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Abstract
This paper explores implementation problems o f  infinite dimensional linear-quadrati©  

tracking optim al control. Based on the closed-loop result, a new formula o f  optimal control 

expressed b y  past-tim e state feedback is proved. From  this, on the conditions o f  observa­

bility, expressions o f  optimal control via dynam ic output feedback are derived. The main 

feedback operator functions are g iven by solution o f  linear integral equations.

§ 1. Introduction

Let X , U and Y  be real Hilbert spaces. We consider an optimal tracking 
problem for infinite dimensional linear system described by a state equation and an 
output equation respectively

so(t) =eAtx0+ \  eMt~s)Bu(s)ds+ f eMt~syf(s)ds. (1.1)
Jo Jo

y(t)=O x(t), t>  0, (1.2)
with cost function

Jfyi) - f l  - £ > .+ £ [<«(«(*) *(«) -«.(«)>

+(Ru(t), u(t)y]dt. (1.8)
Assume that T >0  is finite and fixed,/ ( • )  £Zr(0, T; X ) , <p(») £ L2(О, T; X )  and 
£ £ X  are fixed, (c0£ X  is an arbitrary initial state, eM(t>0) is a do-semigroup of 
boundded linear operators on X , generated by a dense defined and closed operator 
A, besides, B e^ (U ;  X ) , <7£i?(X ; Y ). Let Ж £ -^ (Х ), Q £j^ (X ) and R£&(JJ) 
be self-adjoint such that Af>0, Q >0 and S01 > 0 , where 80 is a positive constant.

The optimal tracking problem is to find optimal control w(*) £  L2(0, T; U) which 
minimizes the cost function J (u) for a given initial state ж0. This problem will be 
denoted briefly by (TP). О
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In this paper, eAH(i>0) is the dual CV-semigroup of eAt, all the integrals are in 
the Bochner sense. Two conventions are made: &At—eA4~0  for all t< 0; and in those 
integrals of operator-valued functions we omit elements being acted.

To this problem, optimal control law expressed by state feedback was discussed 
by some authors, typically [1, 2]. However in practical systems, due to time lag in 
signal measurement, transformation and transmission, it is often impossible to 
provide real-time state feedback. Moreover, it is difficult or sometimes unrealistic to 
measure all the information of state, especially in the case of infinite dimensional 
state space. In view of these, there have been several suboptimal approaches like the 
Luenberger observers, but not applicable or satisfactory to the finite time cases.

As far as we know, optimal control via output feedback is still an attractive open 
problem, especially in the infinite dimensional case.

In this paper, we shall establish optimal control expressed by past-time state 
feedback and derive from it the dynamic out-put feedback under the assumptions on. 
observability.
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2. Closed-Loop Optimal Control

Theorem 1. For any given ®0£ X , there exists a unique optimal control of 
(TP ) . «(•) is optimal control i f  <md only i f

«(f) - - д-1в*[е№ ,>л'(Ч21) -o  + fV"<'-<>Q(*(<r) - j>(<r))*r], f 6 to, T],

(2Д)

where »(•) is the trajectory corresponding to w(«) •
The proof of Theorem 1 is similar to [8] Theorem 2, so omitted.
Theorem %. For. any given ж06 Х , a control w(«) is optimal i f  and only i f  it as 

«й state feedback given by
M ( i ) - - S - lB * [P (0 ® (0 + r(« )]/ ^ [ 0 ,  T], (2.2)

where ж(«) is the trajectory corresponding to w(s) , and P (° ): [О, T]—»=£?(Х) as a 
strongly continuous solution of integral Riccati equation

P(t) =еАЧТ~»МеА(Т-»+
'XeA*(V~t)
t

[Q -P  (<r) BR~1B*P (or) ] dcr (2 .8)

mich that P(t) =P*(t), and y(t) is given by the solution of

у (t) =  -  вА*(Т-»М£ ~ lQ<p (cr) -  P  (a)f (<r) ] da

- J ( 0-)BR~1B*y(a)da, £€[0, Pj. (2.4)

