ON HERMITIAN OPERATOR IN TENSOR PRODUCT SPACE

Hu Shuan (胡述安)*

Abstract

V is an n-dim unitary space. $\bigotimes^k V$ is the k-th tensor product space with the customary induced inner product. $\forall \mathscr{L} \in L(\bigotimes^k V)$,

$$W^{\perp}(\mathcal{L}) = \{ (\mathcal{L}x^{\otimes}, x^{\otimes}) \mid x^{\otimes} = x_1 \otimes \cdots \otimes x_k, x_1, \cdots, x_k \quad o.n \}$$

is called the numerical range of \mathscr{L} . Wang Boying proved in [11] that if $\mathscr{L}=A_1\otimes\cdots\otimes A_k$, $A_i\in L(V)$, $i=1,\dots,k$, k< n, then \mathscr{L} is a hermitian operator if and only if $W^{\perp}(\mathscr{L})\subseteq\mathbb{R}$. He conjectured that if k=n>3, then the similar proposition would hold, too.

In this paper the following results are obtained.

- 1) If $k=n \ge 3$, then \mathscr{L} is a hermitian operator if and only if $W^{\perp}(\mathscr{L}) \subseteq \mathbb{R}$.
 - 2) The only exception is k=n=2 and

$$A_1 \cong a \begin{pmatrix} 1 & a_{12} \\ -\bar{b}_{12} & a_{22} \end{pmatrix}, A_2 \cong b \begin{pmatrix} \bar{a}_{22} & b_{12} \\ -\bar{a}_{12} & 1 \end{pmatrix}$$

where a, b are real.

§ 1. Introduction

Let V be an n-dimensional unitary space in which the inner product of column vectors x, y is defined as $(x, y) = y^*x$. $A_i \in M_n(\mathbb{C})$ is a linear operator on V. $\otimes^k V$ denotes the k-th tensor product space with the usually inner product. $x^{\otimes} = x_1 \otimes \cdots \otimes x_k$, $y^{\otimes} = y_1 \otimes \cdots \otimes y_k$ are decomposable tensors in $\otimes^k V$, where $x_i, y_i \in V$, $i = 1, \dots, k$. $\mathscr{L} = A_1 \otimes \cdots \otimes A_k$ is a linear operator on $\otimes^k V$.

According to the definition of the induced inner product ([1, p. 47])

$$(\mathscr{L}x^{\otimes}, y^{\otimes}) = \prod_{i=1}^{k} (A_i x_i, y_i).$$

In the case $k \le n$, Fan^[2,3,4], Goldberg^[5,6], and Marcus^[7,8] defined the numerical range of \mathscr{L} as

$$W^{\perp}(\mathcal{L}) = \{ (\mathcal{L}x^{\otimes}, x^{\otimes}) : x_1, \dots, x_k \quad \text{o. n.} \},$$

where "o. n." means "orthonormal", and studied its properties.

If k=1, as Donoghue pointed out^[9], \mathscr{L} is hermitian if and only if $W^{\perp}(\mathscr{L}) \subseteq \mathbb{R}$. Recently Bo-Ying Wang obtained the result that if k < n, then \mathscr{L} is hermitian

Manuscript received April 30, 1985.

^{*} Engineering Institute of Engineer Corps, Nanjing, China.

No. 4

if and only if $W^{\perp}(\mathcal{L}) \subseteq \mathbb{R}^{[10]}$. At the same time he cited an instance to illustrate that the statement is not true in the case k=n=2. But he conjectured that the same statement might be true in the case $k=n\geqslant 3$.

In this paper we shall prove that his conjecture is right.

§2. Preliminaries

Lemma 1. Let
$$A = \begin{pmatrix} 1 & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
, $B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & 1 \end{pmatrix} \in M_2(\mathbb{C})$, $\mathcal{L} = A \otimes B$. Then W^{\perp}

 $(\mathcal{L}-\mathcal{L}^*)=0$ if and only if either i) or ii) holds:

- i) Both A and B are hermitian;
- ii) $a_{21} = -\overline{b}_{12}$, $a_{12} = -\overline{b}_{21}$, $a_{22} = \overline{b}_{11}$.

