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‘WEAK CHEBYSHEV SPACES ON LOCALLY
ORDERED TOPOLOGY SPACE AND
THE RELATED CONTINUOUS

METRIC SELECTIONS
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Abstract

Let O(X) be the space of all continuous real-valued functions on a compact Hausdorf?

gpace X under the uniform norm: ’
|7 =max{|f(@)|: v¢ X}
For G 0(X), define v
Pe(f)={g€G: |f—gl|=inf{|f -pl: pe G}}.

If there exists a continuous mapping § from C(X) to G such that S(f) € Pe(f) for every
f in 0(X), then § is called a continuous selection of the metric projection Pg.

And G is called a' Z—subspace of 0(X), if, for every nonzero g in @, g does not vanish
on any open subset of X.

In this paper, the author gives several characterizations of Z-subspaces G whose metris
projections Pg have continuous selections, The following results are obtained:

If X is locally connected and @ is an n-dimensional Z-subspace of ((X), then Pg has
a continuous selection if and only if every nonzero g in G has at most #n zeros and has af
most n—1 zeros with sign changes.

§1. Introduction

Let O(X) be the Banach space of all real-valued continuous funclions on the
compact Hausdorff space X, the norm on O(X) is defined as

| =max{|f (=) |: € X}.
Suppose that G is a subspace of 0(X), the metric projection is defined as

Po(f) ={g€G: |f—g] =int{|f—p|: p€G}}.

If & mapping s from O (X)to G satisfies that for every f CO(X), s(f) € Pe(f), then
s is called a selection of Pg(s). Moreover, if s is confinuous, then s iy called a
continuous selection of Pg; if s(f-+g) =s(f) +g¢ holds for all f€O(X) and g€GQ,
then s is called a semi-additive selection of Pg; if for every f €0 (X), there existy a
constant O (f) such that
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Is(f) —sW [<ODIF—hl, HEOX),
then s ig called a pointwise-Lipschitz—continuous selection of Pg. Let
08,(X) ={G: @ is an n—dimensional subspace of U (X)
and Pg has a continuous selection}.
Lazar, Morris and Wulbert first studied the characterization of OS,(X) and
oharacterized 08y (X)™, Later, after a series of works, Nurnberger and Sommer

. i
gave a characterization of OS,(X) for all n and X =[a, 8]". If X={J [, b] is
§=L

consisted of several closed intervals, Sommer could only give a sufficient condition
of G €08, (X)), his result is as follows:

1]
Theorem A. Suppose that X =U1[a¢, b;] and G is an n—dimensional subspace of
. §= .

O0(X). I f there ewists 2 € X such that G, satisfies Haar condition on X \ {2} and every g
in Gt has at most n—1 zeros with sign changes, then Pg has @ unique semi—additive
amd, pointwise—Lipschitz—continuous selection. | )
If for any non-zero g in G the set Z (g) of all zeros of ¢ does not contain any
open subset of X , then @ is called a Z—subspace of O(X). Brown gave a mnecessary
condition of G in 08, (X )™ - _
Theorem B. If GE€0S, (X) is a Z—subspace, then, for any non—zero g in G, g
has at most w zeros and has at most w—1 % 108 with sign changes. |
In this paper, we will delve further into the problems discussed in [8, 5]. We
will give a characterization of Z-subspaces in O08,(X) for locally connected X,
which improves Theorem A. For this purpose, we discuss weak Chebyshev subspaces
on locally ordered topology space in section 2. Our main result is as follows:
If X is a locally connected, compact Hausdoaff space and & is an n—dimengional
Z-gubspace of 0(X), then Py has a continuous selection if and only if, for every
non-zero g in G, ¢ hag at most n zeros anl hasg at most n— 1 zeros with sign changes

§2. Weak Chebyshev Space on Locally
Ordered Topology Space

For a subset X of the set of all real numbers, Deutsch, Nurnberger and Singer
defined weak Chebyshev subspaces of 0(X)"™. And in[7], Nuenberger discussed the
existence of continuous metric selections about this kind of subspaces. In this section,
we will introduce a new kind of weak Chebyshev subspaces defined on locally
topology space. In section 8, we will see that the new weak Chebyshev subspaces play
more important roles in dealing with the charasterizations of 08,(X).

