GL₂ OVER FULL RINGS

ZHANG YONGZHENG (张永正)* WANG LUQUN (王路群)**

Abstract

In this paper the authors generalize the result of B. R. McDonald. The following result is obtained.

Let R be a (1, 6)-full ring, or (3, 3)-full ring, or (2, 4)-full ring, and R has the property T. G is an $SL_2(R)$ -normal subgroup of $GL_2(R)$. Then there is an ideal A in R such that

$$SC(R, A) \subseteq G \subseteq GC(R, A).$$

The problem of GL_2 over full rings was discussed in [1]. In this paper we do not demand that 2 be a unit and we discuss normal subgroups of GL_2 over full rings. We generalize the results of [1, 2, 3].

Suppose R is a commutative ring with 1. U(R) denotes the multiplicative group of units of R. Suppose m and n are integers and m>1, $n\geq 2$. For any $m\times n$ matrix $A = (a_{ij})$ whose element a_{ij} satisfies the equations

$$\sum_{j=1}^{n} a_{ij}R = R, \ i = 1, \ \cdots, \ m,$$

if there exist $b \in R$, $u_i \in U(R)$, $i=1, \dots, m$, such that $A(1, b, \dots, b^{n-1})^T = (u, \dots, u_m)^T$,

we call R an (m, n)-full ring.

We know ϕ -surjective rings and Von Neumann regular rings are (m, n)-full rings for some positive integers m and n. Particularly, primitive rings are (m, n)full rings, for any integers $m \ge 1$, $n \ge 2$. If R is an (m, n)-full ring, then it must be an (s, t)-full ring where $1 \le s \le m$, $2 \le t \le n$. We know that a(1, 2)-full ring is a ring of stable range $1^{(1)}$.

 $GL_2(R)$ denotes multiplicative group of all 2×2 inverse matrices over R. $SL_2(R) = \{\sigma \in GL(R) | \det \sigma = 1\}.$

Suppose A is an ideal of R, π_A denotes a natural ring homomorphism from R into R/A. Then the following map

$$\lambda_A; \quad \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longrightarrow \lambda_A \sigma = \begin{pmatrix} \pi_A a & \pi_A b \\ \pi_A c & \pi_A d \end{pmatrix}$$

Manuscript received March 29, 1985. Revised August 6, 1985.

^{*} Department of Mathematics, Northeast Normal University, Changchun, China.

^{**} Department of Mathematics, Heilongjiang University, Harbin, China.

is a group homomorphism from $GL_2(R)$ into $GL_2(R/A)$.

When A is a proper ideal of R, denote

$$GO_2(R, A) = \{ \sigma \in GL_2(R) \mid \lambda_A \sigma \in \text{ center of } GL_2(R/A) \},$$

$$SO_2(R, A) = \{ \sigma \in SL_2(R) \mid \lambda_A \sigma = 1 \}.$$

Particularly, $GO_2(R, R) = GL_2(R)$, $SO_2(R, R) = SL_2(R)$ and it is clear that $GO_2(R, A) \triangleleft GL(R)$, $SO_2(R, A) \triangleleft GL(R)$.

If $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(R)$, we call ideal $O(\sigma) = (a-d)R + bR + cR$ the order of σ .

We have $O(p^{-1}\sigma p) = O(\sigma)$, $\forall p \in GL_2(R)$. If G is a subgroup of $GL_2(R)$, we call O(G)= $\sum_{a \in G} O(\sigma)$ the order of G. The e_{ij} denotes the 2×2 matrix over R where position (*i*, *j*) is 1, but other positions are all zero, $1 \leq i, j \leq 2$. Let $\tau_{ij}(a) = I + ae_{ij}, i \neq j, 1 \leq i, j \leq 2$. We have $\tau_{ij}(a) \in SL_2(R)$, $\forall a \in R$, and call $\tau_{ij}(a)$ the transvection. If $a \in U(R)$, Δ_a denotes the matrix $\binom{a}{a^{-1}}$. Obviously, $\Delta_a \in SL_2(R)$.