Proof Every 2×2-unitary matrix may be written as

$$\begin{pmatrix} \cos\theta u_1 u_3 & -\sin\theta u_1 u_4 \\ \sin\theta u_2 u_3 & \cos\theta u_2 u_4 \end{pmatrix}$$

where $\theta \in \mathbb{R}$, $u_i \in \mathbb{C}$, $|u_i| = 1$, i = 1, 2, 3, 4. Therefore each pair of o. n. vectors in 2-dimensional unitary space may be written as

$$x = (\cos \theta u_1 u_3, \sin \theta u_2 u_3)^T, y = (-\sin \theta u_1 u_4, \cos \theta u_2 u_4)^T.$$

Thus $W(\mathcal{L}-\mathcal{L}^*)=0$ if and only if $x^*Axy^*By=x^*A^*xy^*B^*y$, i.e.,

$$[(\cos^2\theta + a_{22}\sin^2\theta) + a_{21}\sin\theta\cos\theta u_1 u_2^{-1} + x_{12}\sin\theta\cos\theta u_1^{-1}u_2]$$

$$- \left[(b_{11} \sin^2 \theta + \cos^2 \theta) - b_{31} \sin \theta \cos \theta u_1 u_2^{-1} - b_{12} \sin \theta \cos \theta u_1^{-1} u_2 \right]$$

$$= [(\cos^2\theta + \bar{a}_{22}\sin^2\theta) + \bar{a}_{12}\sin\theta\cos\theta u_1 u_2^{-1} + \bar{a}_{21}\sin\theta\cos\theta u_1^{-1}u_2]$$

$$\bullet \left[\left(\overline{b}_{11} \sin^2 \theta + \cos^2 \theta \right) - \overline{b}_{12} \sin \theta \cos \theta u_1 u_2^{-1} - \overline{b}_{21} \sin \theta \cos \theta u_1^{-1} u_2 \right] .$$

Because u_1 , u_2 are independent, we obtain

$$(a_{21}b_{21} - \overline{a}_{12}\overline{b}_{12})\sin^2\theta\cos^2\theta = 0,$$

$$[a_{21}(b_{11}\sin^2\theta + \cos^2\theta) - b_{21}(\cos^2\theta + a_{22}\sin^2\theta) - \overline{a}_{12}(\overline{b}_{11}\sin^2\theta + \cos^2\theta) + \overline{b}_{12}(\cos^2\theta + \overline{a}_{22}\sin^2\theta)]\sin\theta\cos\theta = 0,$$

$$(a_{21}b_{12} + a_{12}b_{21} - \bar{a}_{21}\bar{b}_{12} - \bar{a}_{12}\bar{b}_{21})\sin^2\theta\cos^2\theta - (\cos^2\theta + a_{22}\sin^2\theta)(b_{11}\sin^2\theta + \cos^2\theta) + (\cos^2\theta + \bar{a}_{22}\sin^2\theta)(\bar{b}_{11}\sin^2\theta + \cos^2\theta) = 0.$$

Since θ is arbitrary, we get

$$a_{21}b_{21} = \bar{a}_{12}\bar{b}_{12},\tag{1}$$

$$a_{21} - b_{21} = \bar{a}_{12} - \bar{b}_{12}, \tag{2}$$

$$a_{21}b_{11} - b_{21}a_{22} = \overline{a}_{12}\overline{b}_{11} - \overline{b}_{12}\overline{a}_{22}, \tag{3}$$

$$a_{22} + b_{11} - a_{21}b_{12} - a_{12}b_{21} = \overline{a}_{22} + \overline{b}_{11} - \overline{a}_{12}\overline{b}_{21} - \overline{a}_{21}\overline{b}_{12}, \tag{4}$$

$$a_{22}b_{11} = \overline{a}_{22}\overline{b}_{11}. \tag{5}$$

From (1) and (2), either $a_{21} = \overline{a}_{12}$, $b_{21} = \overline{b}_{12}$ or $a_{21} = -\overline{b}_{12}$, $b_{21} = -\overline{a}_{12}$.