TAc optimal trajectory ж(») satisfies the following relation
x (t) =  (r (i, s) ж (s) +  p (t3 s) , 0 < P , (2 .5 )
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where G((t, s), is the mild evolution operator121 generated by A — BR гВ&
P it) , i.e.,

Q(t, s)=eA(t' sl- ^ e Mt-’»BR-1B*P(r])G('n, s)dv, 0<e<«<;2f, (2.6>

and #(#_, s), 0<s<:i<T., is given by

g(t, s) -£< ?(* , cr) [/(<r) -SB -^V (cr)]dcr, 0<8<i<JP. (2.7)

Proof The sufficiency part. By an approach similar to [8] Lemma 2 and’ 
Theorem 6; we obtain

J(u) -J'<R[w(*) +R~1B*(P(t)x(t) + y (t))] , u(t) + R~1B*(P(t)x(t) +y(i))>dt

+ 9 (4 , f  (*),€, <p(*)), (2.8}
where 0(xO) f(°),£ ,<p (•)) is a constant only depending on {oco, f  (°), £,<р(°)}°°

«(%,/(•), (, «•(•» -<р(«)«., %>+<«£,f>+j'<H?>(<), ?>(*)>*
-  Г<В-1В*Г®, B*r(<)>*+2<«,, 7 (0 »Jo

+ z \ \ f ( t ) ,  r m d t .  {2.9}

The feedback control (2.2) is admissible because the equation

x(t)=  eMx0 +  P eA«~s)B [ -  R-'B* (P (s) ж (s) +  у  (s) ) ] ds 
Jo

+  [ eMt~8:>f(s)ds, t£[P,TJ, (2.10)
Jo

admits a unique solution given by

x(t) -Gf(t, 0> o-J*G 4 *, s) IBR-'B'y®  - / (* ) ]& , t £  [0, Т ]. (2 .11)

Thus (2.2) is optimal control and the optimal trajectory is given by (2.11) from 
which we see that (2.6) is true.

The necessity part. From (2.1) we only need to prove that у  (t) =y(t) — P(t)x(t) 
is a solution of the equation (2 .4), where

y(t) - £]  + J V (tr"«Q|>(cr) — 9>(cr)]d<7o (2.12)

This can be done by direct verification and omitted here.
Remark. The strongly continuous solution of Biccati equation (2.8) is 

unique ‘■Ч

§3. Past-Time State Feedback Operator

Here we prove a new formula of the optimal control expressed by past-time 
state feedback where the feedback operator is solution of a linear integral equation..
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This is a mediate step leading to dynamic output feedback.
Lemma l / 33 Let P(t) and G(t, s) be described as in Theorem 2. Then

P  (*) = / < г-»М(?(T, t) + J (a, t) da. (3 .1>

Lemma 2. Let P  (t) and G (t, s) 6c described as in Theorem 2. Then

G (t, s) +  j* eMt~(r)BR~1Bi!eA*<p~(r)MG (T, s) da

+ CeMt-a>BR-iB* [TeÂ -a>QG('0, s)drjda=eMt~s), 0< s< t<T . (3.2)
J8 J<T

Proof Substituting (3.1) into (2.6) and using the evolution property of 
G(t,s), we know that (3.2) is true.

Define operator functions К  (t, s) and W (t, s) as follows

K it, s) -e*«*-t>MG(T, s) +  j V (£r-«Q(?(a, s)da, (t, s) 6  [0, T j2, (3.3)

W (t, s) = e^'-^M e^-^  + j У ^-'Щ в^-Ч а, (t, s) €  [0, T] 2. (3.4)

Here, in addition to previous convention that eAt—eAH =* 0 if tf<0, we make a  
convention that G(t, s) = 0  if f<s.