Lemma 1. Suppose R is a (1, 2)-full ring, A is ideal of R. G_4 denotes $SL_2(R)$ normal subgroup generated by all $r_{12}(a)$, $\forall a \in A$. Then $G_4 = SL_2(R, A)$.

Proof If
$$\tau_{12}(a) \in G_4$$
, then $\tau_{12}(a) = \begin{pmatrix} -1 \\ 1 \end{pmatrix}^{-1} \tau_{12}^{-1}(a) \begin{pmatrix} -1 \\ 1 \end{pmatrix}^{-1} \in G_4$. Let $\sigma \in (1 + a)$

 $SC_2(R,A)$. Then there exists $a_{ij} \in A$ such that $\sigma = \begin{pmatrix} 1+a_{11} & a_{12} \\ a_{21} & 1+a_{22} \end{pmatrix}$ and det $\sigma = 1$.

Since $(1+a_{11})R+a_{21}R=R$, there exists $x \in R$ such that $(1+a_{11})+xa_{21} \in U(R)$. Let $\sigma_1 = \tau_{12}(x) \sigma \tau_{12}^{-1}(x) = \begin{pmatrix} 1+b_{11} & b_{12} \\ b_{21} & 1+b_{22} \end{pmatrix}$. Then $\sigma_1 \in SO_2(R,A), 1+b_{11} \in U(R)$. We have $\sigma_1 = \tau_{21}((1+b_{11})^{-1}b_{21}) [\tau_{21}(-1)\tau_{21}((1+b_{11})^{-1}b_{11})\tau_{12}(b_{11})\tau_{21}^{-1}(-1)] \times \tau_{12}((1+b_{11})^{-1}(b_{12}-b_{11}))$.

So $\sigma_1 \in G_A$ and $SC_2(R, A) \subseteq G$. Reverse inclusion is obvious.

Definition. Suppose R is a commutative ring with 1 and w is any element of R. If the $SL_2(R)$ -normal subgroup generated by $\tau_{12}(w)$ includes all the $\tau_{12}(wr)$, $\forall r \in R$, we say that R has property T.

In [3] we know the full ring which has not property T is existent.

Lemma 2. (1) Suppose R is a commutative ring with 1. If each element of R can be denoted by algebrac sum of squares of some units of R, then R has property T.

(2) Suppose $\{F_t | t \in \Lambda\}$ is a variety consisted of fields F_t . If $F_t \neq F_2$, F_3 , $\forall t \in \Lambda$, then driect product $R = \prod_{t \in \Lambda} F_t$ has property T.

Proof Let G_w denote $SL_2(R)$ -normal subgroup in $GL_2(R)$ generated by $\tau_{12}(\omega)$. (1) It is clear that every element r of R has the form $\pm x_1^2 \pm \cdots \pm x_n^2, x_i \in U(R)$, $i=1, \dots, n$. Thus $\tau_{12}(wr) = (\Delta_{x1}\tau_{12}^{\pm 1}(\omega)\Delta_{x_1}^{-1})\cdots(\Delta_{x_n}\tau_{12}^{\pm 1}(\omega)\Delta_{x_n}^{-1}) \in G_{\omega}.$

(2) We take $\omega = (\dots, \omega_t, \dots) \in \prod_{t \in A} F_t$ where $\omega_t \in F_t, t \in A$. Let G_{ω_t} be the $SL_2(F_t)$ normal subgroup in $GL_2(F_t)$ generated by $\tau_{12}(\omega_t)$. Then $G_{\omega} = \prod_{t \in A} G_{\omega_t}$. From simple property of $PSL_2(F_t)$ we can see $\tau_{12}(\omega_t) \in G_{\omega}$.

Corollary. If R is a (1, 4)-full ring and $2 \in U(R)$, then R has property T.