If $a_{21} = \bar{a}_{12}$, $b_{21} = \bar{b}_{12}$, we get $a_{21}b_{12} + a_{12}b_{21} \in \mathbb{R}$. Thus, we get $a_{22} + b_{11} \in \mathbb{R}$, $a_{22}b_{11} \in \mathbb{R}$ from (4) and (5). Hence, either a_{22} , $b_{11} \in \mathbb{R}$, or $\bar{a}_{22} = b_{11} \in \mathbb{C} \setminus \mathbb{R}$. If a_{22} , $b_{11} \in \mathbb{R}$, we

get i). If $\bar{a}_{22} = b_{11} \in \mathbb{C} \setminus \mathbb{R}$, (3) implies $(a_{21} + b_{21}) (\bar{a}_{22} - a_{22}) = 0$. Hence $a_{21} + b_{21} = 0$. We get ii),

If $a_{21} = -\overline{b}_{12}$, $b_{21} = -\overline{a}_{12}$, similarly, we get either a_{22} , $b_{11} \in \mathbb{R}$, or $\overline{a}_{22} = b_{11} \in \mathbb{C} \setminus \mathbb{R}$. If a_{22} , $b_{11} \in \mathbb{R}$, (3) implies $(\overline{a}_{12} + \overline{b}_{12})$ $(b_{11} - a_{22}) = 0$. Then either from $b_{11} = a_{22}$ we get ii), or from $\overline{a}_{12} = -\overline{b}_{12} = a_{21}$ we get i). If $\overline{a}_{22} = b_{11} \in \mathbb{C} \setminus \mathbb{R}$, we get ii).

On the other hand, if i) or ii) holds, it is easy to show that $W^{\perp}(\mathcal{L}-\mathcal{L}^*)=0$.

Lemma 2. (Marcus-Wang⁽¹¹⁾). Let $A_i \in L(V) = M_n(\mathbb{C})$, $i=1, \dots, k$, $1 \le k \le n$, $\mathcal{L} = A_1 \otimes \dots \otimes A_k$. Then $W^{\perp}(\mathcal{L}) = 0$ if and only if there exists an i such that $A_i = 0$.

Lemma 3. Let A, B,C be 3×3 non-scalar matrices. Then there exists a 3×3 unitary matrix U such that a'_{ij} , b'_{ij} , $c'_{ij}\neq 0$, i, j=1, 2, 3, where $U^*AU=(a'_{ij})$, $U^*BU=(b'_{ij})$, $U^*CU=(c'_{ij})$.

Proof Denote

$$U = \begin{pmatrix} x_1 u_1 u_4 & y_1 u_1 u_5 & z_1 u_1 u_6 \\ x_2 u_2 u_4 & y_2 u_2 u_5 & z_2 u_2 u_6 \\ x_3 u_3 u_4 & y_3 u_3 u_5 & z_3 u_3 u_6 \end{pmatrix}, \tag{6}$$

where

$$x_1 = \cos\theta\cos\alpha$$
, $x_2 = \cos\theta\sin\alpha$, $x_3 = \sin\theta$,

 $y_1 = \cos \varphi \sin \alpha + \sin \varphi \sin \theta \cos \alpha$, $y_2 = -\cos \varphi \cos \alpha + \sin \varphi \sin \theta \sin \alpha$, $y_3 = -\sin \varphi \cos \theta$, $z_1 = \sin \varphi \sin \alpha - \cos \varphi \sin \theta \cos \alpha$, $z_2 = -\sin \varphi \cos \alpha - \cos \varphi \sin \theta \sin \alpha$, $z_3 = \cos \varphi \cos \theta$, (7) φ , θ , $\alpha \in \mathbb{R}$, $u_1 \in \mathbb{C}$, $|u_l| = 1$, l = 1, ..., 6. It is easy to verify that U is a unitary matrix for arbitrary φ , θ , α , u_l .