Lemma 8. К  (t, s) 6$ a unique strongly continuous solution of the following 
integral operator equation

К  (t, s) +  j V  (t, a) ВВггВ*К {a, s)da=W (t, s), (t, s) 6  [0, Г ]2. (3.5)

Proof The strong continuity of К (t, s) is apparent. By means of (3.2) and 
order exchanging of the integrations, we have

j V  (t, a ) ВЦ-гВ*К {a, s) da 

= e^ -^ M  ^  e^ -^ B M -^ e^ -^ M G  (T,t) do-

+ сА*(Г- 4)Ж fГ Г e^-^B R-W e^-^Q G  (v, s) d*? do-

■+J2' ( J V (p- f)Qc^-'T)dp ^B R -^e^-^M G iT , s)da

+ ^ j y ^ Qê dp 'jB R -W ^y^-V Q G in , s)dv)da

-.e^-i)M {eMT-s)-G (T , s)>

+ J | J Pe^ -^ B R -^ e^ -^ M G  (T, s) dojdp 

+ J V ^ - oq e^-^BR^B*^e^-^QG (r,, s) d^dojdp 

■ { e ^ ^ - ^ ( T ,  s )}+ |% 4*(',-«Q{64('5-s)-^ (p , s)}dp

■■w (t,s)-K (t,s), (t> s) e  [о, T ]2. (3 .6)
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Hence К  (t, s) is a solution of the equation (3.6).
Now prove the uniqueness. For any fixed s G [0, У], let AK (t, s) be strongly 

■continuous and such that

AK(t, s) +  J V (t, <r)BR-'B'AK(o', s)(for = 0, $G [0, Г]. (3.7)

As in [6] (p. 112) we can prove R~1B*AK(t, s) — 0 for G [s, Г]. Substitute it 
into (3 ,7), then AK (t, s) =  0 for (t, s) G [0, T ]a.

Based on the previous results, we establish past-time state feedback formula as 
follows.

Theorem 3. For any given x0£ X , the optimal control «(•) of (TP) is given by 
■ R -^ lK it, t - 8 ) x ( t - d ) + l ( t ,  * -8 ) ] , t e  [8, Г], 
-B -W IK Q , 0)xo+ l( t ,  0 )], t£  [0, 8], 

where 8>0 is any given small constant, x(>) is the corresponding trajectory, К (t, s) is 
the unique strongly continuous solution of the linear integral equation (3.6)* and

«00 l
(3.9)

%{t, s) =  - e ^ - ^ M i-  ^ e Â -»Q<p(a)d<r

+ J V ( t ,  o') [/(o') -BR-'B'y(cruder. (3.10)

Proof From Theorem 1, for any given x0 G X ,  the optimal control of (TP) 
uniquely exists and must be given by (2.1). Substituting (2.5) and(2.7)into (2.1)* 
we obtain the following relation satisfied by the optimal control w(*) 

u(t) =  — ВггВ*{(eA*^M [G (T , t —d)x(t~d) +g(T, t - d ) - £ ]

eA*(4_f)Q[Gt(')7, t -d )x ( t-d )  +g(v, t-8)-(pQn)№> 

~ -R ~ LB*{K(i, t-d )x ( t-d )  - е А*(Т-»М£ -  j \ Â Qp(r))dr)

+  Г  eA*v-»MG(T, p) [ / ( p ) -BR^B*y(p)-]dpJt-S

+  P) c/(p) -B R -^y(p)^dpdg}

-  -  Р~гВ*{К (t, t - d )x ( t - d )~  e ^ - m g  -  J V ^ Q p  (y) dr)

+  Г  {eA4T~f)MG(T, p)Jt-S

,> )* ,} [ /(p) -ВВ-1В’у (р )Ш

~ - B r 1B '{K (f ,t -» )x ( j .-S )+ \{ t , t -S ) } ,  iS [8 , T], (3.11)
where K (t, s) and h(t, s) are given by (3.3) and (3.10) respectively.

On the interval [0, 8], we have to make use of the initial state value x0 in order 
to get the optimal и (t) . Similarly
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u (t) -  -  R -XB*{K (t, 0)x0-  еА̂ -»М £  -  (cr) do-

+ |*К Г &  cr) [ / ( c r ) (cruder}

= - R ' 1B*\K(t,0)x0+X (t,0)}, *£ [0,8]. (3.12)
By Lemma 3, К (i, s) is characterized by the equation (3.5). ^

Theorem 4. I /  Q=0 in (1.8), Йоге /or any given xq(~X, the optimal control of
(TP) is given by