Proof According to the property of (1, 4)-full rings we can obtain $a_r \in R$ such that $ra_r - a_r^2 \in U(R)$, $\forall r \in R$. Thus a_r , $r - a_r \in U(R)$ and $r = a_r + (r - a_r)$. Similarly, there exists $b \in R$ such that $a_rb + b^3 \in U(R)$, then b, $a_r + b^2 \in U(R)$. So $2^{-1}b$, $2^{-1}a_rb^{-1}$, $2^{-1}b^{-1}(a_r + b^2) \in U(R)$ and

 $a_r = 2[(2^{-1}b + 2^{-1}a_rb^{-1})^2 - (2^{-1}b) - (2^{-1}a_rb^{-1})^2].$

Similarly, $r - a_r$ can be denoted by algebrac sum of squares of some units of R and so can r.

Theorem 1. Suppose R is a (1, 6)-full ring, or (3, 3)-full ring, or (2, 4)-full ring, $\sigma \in GL_2(R)$ and $O(\sigma) = R$. Then $SL_2(R) \subseteq G_{\sigma}$ where G_{σ} is the $SL_2(R)$ -normal subgroup in $GL_2(R)$ generated by σ .

Proof Let $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. We have (a-d)R + bR + cR = R. Thus there exists $x \in R$ such that $\sigma_1 = c + (a-d)x - bx^2 \in U(R).$

Let
$$\sigma_1 = \begin{pmatrix} 1 \\ x & 1 \end{pmatrix} \sigma \begin{pmatrix} 1 \\ x & 1 \end{pmatrix}^{-1} = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix}$$
. Then $\sigma_1 \in G_{\sigma}$.
Since $\tau = \begin{pmatrix} c_1 & -a_1 \\ 1 \end{pmatrix} \in GL_2(R)$, we have
 $\sigma_2 = \tau \sigma \tau^{-1} = \begin{pmatrix} 0 & -\det \sigma \\ 1 & a+d \end{pmatrix} \in \tau G_{\sigma} \tau^{-1}$.

We can take $y \in R$ such that $y(y^4-1) \in U(R)$. According to the property of full rings, then

$$\sigma_{3} = \Delta_{y}^{-1} \sigma_{2} \Delta_{y} \sigma_{2}^{-1} = \begin{pmatrix} y^{-2} & 0 \\ (a+d) (y^{2}-1) \det \sigma^{-1} & y^{2} \end{pmatrix} \in \tau G_{\sigma} \tau^{-1},$$

$$\tau_{21}(r) = \tau_{21}(r(1-y^{4})^{-1}) \sigma_{3} \tau_{21}^{-1}(r(1-y^{4})^{-1}) \sigma_{3}^{-1} \in \tau G_{\sigma} \tau^{-1}, \quad \forall r \in \mathbb{R}.$$

Hence $SL_2(R) \subseteq \tau G_{\sigma} \tau^{-1}$ and $SL_2(R) \subseteq G_{\sigma}$.

From now on we always assume that R has the property T.

Lemma 3. Let R be a (1, 2)-full ring, G an $SL_2(R)$ -normal subgroup of $GL_2(R)$.

(1) If $\tau_{12}(a) \in G$, then $SO_2(R, aR) \subseteq G$.

(2) Let $\{A_i | i \in A\}$ be a veriety of ideals of R, $A = \sum_{i \in A} A_i$. If $SC_2(R, A_i) \subseteq G$, $\forall i$

 $\in \Lambda$, then

$$SC_2(R, A) \subseteq G.$$

Proof (1) It can be proved by property T and Lemma 1.

(2) It is obvious by (1) of Lemma 3.

Lemma 4. Let R be a (1, 4)-full ring, or (2, 3)-one, or (3, 2)-one. If $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, where G is an $SL_2(R)$ -normal subgroup of $GL_2(R)$, then $SC_2(R, O(\sigma)) \subseteq G$.

Proof We can take $x \in R$ such that $x(x^2-1) \in U(R)$. Since $\tau_{12}(d^{-1}(x^2-1)b) = \Delta_x \sigma \Delta_x^{-1} \sigma^{-1} \in G$ and R has property T, we can see $\tau_{12}(b) \in G$.