If the statement does not hold, as a polynomial in u_i

$$\prod_{i,j=1}^{3} \left(a'_{ij} \prod_{l=1}^{6} u_l \right) \left(b'_{ij} \prod_{l=1}^{6} u_l \right) \left(c'_{ij} \prod_{l=1}^{6} u_l \right) = 0.$$

Therefore there exists at least a factor being zero as a polynomial in u_i . Without loss of generality we only consider the case $a'_{11} \prod_{i=1}^{6} u_i = 0$ and the case $b'_{12} \prod_{i=1}^{6} u_i = 0$.

If
$$\mathbf{0} = a'_{11} \prod_{l=1}^{6} u_l$$

 $= [(a_{11}\cos^2\theta\cos^2\alpha + a_{22}\sin^2\theta\sin^2\alpha + a_{33}\sin^2\theta)u_1u_2u_3$

 $+a_{21}\cos^2\theta\cos\alpha\sin\alpha u_1^2u_3+a_{31}\cos\theta\sin\theta\cos\alpha u_1^2u_2$

 $+a_{12}\cos^2\theta\cos\alpha\sin\alpha u_2^2u_3+a_{32}\cos\theta\sin\theta\sin\alpha u_1u_2^2$

 $+a_{13}\cos\theta\sin\theta\cos\alpha u_{2}u_{3}^{2}+a_{23}\cos\theta\sin\theta\sin\alpha u_{1}u_{3}^{2}]u_{4}u_{5}u_{6}$

we get $a_{ij} = 0$. This is impossible.

Smilarly, if

$$0 = a'_{12} \prod_{i=1}^{6} u_i$$

 $= [a_{11}\cos\theta\cos\alpha(\cos\varphi\sin\alpha + \sin\varphi\sin\theta\cos\alpha) - a_{33}\sin\varphi\sin\theta\cos\theta$

 $+a_{22}\cos\theta\sin\alpha(-\cos\varphi\cos\alpha+\sin\varphi\sin\theta\sin\alpha)]u_1u_2u_3u_5^2u_6$

 $+a_{12}\cos\theta\cos\alpha(-\cos\varphi\cos\alpha+\sin\varphi\sin\theta\sin\alpha)u_2^2u_3u_5^2u_6$

 $-a_{13}\sin\varphi\cos^2\theta\cos\alpha u_2u_3^2u_5^2u_6$

 $+a_{21}\cos\theta\sin\alpha(\cos\varphi\sin\alpha-\sin\varphi\sin\theta\cos\alpha)u_1^2u_3u_5^2u_4$

 $-a_{23}\sin\varphi\cos^2\theta\sin\alpha u_1u_3^2u_5^2u_6$

 $+a_{31}\sin\theta(\cos\varphi\sin\alpha+\sin\varphi\sin\theta\cos\alpha)u_1^2u_2u_5^2u_6$

 $+a_{32}\sin\theta(-\cos\varphi\cos\alpha+\sin\varphi\sin\theta\sin\alpha)u_1u_2^2u_5^2u_6$

we get $a_{ij} = 0$ $i \neq j$, and

 $(a_{11}-a_{22})\cos\varphi\cos\theta\sin\alpha\cos\alpha+(a_{11}\cos^2\alpha+a_{22}\sin^2\alpha-a_{33})\sin\varphi\sin\theta\cos\theta=0,$ which implies that $a_{11}=a_{22}=a_{33}$, i. e., $A=a_{11}I$. This is impossible.

Lemma 4. Let A, B, $C \in M_3(\mathbb{C})$ be non-scalar. Then

$$W^{\perp}(A \otimes B \otimes C - A^* \otimes B^* \otimes C^*) = 0$$

if and only if $A = aA_1$, $B = bB_1$, $C = cO_1$, where A_1 , B_1 , O_1 are hermitian and $0 \neq abc \in \mathbb{R}$.

