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~ INFINITE DIMENSIONAL TRACKING OPTIMAL
CONTROL VIA DYNAMIC
‘OUTPUT FEEDBACK*
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Abstfaéf |

This paper explores implemantation problends of infinite dimensional linear-quadratic
tracking optimal control. Based on the closed-loop result; a new formula of optimal controk
expregssed by past-time state feedback is proved. From this, on the conditions of observa-
bility, expressions of optimal control via dynamic output feedback are derived. The main
feedback operator functions are given by solution of linear integral equations.

§ 1. Introduction

Let X, U and ¥ be wmeal Hilbert spaces. We consider an optimal tracking
problem for infinite dimensional linear system described by a state equation and anm
output equation respectively

a(t) =e*wy-+ J: ¢4 By (s) ds -+ j: e24=9f (s)ds, 1.1

y(@) =0x(), =0, 1.2y
with cost function

T ) =<M @(@) ~&), 0@ ~&>+ [ KRG ® ~p®), =) ~p()

+<Ru (), u(t)>]ds. | 1.8y

Agsume that T'>>0 is finite and fixed, f(-) €L(0, T; X), ¢(-) €L, T; X) and
£E€X are fixed, 4o € X is an arbitrary initial state, ¢*’(¢>>0) is a Oy-semigroup of
boundded linear operators on X, generated by a dense defined and closed operator
A, besides, BEL(U; X),0€#(X;Y). Let M€ Z(X), Q€L (X) and REZL(U)
be self-adjoint such that M>0, @=>0 and R>5, I>>0, where 5, is a positive constant.

The optimal tracking problem is to find optimal controlu(+) € L2(0, T'; U) which
minimizes the cost function J (1) for a given initial state . This problem will be
denoted briefly by (T'P). ' ¢
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In this paper, ¢4” (¢>0) is the dual Oy-—semigroup of ¢¥, all the integrals are in
the Bochner sense. Two conventions are made: ¢4 =¢4%=0 for all #<<0; and in those
integrals of operator—valued functions we omit elements being acted.

To this problem, optimal conirol law expressed by state feedback was discussed
by some authors, typically [1, 2]. However in practical systems, due to time lag in
signal measurement transformation and transmission, it is often impossible to
provide real-time state feedback. Moreover, it is difficult or sometimes unrealistic to
measure all the information of state, especially in the cage of infinite dimensional
state space. In view of these, there have been several suboptimal approaches like the
Luenberger observers, but not applicable or satisfactory to the finite time cases.

" As far as we know, optimal control via output feedback is still an attractive opeil
~problem, especially in the infinite dimensional case.

In this paper. we shall establish optimal control expressed by past~time state
foedback and derive from it the dynamic out—put feedback under the assumptions on
observability.

§ 2. Closed-Loop Optimal Control

Theorem 1, For any given o€ X, there ewxists a unique optimal conérol of
(TP). u(+) is cptimal control if and only if
T N .
u(t) = = R'B* [ DM (w(T) - &) +L ' eQ(w(0) —p(0))do], t€ [0, T1,
o @.1)
where «(+) s the trajectory corresponding o w(e).
Thq proof of Theorem 1 is similar to [8] Theorem 2, so omitted.
Theorem 2. For any given o€ X, ¢ control w() és optimal 5f and only of it ¢s
@ state feedback given by
- u(®) =—RBP®e@® +y®1, $€[0,T], (2.2)
where «() s the trajectery corresponding to u(e), and P(): [0, T]>%(X) is &
strongly continuous solution of integral Riccats equation
T .
P(t) =er® '”M@“T‘”—i—J et oD[Q—P{oc) BRB*P(0)]e*“ Pdo - (2.8)
. ;
such that P (t) =P*(t), and v (1) és given by the solution of

7@ == TOME ~ [ 00 [Qp(0) ~P(0)f () 1do
- L PP () BRB*y (o) do, tE [O,‘§T 1. 2.4)

The optimal trajectory «(s) satisfies the following relation
o(t) =G (G, 9a(8) + 90, 9, O<s<i<T, @.5
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where G (2, 8), 0<<s<<t<<T', s the mild e/voldtrz)on operator™ ganea*dted by A—BRB*
P(%), i.e., ‘ :
G5, 5) —oht-o — j e‘“‘”)BR"lB*P(oq)G‘(n, 9 dn, O<s<t<’[’ (2.6)
amd 9@, s), O<s\t<T s given by '
g, 9 = j G, 0) [ (0) —BRB'y(c)1do, O<s<i<T. @1

Pa"oof The sufficiency part By an approach similar to [8] Lemma 2 and
Theorem 6, we obtain : S