Obviously, $\tau_{12}(d-a) = \sigma \tau_{12}^{-1}(d) \sigma^{-1} \tau_{12}(d) \in G$. The result follows from Lemma 3. Lemma 5. R and G are both the same as in Lemma 4, $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$, and there exists $y \in R$ such that $1 - cy \in U(R)$. Then $\tau_{12}(y_i) \in G$, i = 1, 2, where $y_1 = y(cy-2) [d(1 - cy)^{-2} - a]$, $y_2 = c^4y^4 - 4c^3y^3 + 6c^2y^2 - 4cy$.

Proof We take

$$\tau = \begin{pmatrix} 1 - cy & dy(cy - 2)(1 - cy)^{-1} \\ 0 & (1 - cy)^{-1} \end{pmatrix}$$

It is clear that

$$\begin{pmatrix} a_1 & b_1 \\ 0 & d_1 \end{pmatrix} = \tau \sigma \tau^{-1} \sigma^{-1} \in G,$$

where $a_1 = (1 - cy)^2$, $b_1 = y(cy - 2) [d(1 - cy)^{-2} - a]$, $d_1 = (1 - cy)^{-2}$. Thus $d_1 - a_1 = (1 - cy)^{-2} (c^4y^4 - 4c^8y^3 + 6c^2y^2 - 4cy)$. The lemma follows from Lemma 4.

lemma 6. Let R and G be as in Lemma 4, $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and $\tau_{12}(c) \in G$. Then $SC_2(R, O(\sigma)) \subseteq G$.

Proof According to the definition of R, there exists a $z \in R$ such that $d_1 = d + cz \in U(R)$. We have

$$\sigma_1 = \tau_{12}^{-1}(z) \sigma \tau_{12}(z) = \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \in G,$$

where $c_1 = c$.

It is clear by the hypothesis and the property T that $r_{12}(c_1d_1^{-1}) \in G$. Thus

$$\sigma_{2} = \begin{pmatrix} a_{1} - b_{1}c_{1}d_{1}^{-1} & b_{1} \\ 0 & d_{1} \end{pmatrix} = \sigma_{1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \tau_{12} (c_{1}d_{1}^{-1}) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \in G.$$

So $SC_2(R, O(\sigma_2)) \subseteq G$ by Lemma 4. But $O(\sigma) = O(\sigma_1) = O(\sigma_2) = cR$. Hence $SC_2(R, O(\sigma)) \subseteq G$.

Lemma 7. Let R and G be as in Lemma 4. $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ and there exists a positive integer n such that $\tau_{12}(c^n) \in G$. Then $SO_2(R, O(\sigma)) \subseteq G$. **Proof** The result is obviously true when n=1 by Lemma 6. Proceed by induction on *n*. Suppose Lemma is true when $n=k(k\ge 1)$. We observe the σ . Obviously we can suppose $d \in U(R)$ under the meaning of σ_1 in Lemma 6. According to the property of full rings there exists $x \in R$ such that $x(x^2-1) \in U(R)$. Thus we have

where

Also

where

$$\sigma_{1} = \Delta_{x} \sigma \Delta_{x}^{-1} \sigma^{-1} = \begin{pmatrix} 1 + bcux^{2} & -abux^{2} \\ cdu & 1 - bcu \end{pmatrix} \in G,$$

$$u = (x^{-2} - 1) \det \sigma^{-1} \in U(R).$$

$$\sigma_{2} = \tau_{12}(1) \sigma_{1} \tau_{12}^{-1}(1) \sigma_{1}^{-1} = \begin{pmatrix} a_{2} & b_{2} \\ c_{2} & d_{2} \end{pmatrix} \in G,$$

$$a_{2} = 1 + cdu + c^{2}d^{2}u^{2} + bc^{2}dx^{2}u^{2},$$

$$b_{2} = -cdu - 2bcx^{2}u - bc^{2}dx^{2}u^{2} - b^{2}c^{2}x^{4}u^{2},$$

$$c_{2} = c^{2}d^{2}u^{2},$$

$$d_{2} = 1 - cdu - bc^{2}du^{2}x^{2}$$

If $\tau_{12}(c^{k+1}) \in G$, then $\tau_{12}(c_2^k) = \tau_{12}((c^{k-1}d^{2k}u^{2k})c^{k+1}) \in G$ by the property T. By the supposition of induction we have $SO_2(R, O(\sigma_2)) \in G$. Since $O(\sigma_2) = cR$, we have also $\tau_{12}(c) \in G$. Then $SO_2(R, O(\sigma)) \in G$ by Lemma 6.