' - R -^ ie ^ - 'W M [I + A ( t-d )2 - V l 0 i(S’- (H))®( t - 8) - l(f, t - 8 ) } ,
« ( 0 — [8 ,5Г],

^Ж'ЕИ-Л^О)]-1 ч /Ж о^о+г0, 0)}, $G [0, 8 ],
(3.13)

where 8>0 is any given small constant, x(>) да the corresponding trajectory,

A (t) = \/M  ̂ eMT~s>BR~1B*eA*<-T~s) ds s/M, (3.14)

md

l(t,s) -  - е АН*-»М£- ^ e A'<a-»Q<p(cr)do

+  [ V * (y-« 's/ м  11+A (cr) ] “i; V I e A(T- ff) [ /  (cr) -  BR-xB*y(cr) ] do.

(3.16)
Proof In this case, because of Q = 0, it is easy to verify that the solution of 

(3.5) is explicitly given by
К  (t, s) -  eÂ - fWM  [I  +  A (s) ] ~WMeA(-T~s\  (t, s) G [О, Г ]2, (3.16)

where Л(») is defined by (3.14). Thus, (3.13) is the consequence of (3.9) with 
(3.16).

4. Dynamic Output Feedback

Definition 1. {A, 0 } is continuously observablew if  for any given S>0, there
exists a constant a> 0  such that

|C?6'lia:o||i>(o,6;Y) «̂I*o|L V®o G X . (4.1)
D efin ition s. Linear system (1 .1)— (1.2) is closed-loop continuously observable 

with respect to (1.3) i f  for any fa, fa, there exists a constant a> 0
depending on fa, fa and such that

 ̂ Ц0$(£, fa)x01L\ tl,j2;y)^ « I®oIj \/x0(~Xs (4.2)
where G(t, s) is given by (2.6).

It is obvious that (4.1) and (4.2) are respectively equivalent to the coercive 
positivity of following operators:



CHIN. ANN. OF MATH. Vol. 8 Ser. В4 4 6

F(8) = J V * 0 W sc^>a2I ,

H(h, h) =  [V ($ ,  tf) 0*GGf (t, h)dt>o?l,
Jti

(4.8)

(4.4)

Theorem 5. Assume that linear system (1 .1)— (1.2) is olosed-loop continuously 
observable with respect to (1.8). Then, for any -given x̂  £  X , the optimal control of 
(TP) is given by the following dynamic output feedback

u ( t )  =

r-R-'B'iKit ,  t -8 )H ~1(t, f-8 )J j  G*(s, t-8)0*y(s)ds+i{}(t, t - d ) } ,  

' t£ ld ,T l ,
. - R-'B'iK(t, 0)x0+X(t, 0) }, t e  [0, 8],

(4.6)
where S>0 is any given small constant, y(>) is the output corresponding to the optimal 
process {«(•), x(«)},

ifj(t, t-8 )= X (t, t - 8 ) + K ( t ,  ^ -8 )Я -1(̂ , i - 8 ) a W (s-”>(fe|

• {BR-'B* [P (77) g(v, t - 8 )  + у  (a?) ] - /  (n) }dr,, t£ [8 , Г], (4.6)
and К  (t, s), X(t, s), H(t, s),G (t, s), g(t, s), P(t) and y(t) are determined by (3.5), 
(3.10), (4.4), (2.6), (2.7), (2.3) and (2.4) respectively.

Proof From Theorem 3 and (3.9), we only need to prove (4.6) on [8, jP] . Let 
(u(>), x(°)} be the unique optimal process for a given x0 and y(°) be the correspon­
ding output. By (1.1), (1 .2), (2 .2), (2.6) and (2.6), we have 

y(s)=Ox(s)

= 0eA<-s~{t~mx (t—8) — f GeMs [P (rj) x(r))+y (rj) ] —f  (rj) }drj
J t—d

= 0 {e4(3- (i-5% (i-8 )  -  Г e^ -^ B R -^ P ^ G K v, t-8)drjx(t-8)}

- C  f* eÂ {B R ^ B * lP (v)g(V, t-8 )  + y (V)l ~f(v)}dv
j t - 6

*=OG(s, t -8 )x ( t-8 )  - o \ S e^^iB R ^B * [P (rf)g(rj,t—8) +y(rj)2 ~f(v)}dv,
J t—b