T @)= [, BRI + BB POo@) +7 )], u) + BB (P@)a(®) +7 ())>d

+6 o0, 7(+), £, p()), | (2.8)
where 8 (@o, f(2), &, p(+)) is a constant only depending on {w,, f{°), &,0()}:

0@, (2, € 9()) = <P Q) 20>+ <ME,Ev+ [ <Ap(®), 98
" [y o), By, 70

T
+2f <@, v (2.9)
The feedback control (2.2) is admissible becanse the equation. -
& (t) =ewo+ J: ¢4 9BT — R1B* (P (s)a(s) +v(s))1ds

+[ ete0p(as, 1€ 10,77, (2.10)
admits a unique solution given by
o) =6, Oar— [ G, 9 IBR* B2 —f©ds, $€[0,T].  (2.11)
Thus (2.2) is optimal control and the optimal trajectory is given by (2.11) from
which we see that (2.5) is true.

The necessity part. From (2.1) we only need te prove that v (£) =y (#) — P (t)m(t)
is a solution of the equation (2.4), where

y(®) ="M (T) —¢1+ [ O Qa(0) ~p()lde.  (2.12)

This can be done by direct verification and omitted here.
Remark, The strongly continuous solution of Riccati equation (2.8) is

unique 3,

§ 3. Past-Time State Feedback Operator

Here we prove a new formula of the optimal conirol expressed by past-time
state feedback where the feedback operator is solution of a linear integral equation..
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This is a mediate step leading to dynamic output feedback.
Lemma 1% Lot P () and G (%, s) be desoribed as in Theorem 2. Then

P(f) =eT-OMGH(T, t>+jT o9 (¢, 1) do. R
Lemma 2 Let P(t) and G (¢, s) be deseribed as in Theorem 2. Then (
G, 9 + j o4O BR Bl -0 MG (T, 5) do

t
+ J oAt-BR-1B* j A= OQG (n, §) dydo =649, 0<s<t<T. (8.2)
8 o . .

Proof Substituting (8.1) into (2.6) and -uging the evolution property of
G (¢,8), we know that (8.2) is true. :
- Define operator functions K (¢, 8) and W (2, s) as follows

K (t §) =6t T-OYG (T, s)+J e IQQ (o, )do, @, 8 €[0,T1%, (3.8)

W(t, §) = AT P AT jo e C-DQeAe-9]s (4, 5) € [0, T12, (3.4)

Here, in addition to previous convention that e =e**=0 if <0, we make a
convention that G (¢, s) =0 if £<s.

Lemma 3. K (t,s) is a unique strongly continuous solution of the following
intogral operator equation

K, s)+J W, a)BR‘“lB*K(o- do=W,s), G, 80, T1% (3.5

Proof The strong contmulty of K (t, §) is apparent. By means of (8.2) and
order exchanging of the integrations, we have

ij(t, &) BRB'K (o, 5) do

= T-D J AT~0) B R-1B*eA™T-0 MG (T 1) do

8

T
ooy [ ora-opR-proe-rQa s, indo
s8Jo
(1 T :
+ [ ([[eeoqete= dp \BRBrer -G T, do

+[" (J A P~DQgAP=0) g ) BR™ B*<J A0=NQG (9, 8)dy )

JS

= g™ T-D I [oAT-9 _G(T, s)}
+ [ ere-ng {JP 4~ BR-LB* A C-I MG (T, 5) d"}dp
Jit :

(oo [{ ooz o, )

e g TD I AT _G(T, §)}-+ J ) A e-DQ g4~ _ G (p, $) }dp
=W, s)—-KG,s), (s €[0T (8.6
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Hence K (3, s) is a solution of the equation (3.5).
Now prove the uniqueness. For any fixed s& [0, T'], let AK (¢, s) be strongly
continuous and such that

AK (&, s)+j W (t, o) BR-B*AK (o, 8)do =0, $€ [0, T]. 3.7

Asin [B] (p. 112) we can prove R LB AR (¢, s) =0 for t€ [s, T']. Substitute it
into (3.7), then 4K (3, s) =0 for (¢, s) € [0, T']2.
Based on the previous results, we establish past~time state feedback formula as
follows.
Theorem 3. For amy given oo € X, the optimal control wu(e ) of (I'P) is given by
® ={— “IB*K (t, t—8)w(¢—8) +A (¢, —8)1, t€[3,T],
—RB*[K (¢, O)ao+A(¢, 0)], t€[0,d],
where 8>>0 s any given small constant, @ (=) 48 the corresponding trajectory, K (1, s) s
$he unique stfrdngly continuous solution of the linear integral equation (3.5), and |

A (t 8) A.*(T—t)Mg J A*(U—t)Qq) (0‘) do

- 3.9)