Definition 1. Suppose that X is @ compact Hausdorff space. If for every « there
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ewist an open neighborhood U (x) of @ and an order 5 such that (U (), (<)) és @ com-
pletelé/ ordered set, then (X, {U (@)}, { ﬁ}) is called locally ordered topology space. And

open neighborhoods of x in U (x) are called completely ordered netghborhoods of .
Suppose that (X ,{U (x) }’{ﬁ}) is a locally ordered topology space. For simplicity,

we use < as the order for a fixed completely ordered open neighborhood of ». Suppose
that G'=span{g, -*°, gu} i8 an n~dimengional subspace of C'(X). Leb '

gi(wi)’ °°ty gi(a’n)
D(miJ °ty wn)__'det ecesso
w(®1), >, Gu (@)
Definition 8. If there ewist open neighborhoods {U ()} and orders { f)} such that

X, {U()}, {ﬁ}) is @ locally ordered topology space and G satisfies the following

condition:
For any v distinct points %1, -, @, and O=my<my<L-<m,=mn, there omish
comfpletély ordered open neighborhoods V; of @ and s = %1 such that for any
Ymet <o LYy €V, 0<U<r—1, .
there holds 8D (4, «++, yn) =0,
then G is called o weak Ohebyshev subspace of O(X) (about the orders {(f)})'

This definition ig different from that in [6]. In fact, it is a generilization of weak
Ohebyshev subspaces defined in [6].

Definition 8. If for any n distinct points @1, -, &, there ewist open nefz}ghborkoods
Vi of m, 1<i<<n, and 8= =1 suoh that

8D (y1, >y Yn) =0 for 4, €V, 1<, D
then @ is called semi—definite. '

If @ is a Z-subspace, then g is uniquely determined by (1), and we call & the
sign of G at (w4, -+, @), denoted by A(wy, -, @,).

Theorem 4. Suppose that X is a locally path connscted and compact Hausdor(f
space. If n—dimensional Z-subspace G 4s semidefinite, then G is @ weak OChebyshev
subspace of O(X).

Proof Suppose » in X and U () is a path connected open neighborhood of .
Ohoose n-2 distinet points s, «+-, @, in X\U («). Define an order in U (&) as follows:

For @4, @3 in U (@), #1%@,, define

wy<ay, if A(wy, -, w,) =1;

W1 > o, if Ay, o0, @) = —1,

From the path connectedness of U(x) and the semi-definiteness of &, we can
eagily seo that the relation “<C” ig transferable. Thus, (X, {U(2)}, {(f) }) is a locally
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ordered topology space. Now we will show that G is a weak Chebyshev subspace
about the orders just defined. S -

Suppose that @y, -+, w, in X arve r dlstmot points and 0=my<my<--eLmy=n.
Let V' be completely ordered open nelghborhoods of @; such that Vy, «-, V, are
mutually non-intersection. For

(l]m,+1<"" <:l]mm in Vq.i,
zm‘+1< <"p’mm in. V¢+1,
we can Verlfy by induction that
Ays,ey Yo) =A(e, 2, %) 2

In fact, suppose that (2) holds for y;=2, $<<s-1, then for y,=2;, $<<8, Yop1 % osn
we may assume that g 1 <Zep1. AS Yssu, 241 are In the same path. connected set V; for
some j, there exists a continuous mapping 4 (.) from [0, 1] to V; such tha,t

. h(0) =Ysy1, h(L) =21,
Let a=sup{t: 0<s<<1, and h(8) =gsss},
——mf{t a<t<1 and k(f) =241}
It is not hard to oheck that -

l(@) =Yss1, h(B) =241,

and o _ |  Yor1 <P (B) <gy1, for a<i<D.
Thus - _. A

. . h([w) b]) n‘{yil °*% 'ys; ZH"Q) °°%y Z,.}=¢. . . R (3)
Define u<t) =A(?/i: cery Ys, k@): Rer3y °*°, zﬂ)'

‘From (8) and the semi-definiteness of G, we see that u(t) is  continuous on [a, b].
But u([a, b]) in {—1, 1} is connected, 80 u(a) =u(b).
From the hypothesis of induction we get
Az, =+, ) =AW, =, Yoy Zesty Ysaa, ***5 Yn)o
Thus Ay, e, o) =u(@) =u(d) =4(2, -, 2).
Lemma §. Suppose that an n~dimensional Z-space G is also @ weak Ohebyshes
subspace. If f, fk in O(X) and real numbers ry, satisfy the followmg conditions:
Lim| f — fi =0;
lim ry=r=0;
and there ewist n+1 distinct points @y, o, ***, Ty, o SUch that
' fk(wk, i) =1 (—1) %A@y, o, ***y Bi,i1s Tay 141, **5 Dh, ), O<i<n;
then there ewfz/st n+1 distimct points o, °++, %, and a subsequence {k;} such that
' Hmay, (=, 0<i<m; : ’ (4)
C f(@) =r (=1 A(@o, o, Big, Bigy, 0, Ba), 0<é<m. - - (5)
Proof Obviously, there exists a subsequence {k;} such that (4) holds for some
Wo, **-, Ty In X, » .