Theorem 2. Let R be a (1, 6)-full ring, or (3, 3)-full ring, or (2, 4)-full ring and have the property T. Let G be an $SL_2(R)$ -normal subgroup of $GL_2(R)$. Then there exists an ideal A of R such that

$$SO_2(R, A) \subseteq G \subseteq GO_2(R, A).$$

Proof Without loss of generality, we can assume $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$ with $d \in U$ (R). It is clear from the definition of the full ring that we can take $x \in R$ with $x(x^2 - 1) \in U(R)$. Thus

$$\sigma_{1} = \Delta_{x} \sigma \Delta_{x}^{-1} \sigma^{-1} = \begin{pmatrix} 1 + c_{1} u x^{2} & b_{1} \\ c_{1} & 1 - c_{1} u \end{pmatrix} \in G_{g}$$

where $c_1 = cd(x^{-2}-1) \det \sigma^{-1}, u = bd^{-1}$.

Also
$$\sigma_2 = \tau_{12}(2) \sigma_1 \tau_{12}^{-1}(2) \sigma_1^{-1} = \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \in G,$$

where $a_2 = 1 + 4c_1^2 + 2c_1(1 + c_1ux^2)$, $c_2 = 2c_1^2$, $d_2 = 1 - 2c_1(1 + c_1ux^2)$.

Obviously we can take $y \in R$ such that

$$y(1-c_1^2y)(1-2c_1^2y)(1-2c_1^2y+2c_1^4y^2)\in U(R).$$

Since $1-c_2y=1-c_1^2y\in U(R)$ for σ_2 and

$$8c_1^2y(c_1^2y-1)(2c_1^4y^2-2c_1^2y+1) = c_2^4y^4-4c_2^3y^3+6c_2^2y^2-4c_2y^2$$

we have $\tau_{12}(8c_1^2) \in G$ by Lemma 5. But $c_2^3 = (2c_1^2)^3 = 8c_1^6$, then $\tau_{12}(c_2^3) \in G$ by the property T. According to Lemma 7 $\tau_{12}(c_2) \in G$. Since $c_2 = 2c_1^2 = 2c^2d^2(x^{-2}-1)^2 \det \sigma^{-2}$, we have $\tau_{12}(2c^2) \in G$.

Take $z \in R$ such that $z(1-cz) \in U(R)$. By Lemma 5 $\tau_{12}(c^4z^4-4c^3z^3+6c^2z^2-4cy) \in G$.

 $\pi_{12}(c^5z^4) \in G.$

Thus

 $\tau_{12}(c^5) \in G_*$

By Lemma 7, we have $SO_2(R, O(\sigma)) \subseteq G$.

Take A = O(G). According to Lemma 3, $SO_2(R, A) \subseteq G$. Obviously, $G \subseteq GO_2(R, A)$, the result follows.

References

- [1] McDonal, B. R., GL of rings with many units communications in algebra, 8:9 (1980), 869-888.
- [2] Lacrolx, W. H. J., Two-dimensional linear groups over local rings, Cand J. Math., 21 (1969), 106-135.
 [3] Zhang Yongzheng, The structure of two-dimensional linear groups over semi-local rings, Kexue Tongbao, 26: 23 (1981), 1469.
- [4] Wang Luqun and Zhang Yongzheng, Two-dimensional linear groups over surjective rings, Acta Mathematica Sinica, 27:6 (1984), 860-864.

439

Then