■ *ep-a,<]. (4.7)
Multiply (4.7) by Gr*(s, i —8)G* and integrate it for s£  —S, #], then we obtain

x ( t-8 )= n ~ 1(t, t - 8 )  f  Gf*(s, t —8)G*y(s)ds
J t—b

Ч -Я -Ч М -б) Г <?*(s, t - 8)0*0 Г eÂ '>{BR-1B^[P(T])g(% t - 8)
J t -ь  J t-d

+ y m ~ f (v ) }d v d s , t £  [8, Г ] . (4.8)
Substitute (4.8) into (3.9) and exchange the order of integrations, then we obtain 
(4 .5 ). On the other hand, all the involved operator functions P(t), Gf(t, s), g(t, s), 
X  (t, s),X(t, 3) and y(t) are uniquely determined by our previous results. Therefore,



No. 4 You, Y. 0. OPTIMAL CONTBOL VIA DYNAMIC OUTPUT FEEDBACK 447

control function (4.5) is uniquely defined and by Theorem S is optimal.
An alternative and more useful result of dynamic output feedback is given by 

the following theorem.
Theorem 6. I f  {A, 0} is continuously observable, then, for any given x0e X ,  th& 

optimal control of (TP) is giveni by

-р - гВ*{К(t,t-8 )F ~ 1 ( 8 ) [N(t, s)y (s )+ n (f, s)u(s))ds

+ C0M - 8)}, t € l d , T l .  (4 .9)
ив-^ вчггс* , о > 0+ щ  o)>, t e  [o, 8],

where 8> 0  is any given small constant, y(») is the output corresponding to the optimal 
process {u(»),% (•)}t

N (t, s) (4.10)
n (t, s) =  - e A-'«-«-6»F(t-s)B , (4.11)

l( t, t —8) = l( t, t — 8 ) -K ( t ,  t —8)F~1 (8) Г eÂ -«-6»F(t-s)f(s)ds, (4.12)Jt-d
and K (t, s), X(t, s), F(t) are determined by (3.6), (3.10), (4.3) respectively.

Proof Let 8G [О, У] be sufiiciently small. By (1.1) and (1.2), we have

y(s) =  Ox(s) =  О{eMa~(t~6))x(t—8) +  f eA{3~n)[.Bu(rj) +/(-)?)] $>7}, sG It—8, f],
J t-d

(4.13)
where {m( 0 ,  ®(*)} is k̂e optimal process for a given x0, and y(°) is the correspon­
ding output. Multiply (4.13) by eW-<t-6»0* and integrate it for s £ [ t —8, f], w© 
obtain

e (t -  8) -  F '1 (8) J* eW-*-*»cr{y (s)

- o \ S eÂ [ B u ( V) + f(v )ld v}ds, t e  [8, Т].
J t-d

(4.14)

Substitute (4.14) into (3.9) and exchange the order of integration. Then, after 
rearrangement, we obtain (4.9).

On the other hand, we show that the control function u(e) constructed by 
dynamic output-input feedback (4.9) is unique for the same output y(e). This 
amounts to that corresponding homogeneous equation

u(t) -  -R -'B 'K it, t —8) F~x(8) Г II(t, s)u(s)ds, t e  [8, Г ], .
Jt-t (4

.«OO-o, t e  co,8],
admits only zero solution u(t) = 0 , i G [0, T ]. In fact, since u(t)=* 0 on [0,8],. 
must be

u(t) = - R - 1B * K (t,t-8 )F -1(8)jtsII(t,s)u(s)ds, t e  [S,,2S] fl [0, T], (4. 

where \\Р~гВ*К (t, t —8)F~1(8)II(t} s) lUp^const., 8 < s< i< T , for a given 8.
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Hence, и (f) =  0 on [8, 28] П [0, T] by the Gronwall inequality. Recursively, it must 
be u(t)m 0 on [О, Г ] .

From Theorem 8 and this uniqueness, we conclude that control given by (4.9) 
is optimal.
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