Proof The "if" part is clear.

The "only if" part: We may assume that a_{ij} , b_{ij} , $c_{ij} \neq 0$. Take $e_1 = (1, 0, 0)^T$, $e_2 = (0, 1, 0)^T$, $e_3 = (0, 0, 1)^T$. Since

$$(Ae_1, e_1) (Be_2, e_2) (Ce_3, e_3) = (A^*e_1, e_1) (B^*e_2, e_2) (C^*e_3, e_3),$$

we get $a_{11}b_{22}c_{32} = \bar{a}_{11}\bar{b}_{22}\bar{c}_{33} \neq 0$. Hence

$$W^{\perp}((a_{11}^{-1}A)\otimes(b_{22}^{-1}B)\otimes(c_{33}^{-1}C)-(a_{11}^{-1}A)^*\otimes(b_{22}^{-1}B)^*\otimes(c_{33}^{-1}C)^*)=0.$$

It is enough to show that $a_{11}^{-1}A$, $b_{22}^{-1}B$, $c_{33}^{-1}O$ are hermitian. Thus we may assume that $a_{11} = b_{22} = c_{33} = 1$.

First, let x, y, z be the column vectors of the matrix (6), which are o. n.. Thus $(Ax, x) = (a_{11}x_1^2 + a_{22}x_2^2 + a_{83}x_3^2) + a_{21}x_1x_2u_1u_2^{-1} + a_{81}x_1x_3u_1u_3^{-1} + a_{12}x_1x_2u_1^{-1}u_2 + a_{32}x_2x_3u_2u_3^{-1} + a_{13}x_1x_3u_1^{-1}u_3 + a_{23}x_2x_3u_2^{-1}u_3.$

Similarly we may get the expressions of (By, y), (Oz, z), (A^*x, x) , (B^*y, y) , (O^*z, z) . The following polynomials are equal:

$$u_1^2 u_2^3 u_3^3 (Ax, x) (By, y) (Cz, z) = u_1^2 u_2^3 u_3^3 (A^*x, x) (B^*y, y) (C^*z, z).$$

Comparing their coefficients of $u_1^6u_3^3$, $u_1^6u_2u_3^2$ and $u_1^5u_3^4$, we get

$$\begin{aligned} x_1 x_2 y_1 y_2 z_1 z_2 \left(a_{21} b_{21} c_{21} - \overline{a}_{12} \overline{b}_{12} \overline{c}_{12} \right) &= 0, \\ x_1 x_2 y_1 y_2 z_1 z_3 \left(a_{21} b_{21} c_{31} - \overline{a}_{12} \overline{b}_{12} \overline{c}_{13} \right) + x_1 x_2 y_1 y_3 z_1 z_2 \left(a_{21} b_{31} c_{21} - \overline{a}_{12} \overline{b}_{13} \overline{c}_{12} \right) \end{aligned}$$

$$+x_{1}x_{3}y_{1}y_{2}z_{1}z_{2}(a_{31}b_{21}c_{21}-\bar{a}_{13}\bar{b}_{12}\bar{c}_{12}) = 0,$$

$$(8)$$

$$x_1x_2y_1y_2z_2z_3(a_{21}b_{21}c_{23}-\bar{a}_{12}\bar{b}_{12}\bar{c}_{32})+x_1x_2y_2y_3z_1z_2(a_{21}b_{23}c_{21}-\bar{a}_{12}\bar{b}_{32}\bar{c}_{12})$$

$$+x_2x_3y_1y_2z_1z_2(a_{23}b_{21}c_{21}-\overline{a}_{32}\overline{b}_{12}\overline{c}_{12})=0,$$

Substituting in (8) by (7) and noticing that φ , θ , α are arbitrary, we obtain

$$a_{21}b_{21}c_{21} = \overline{a}_{12}\overline{b}_{12}\overline{c}_{12}, \ a_{21}b_{21}c_{31} = \overline{a}_{12}\overline{b}_{12}\overline{c}_{13}, \ a_{21}b_{21}c_{23} = \overline{a}_{12}\overline{b}_{12}\overline{c}_{32}.$$