+[ K, o) [ (0) ~BRB* (o) do (3.10)

Proof TFrom Theorem 1, for any given %,&€X, the optimal conirol of (T'P)
uniquely exists and must be given by (2.1). Substituting (2.5) and(2.7)into (2.1),
we obtain the following relation satisfied by the optimal control u(e)

u@®) = —R B (P PM[GT, t—)a(t—8) +9T, 1—3) —£]

+ [ 0Q6 (n, 1-8)2(3-8) +(n, $-8) ~p()1dn}
=~ RBHE (4, 1-)a(s—8) —o* @0 ME — [ o o0Qp(n)dy

+[ P EOUGT, o) [F ()~ BR By (o) 1dp

+ f@‘”‘”‘”Q J :_6 G(n, ) [f (o) ~BRB' (0)1dp dn}
BB 4 t—0)a(t-8) ~o Mg — [ e ooQp(ryan

+[, fereoma(, o) |

+|} 6 m0Q@t (n, YA} [f (6) ~BR*B"y () 1d}

= —~BBYE (4, t—8)w(t—8) -+A(t, £—8)}, 1€ [0, T, (3.11)
where K (¢, s) and A (%, s) are given by (3.8) and (8.10) respectively.
On the interval [0, 8], we have to make use of the initial state value @, in order
%0 get the optimal (£). Similarly
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u(t) = — RBK (£, 0)wo—e"T-D ¢ — j #0-0Qp (¢)do

+[ K, o) [ () ~BRB'y () 1do}
= —RB*|K (1, 0)@o-+A(t, 0)}, 'te[o'* 51, o '(3;12)
By Lemma 8, K (4, s) is characterized by the equatlon (3 5) ke h ‘ o
Theorem 4, If Q=0 in (1 8), then foa” any given w(,GX the optrz,mwl conbrol of
(TP) is given by
-~ R 1B*{«e‘“‘“"‘”\/ M [I +AE—8)] ‘1~/ M oAT -0y (t ‘o‘) —-Z(t =3},
u(®=4 t€l3,T1, |
— R B2 T /M [T +/1(0)] -1 \/ Me‘Two+Z(t 0)}, i€ [O 3],
— - | | (8.13)
where 3>0 is any given small cbnstwnt, a(*) ¢s the corresponding trajectory, |

CA@) = \/ﬂj:’eumfs) BR-LB*eA"T-9 dg \/ﬂ’ S : (8.14)
and

1(t,’s) = —et™™D Y& — J:le“”“"”QqJ (0)do

+ [ :eA*(T‘*’, NI+ 4(0) 175N HeAT-O[ f (0) — BR-B*y () 1do.
' (3.15)
Pfroof In this case, becanse of @=0, it is easy t0 verify that the solution of
(8.5) is explicitly given by
K (3, s) =eVT-0/M I + A(s)] I/ Mer™=,  (4,8) €[0, 712, (3.16)
where A(+) is defined by (3 14). Thus, (38.18) is the consequence of (3 9) with
(3.16).

| §4. Dynamic Output Feedback

Definition 1. {4, O} és continuously observable™ of for (my' given >0, there
ewxists @ constant a>0 such that - _ ‘ :
||0@Atw0||L*(o,a;Y)>“||‘w0||: Vo€ X. _ (4.1)

Definition 2. Linear system (1.1)—(1.2) és closed—loop covmtq}nuo@sly observable
with respect to (1.8) 6f for any b, ts, 0<\ty<ta<<T, there ewists a_constant a>0
dep@ndmg on ¢4, b2 and such thai

’ |OG (¢, 1) ol zaces,ts n>aleol, YmEX, | (4.2)
where G (¢, 8) s gv}wn, by (2.6).

It is obvious that (4.1) and (4.2) are respectlvely equlvalent ’oo the coerclve

positivity of following operators: ' ‘



446 - - CHIN. ANN. OF MATH. Vol. 8 Ser. B

F(®) = f Z A0 00t da?1, (4.8)

H (b, £) =£‘G* (&, ) 0"0G (5, t) db=o1, (4.4

. Theorem B, Assume that linear system (1.1)—(L.2) is closed-loop continuously
observable with respecs to (1.8). Then, for any -given wo€ X, the optimal conirol of
(TP) is ginen by the following dynamic output feedbaock

~RBHE G, -8 HG, 4-8)| @G, i-0)0yOds+y(t, =)},

t
2
u(®) =4 1[5, T,
—~RBK (t, 0)wo+A(t, 00}, t€[0,3d],
where 3>0 is amy given small constant, y(¢) 4s the output corresponding to the oplimal
process {u(+), ()}, | |

