |+ [m ) |47 (o
<onjm m(w) | «dF (u) + L | B () /B) =K (0) |« |m(w) |d4F (w)
<02s+sL |m(u+;v) |dF (u+2)<s(Ca+E|Y|). (2.24)
Similarly |

IIK((u——w)/h) _K(0) |dF () <s (Ca+1). (2.25)

An argument similar to that leading to (2.15) gives that there exists a positive
constant O such that

E{nlV (n—1, b, )17 Ige-1.m o-0}'<0, =1, 2. - (2.26)
From (2.24) and (2.26)
— )-—

J a<nlf { Lyn-1, 1 >0 }
©)-EO |+ |m(X) -0

V=1, % 2) |0

and

2 I(V(n—ia B ¢)>o)} y
Jo<n’K (0 { V(n—1,h, x) a

as n—o0, From (2.25) and (2.26)
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[V(n=1, h, ) ~(n—1)K (0)] }
J 4<E{ V=TI 5 2) TR O M (X ) Ly, 1 050

<E»lm(X») | <n—_1>E{K<6€‘T17iJ’ m;oi)a 'w)} .

r(Zaze )—K(O)|+o(1)

—0
ag n—oo, From (2.21)and (2 .22) , We geot (2.20) . Hence we have proved the lemma.
Proof of Theorem 2 By the proof of Theorem 1, we know (2.2) holds. We
first assume that lim A=co. Then by Fatou’s Lemma,

lim inf|g(n, &, #) —m (@) | =0 a. 8. a(F),

By Lemma 3, we have
|g(n, h, &) — EY | -0 as n—>00
for every # € R%. Thus, we get m(s) =HY , a.8. «(F), i. e,
g(n, r, &) =EY a.s. o(F)
for every »>0. This, however, contradicts (2.2).
Next, we assume that llnm h=b€& (0, 00). Then

Jlg, b, &) ~m@ a7 @)

>[lgt0, b, &) ~m(@) [4F @) ~ [|gn, B, &) ~gn, b, o) |F @)
Since F{X:g(n, r, X)=m(X)}<1, we have
J]g(n, b, #) —m(2) |dF () >0,
From (2.9), we get
lim inf j|g(n, b, &) —m(z) |dF () >0,

which contradicts (2.2). Thus, we conclude that no subsequence of 4, can tend to a
finite limit b, Therefore, h’m h,=0. The proof of Theorem 2 is completed.
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