Secondly it is easy to show that

$$W^{\perp} \left[\begin{pmatrix} 1 & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & 1 \end{pmatrix} - \begin{pmatrix} 1 & a_{12} \\ x_{21} & a_{22} \end{pmatrix}^* \otimes \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & 1 \end{pmatrix}^* \right] = 0,$$

which implies that $a_{21}b_{21} = \overline{a}_{12}\overline{b}_{12}$ according to (1). But $a_{21}b_{21} \neq 0$. Hence $c_{ij} = \overline{c}_{ji}$, $i \neq j_j$

 \dot{v} , $\dot{j}=1$, 2,3. Similarly we can obtain $a_{ij}=\bar{a}_{ji}$, $b_{ij}=\bar{b}_{ji}$, $\dot{v}\neq\dot{j}$, \dot{v} , $\dot{j}=1$, 2, 3.

Finally it is enough to show that a_{ii} , b_{ii} , c_{ii} , i=1, 2, 3, are real. Otherwise, if $a_{22} \in \mathbb{R}$, we have $b_{11} = \bar{a}_{22}$, according to the proof of Lemma 1. Denote $A_2 = a_{22}^{-1}A$, $B_2 = b_{11}^{-1}B$, $C_2 = C$. Then it is clear that $W^1(B_2 \otimes A_2 \otimes C_2 - B_2^* \otimes A_2^* \otimes C_2^*) = 5$ and $b'_{11} = a'_{22} = c'_{33} = 1$. From the foregoing proof, we get $b'_{21} = b_{11}^{-1}b_{21} = \bar{b}'_{12} = \bar{b}'_{11}\bar{b}_{12}$. Since $b_{21} = \bar{b}_{12} \neq 0$, it implies that $b_{11} = \bar{b}_{11}$. This is absurd and shows that b_{11} is real. Similarly we can prove that other diagonal elements of A, B, C are real, too. Therefore A, B, C are hermitian.

Obviously the restrictive condition that A, B, C are not scalar is not necessary since we have the following more general result.

Lemma 5. Let A, B, $C \in M_3(\mathbb{C})$. Then a necessary and sufficient condition of $W^1(A \otimes B \otimes C - A^* \otimes B^* \otimes C^*) = 0$ is $A \otimes B \otimes C = A^* \otimes B^* \otimes C^*$.

Proof It is enough to show that the necessarity holds if C=cI. Let $A_1=cA$, $B_1=B$, we get $W^{\perp}(A_1\otimes B_1\otimes I-A_1^*\otimes B_1^*\otimes I^*)=0$, which implies that $W^{\perp}(A_1\otimes B_1-A_1^*\otimes B_1^*)=0$. Hence $A_1\otimes B_1=A_1^*\otimes B_1^*$, according to the result proved by B. Y. Wang^[10,Th1]. It is easy to show that $A\otimes B\otimes C=A^*\otimes B^*\otimes C^*$.

§3. Main Results

Theorem 1. Let $0 \neq A_i \in M_n(\mathbb{C})$, $i=1, \dots, n, n \geqslant 3$. Then $W^{\perp}(A_1 \otimes \dots \otimes A_n - A_1^* \otimes \dots \otimes A_n^*) = 0$

if and only if $A_i = a_i A'_i$, where each A'_i is hermitian and $\prod_{i=1}^n a_i \in \mathbb{R}$.

Proof The "if" part is clear.

The "only if" part: According to Marcus-Wang Theorem (foregoing Lemma 2), we may assume that $_ka_{kk}=1$ and prove that each $A_k=(_ka_{kl})$ is hermitian.

In the case n=3, the required result may be obtained out of Lemma 5. If the statement is true in the case $n(\geqslant 3)$, we consider the case n+1.