Wb, 6—8) =M (4, §—8) +K (5, §—8) H1(s, $—8) j:_a{j‘ GG, t—S)O*Oe‘("")ds}
~ {BRB*'[P(n)g(n, $—3) +y(m)]1—Ff(m}dn, t€[3,T], (4.6)
and K (¢, s), A(E, s), H(t, 8), G, ), 90, 9), P(t) and v(t) are determined by (3.5),
{8.10), (4¢.4), (2.6), (2.7), (2.8) and (2.4) respectively.
Proof From Theorem 8 and (3.9), we only need to prove (4.5) on [3, T']. Let
{u(+), 2(+)} be the unique optimal process for a given x, and y(-) be the correspon-
ding output. By (1.1), (1.2), (2.2), (2.5) and (2.6), we have

y(s) =Cax(s) |
=CeC "My ($—3) — J:_6064‘*‘"’{BR‘1B* [P (e +7(m]—f(n)}dn

=0{e"- 6 (4-) = [| o IBRBP (@, +~8)dna(i-3)}
-0 .J:_aeA(s—n){BR—lB* [P(n)yg (77, §—8) +v(m)]1—F(n)}dn

=06 (s, i~8)a(i—8) ~0f_e*D{BRB'[P(n)g(ni—8) +y()]—F () }dn,
- sE[t-9, ¢]. _ 4.7)
Multiply (4.7) by G*(s, £—3) 0" and integrate it for s& [$—J, £], then we obtain

2(-8) =H(t, 1-9) [ G"(s, 1-8)0"y(5)ds
+H(, $-9) J': ¢sG‘* (s, t—08)0"0O J: 6e“_‘s"”{BR‘lB" [P(n)g(n, t—8)
+y@1—f(n)}dnds, i€[3,T]. (4.8)
Substitute (4.8) into (3.9) and exchange the order of integrations, then we obtain
(4.5). On the other hand, all the involved operator functions P(t), G (%, 3), ¢(t, s),
K (¢,5),M (%, s) and y(§) are uniquely determined by our previous results. Therefore,
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control function (4.5) is uniquely defined and by Theorem 8 is optimal.
An alternative and more useful result of dynamic output feedback is given by
the following theorem.

Theorem 6. If {A, O} és continuously observable, then, for any given w,€ X, the
optimal control of (T'P) is giwen by

(—RBHE (4,5-8) F () j e, s)y(s) +I(, s)u(s)]ds
u(@® =4 +{(@ t-9)}, t€[3,T]. ' 4.9y
—~RBYK (&, 0)wo+A(3,0)}, t€[O0, 3],
where >0 is any given small constant, y(s) és the output corresponding to the optimab
process {u(e), (+)}, . ,
N (&, ) =ete-t-Q* | (4.10)
(3, s) = —e* ¢ DF (t—5) B, (4.11)

LG, $—8) =M (5, 1—8) — K (¢, i—8) F2(3) j: AEOP () f ()ds, (4.12)
and K (¢, 5), A(3, s), F (%) are determined by (8.5), (8.10), (4.8) respectively.
Proof Let &[0, T] be sufficiently small. By (1.1) and (1.2), we have
Y = 0(s) =0{ee~0-Dg(t—8) + o4~ [Bu(n) +F(n)1dn}, sE€[t—3, 1,

(4.18)

where {u(+), (+)} is the optimal process for a given =, and y(+) is the correspon--
ding output. Multiply (4.18) by ¢4~ ¢-0* and integrate it for s€[t—90, ¥], we
obtain ‘

8(6=0)=F Q) [, D0y

- J:_634<s—n>[Bu(n) +f(m)ldn}ds, t€[9, T]. (4.14)

Substitute (4.14) into (8.9) and exchange the order of integration. Then, after
rearrangement, we obtain (4.9).

On the other hand, we show that the control function wu(e) constructed by
dynamic output—input feedback (4.9) is unique for the same output gy (). This
amounts to that corresponding homogeneous equation

{u () =~B B, 1-0) F() | TG, )i, t€03,7],

u () =0, te&[o,d],
admits only zero solution % (£) =0, $€ [0, T]. In fact, since %(¥)=0 on [0, 8], it
must be

t ) ~
7(8) = — R-B'K (3, $—8) F-2(5) LII(#, Dis)ds, 1€ 5,251 N[0, T1, (4.16)
where |R™B*K (¢, $—8)F *(8)I (%, §)|a«wy<const., d<s<¢<T, for a given 3.

(4.156)
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Hence, 4 (£) =0 on. [§, 28] N [0, 7] by the Gronwall inequality. Recursively, it must
be #(¢) =0 on [0, T7].

'~ From Theorem 8 and this uniqueness, we conclude that control given by (4.9)
is eptimal,
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