If @, ***, @, aTe mutually distinet, then by the semi-definiteness of G we know
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that (B) is true. Otherwise, we may assume that
To= 1" =Ly, = Y1, *°°;5 Pmyy31=""" =Tp="s,
where g4, -+, ¥s are mutually distinet and my>1. |
Because G is a weak Chebyshev subspace, there exist completely ordered opem
neighborhoods V; of y; and s= %1 such that
- eD(z, oo, 2,) =0 -
for B <o Ly, €V 1, 0<E<Ss— 1, myp=0, my=n,
‘Without loss of generality, we may assume thab
Diogo met-1 < 0 oy g €Viay - 0§@<S—13
Thus - A (@0, Bz, 0ty Bapn) =4 @ny15 o005 Bun),
which implies - ,
- Sy (wk,,o) = —fu (5%,1)-
Let k>c0. We obtain = —r, i.e., r=0. This is impossible
Definition 6. Suppose that G‘ is a semi~de ﬁmte Z-subspace of 0(X), fEO(X)
and p €G. I f there ewist distinet poinis @, -+, T, and &= 41 sueh that
f (@) —p (@) =e(—1)'| f—pl A(@o, *+*s Tisty iy > #a), 0<issm,
then p is called an aliernation element of f (about @).

One of the important properties of weak Chebyshev Z-subspace is that it keeps

the limit of alternation elements being still an alternation element.
Theorem 7. Suppose that G is a weak Ohebyshev Z-subspace. If py is an alternation
dlement of fy, and }‘im(ﬂf—fkﬂ + |p—pu])) =0, then p is an alternation element of f.

Proof If f in @, then f=p, the conclusion is obviously true. Now, we assume
r=|f—p| >0, and write s, = || f5—ps|. Because p, is an alternation element of fj,
there exist @y,o, *°°, 2, and = %1 such that .

Ju(@i,0) = (=1 egorye d(@y 0, o5 Buyi-1, et % Tppn), O<O<m.
By selecting a subsequence, we may assume that g,=¢ for all 4. Using Lemma 5, we
see that there exist n+1 distinet points @, +--, #, such that :
S @) = (=1 ered(@o, -+, Bio1, Biga, **=, ) .
=(—1)‘e llf—pll°d(wo, coo, Wiy, Bigd, °*°p W), O<EI<m.
This means that p is an alternation element of f.

§3. Characterization of Z-Subspaces in CS.(X)

By studying alternation elements, we obtain a sufficient condition for @ in
08,(X). And it turns out that if X is locally connected and @ is a Z-subspace, then
the converse of Theorem B in section 1 is also true.

Lemma 8. Suppose that G is @ weak Ohebyshev Z-subspace, If, for every f in
O(X), f has one and only one alternation element, then Pg has a umique pointwise-
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Lipschitz—continuous semi—additive selection.

Proof -Combining the proof of Theorem 1.7 in [8] and Lemma 5, we get the

proof of this lemma.

Lemma 9. Suppose that G is an n—d'z,menswoml wealc Ohebyshev Z—-subspace of
O0(X) and B is a nowhere dense subset of X. If G satisfies Haar condition on X\B,
then every f in O(X) has at least one alternation element.

Pfroof Let |

By={w: there exists ¢ in B such that |f(2)’ ~f () | <1/k and

max{|g(@) —g () |: gin G with Hgll 1} <1/k};

Xy=X\By, k=1 |
Because @ satisfies Haar condition on X, there exists ¢, in G and @0, *=°, %4, in
Xy, 8= %1, such that .

i (g,0) —gza(wk,i) = (“1) iﬁk"f *'gk||xk°11<wk,o, oo, Wpyi-ty Thotrds °°°5 wlo,n),
oo 0<é<m. -

By selectmg a subsequence Wwe may assume-that s;=¢ and -

lim gy=g. - ©

From (6) and the fact that Cll X,=X\B is a dense subset of X, we obtain
. . k=

Iki_f‘;“f_gkllxk= if—9l,

where |f—gx|z,=max{|f(®) — gs(®)|: © in X4}.
Now, using Lemma 5, we know that ¢ is an alternation element of f (about G). -

This lemma ig an improvement of Theorem 1.5 in [5].