Let $x_{n+1} = e_{n+1} = (0, \dots, 0, 1)^T$ and x_1, \dots, x_n, x_{n+1} o. n.. Then we get

$$\prod_{i=1}^{n+1} (A_i x_i, x_i) = \prod_{i=1}^{n+1} (A_i^* x_i, x_i).$$

Since $_{n+1}a_{n+1},_{n+1}=1$, it implies that

 $W^{\perp}(A_1(n+1|n+1)\otimes\cdots\otimes A_n(n+1|n+1)-A_1^*(n+1|n+1)\otimes\cdots\otimes A_n^*(n+1|n+1))=0.$ According to the inductive assumption, $A_1(n+1|n+1)=A_1^*(n+1|n+1).$ Similarly we may get $A_1(n|n)=A_1^*(n|n)$, $A_1(n-1|n-1)=A_1^*(n-1|n-1).$ Therefore A_1 is hermitian. Using the same method we may prove that each A_k is hermitian, too.

Theorem 2. Let $A_i \in M_n(\mathbb{C})$, $i=1, \dots, n, n \geqslant 3$. Then $W^{\perp}(A_1 \otimes \dots \otimes A_n - A_1^* \otimes \dots \otimes A_n^*) = 0$ if and only if $A_1 \otimes \dots \otimes A_n = A_1^* \otimes \dots \otimes A_n^*$.

It suffices to point out that if some $A_i = 0$, the statement is true obviously.

Thus we may prove the following result which affirmatively solves the open question cited by B. Y. Wang.

Theorem 3. Let $A_i \in M_n(\mathbb{C}) = L(V)$, $i = 1, \dots, n$, $n = \dim V \geqslant 3$. $\mathcal{L} = A_1 \otimes \cdots \otimes A_n$. Then \mathcal{L} is a hermitian operator on $\otimes^n V$ if and only if $W^{\perp}(\mathcal{L}) \subseteq \mathbb{R}$.

Proof Since $2\mathscr{L} = (\mathscr{L} + \mathscr{L}^*) - i[i(\mathscr{L} - \mathscr{L}^*)]$ and both $(\mathscr{L} + \mathscr{L}^*)$ and $i(\mathscr{L} - \mathscr{L}^*)$ are hermitian, $W^{\perp}(\mathscr{L}) \subseteq \mathbb{R}$ if and only if $W^{\perp}(\mathscr{L} - \mathscr{L}^*) = 0$. But $W^{\perp}(\mathscr{L} - \mathscr{L}^*) = 0$ if and only if \mathscr{L} is hermitian according to Theorem 2. The theorem is proved.

The author is grateful to Professor Zhou Boxun and Associate Professor Tong Wenting for their comment and help.

References

- [1] Marcus, M., Finite Dimensional Multilinear Algebra, Part I, Marcel Dekker, New York, 1973.
- [2] Fan, K., I, Proc. Nat. Acad. Sci., U. S. A., 35 (1949), 652-655; II, Same journal, 36 (1950), 31-35.
- [3] Fan, K., Proc. Nat. Acad. Sci., U. S. A., 37 (1951), 760-766.
- [4] Fan, K., Amer. Math. Monthly, 60(1953), 48-50.
- [5] Goldberg, M., Linear and Multilinear Algebra, 7:4 (1979), 329-342
- [6] Goldberg, M. and Straus, E. G., Linear Algebra Appl., 18 (1977), 1-24.
- [7] Marcus, M., Finite Dimensional Multilinear Algebra, Part II, Marcel Dekker, New York, 1975.
- [8] Marcus, M., Moyls, B. N. and Filippenko, I., Can. J. Math., 30:2 (1978), 419-430.
- [9] Donoghue, W. F., Michigan Math. J., 4 (1957), 261-263.
- [10] Wang, B. Y., Chinese Annals of Math., 6A:1(1985), 79-82.
- [11] Marcus, M. and Wang, B. Y., Linear and Multilinear Algebra, 9:2(1980), 111-120.