Theorem 10. If G is an n—dimensional semi—de finite Z-subspace of O(X) and
every nonzero ¢ in G has at most n zeros, then any f in O(X) has at most one alternation
elemeni. : '

Proof Suppose that f in O(X ) has two alternation elements p; and p,, i. e.,
there exist @;,¢, >+, #i,» in X and = 11 such that

f(wh.f> —pi<w€v5) =8(—1)’"f_p¢" °A<£U¢,o, oeey Wy g1, Tyyjpt, ”'; wim):

0<i<Sin, 192, . ¢))
As every nonzero g in @ has at most n zeros, for any yo, ***, Yr, r<n, We have
dim G| g 0<iam =1 , (8)
Thus there exist 4,0, =+, Yis, iR {@;,j: 0<j<n} such that .
dimGl(w;:Oqss‘.!#k} =.dimG‘ ‘ (94 520<f s = Si, O<k<3¢, 1<6<<2. (9)

From (7) and (9), we obtain
{912 0<<j<s}<Z (p—p)), for every pin Pa(f), ¢=1, 2. 8o
{5 O<Y<Ss;, 1<US2}CZ (pa—pa). (10)
Because pi# pa, Z (p1—ps) ocontains at most n zeros. From (8), (9) and (10), we get



426 ' OHIN. ANN. OF MATH. . "Vol. 8 Ser. B

{y1, 52 0P} = {9a, 52 0<<j<sa}.
Now we may agsume that @1,0=141,0=92,0==2,0. From (8) and (9), we have

dimG | (a;" j:1<.f<7l)=%1 1<'il<2o . . (11)
Let e A i={w: Aim G| 01, mam=n—1, 1<j<n, 1<6<K2.
As every nonzero ¢ in G has at most n Zeros, 4,,; containg at most n points. Let
2 n
A = U U A‘,’o
$=1 J=1

Then A is a finite subset of X. There exists an open neighborhood ¥ of ay,o=,,0
such that ' ' _
ANV ={w1,0} = {2a,0}. _ : (12)
Select 2 in V'\ 4, such thab

o lim g, =1,0=13,0,

k-»o00

| © p1 () — Patw) #O0.
By the Seml—deﬁmteness of @, we obtain for 4 large enough

A(Zk) whi, ° wi‘yf—i; x‘i,j-{-i;' *s wim) :
—A(w;,o, oeey Wy, -1, Liydpdy o0y xim,)., 1<j<'fb, j<'5/<2e (13)

It follows from (7) thab
(p1(@1,5) —pa(@1,)) (f (@1,9) —p1(1,5)) <0 I<j<n, (14)
(pa (@2,1) =01 (@2,5)) (f (@2,5) — D3 (%2,7)) <O, 1<j<m, (15)

Now, if (p1(ex) —pa(2)) <1+ 4 ﬁwi,o, s, @4,,) <O, then from (18), (14) and (7)
we geb

(p1(@1,) —Pa(@1,)) sex(—1) e Ao, D11, =+, D151, B jaty **0y Biyn)
<0, 1<j<n. -

Thus 0> &1 (ps () -p2(zk))D(w1,1, ", @1,n)
+312(P1(w1,i) —P2(®1,7)) o (—1) e D (2, @11, ***, B1,5-1, B4,441, *°°5 Biyn)
D) —pa(en)  p1(onn) —pa@ns) - pa(en) — P2 (@1,0)

= gyodetb | 91(e) , 91(@2.3) . - ()
On (zk> On (wid.) ‘ peeo In (w:lm)
. =0, o ' "
This is impossible.

If (pi(o) —pa(2e)) 2810 4(@4,1, ***, ®1,s) >0, then from (7) and (10), we obtain

(pa () — pa(2w)) 820 A(@,1, **+, Ba,n) <O,
Similarly, this can also lead to a contradiction.
From Lemma 8, Lemma 9 and Theorem 10, we come to the following conclusion:
Corollary 11. Suppose that G is an n—dimensional weak Chebyshev Z-subspace
and B is a nowhere dense subset of X. If G satisfies Haar condition on X\B and every
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nonzero ¢ tn Gt has at most n zeros, then Pg has a unique pointwise—Lipschiti—continuous
semi—additive selection.

Now we have our characterization theorem:

Theorem 12, If X is a locally connected and compact Hausdorff space and G ds
an n-dimensional Z-subspace of O(X), then the following statements are mutually
equinalent:

(1) Pg has a unique pomtw@S@—prsoh@tz—contmuous semi—additive selection,

(2) Pg has a continuous selection,

(8) ewery nonzero g én G has at most n 2eros and has at most n—1 zeros with sign
changes, o

(4) G is a weak Ohebyshefv subspace cmd every nonzero ¢ in G has at most n zeros,

(B6) G is semi—definite and every fim O(X) has a unique alternation element,

(6) G is semi~definite and every nonzero g in G has at most n zeros.

Proof It is trivial that (1) implies (2). And Theorem B in seotion 1 statos that
(2) implies (8). By the theorem of Brown in [4], we know that the locally connect-
edness of X and (8) imply that X i homeomorphic t0 a union of several closed
intervals, Thus, from the Lemma 2.2 in [3], we know that all conditions in
Oorollary 11 is satisfied by G so, (1), (4), (6) hold. And by Lemma 9, Theorem 10,
we can also see that (8) implies (5). USiIig the same approach in [7], we can show
that (5) implies (8). And it is trivial that (4) or (6) implies (3).
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