Chin dnn. of Math.
8B (4 1987

ON THE UPPER BOUND OF THE NUMBER OF
PRINES IN ARITHMETIC PROGRESSION

Yao Q1 (&t 3%)*’

Abstract

Let o and q be relatively prime positive integers and @ (; ¢,4) stand for the number of
primes p<w congruent to ¢ and g. H. Iwanice proved that .

(2+8)z.
P DgD @

o
for any ¢>0, #> (¢) and g<x T ~°, where D=u q-%.

w(z; ¢, @) <

The author applies an improved estimation of the error term in the linear sieve, proves

. 5 - .
that for any >0, >, (¢) and g<zT , (1) is true.

§1. Introduction

Let @ and ¢ be relatively prime positive integers and o (w; ¢, @) stand for the
number of primes p<< congruent {0 ¢ mod ¢. ”
- In 1980 E. 0. Titchmarsh™ uged Brun’s sieve to prove that if ¢ <a'~* then

] . o
w( ¢, @) < p(log & *

Recently, H. Iwaniec'” proved that

(2+e)

' p(g)log D (1)
for any §>0, 4>m,(s) and ¢<a*2~°, where D=uwg 2,
In this paper we have the following theorem:

Theorem. For any >0, a>a,(s). and ¢g<a®*1~¢, (1) is true,

w(%; g, 8)<

§2. A Character Soms Approach

Lemma 2.1(Burguss) For any e>0 therre ew@sts d=0(e) >0 such that
21 <<1'fsz"'s

Jor all non—pmncrz,pal ohamctors x(mod g) and all Lz=g%®%, where q is any positive

entegsr :
Given ¢<& we consuier the sequence
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1= {l<w; I=a(mod ¢)}
and for (d, ¢) =1 we denote
| r(f?, d) = | {1 € o/% 1=0(mod ¢)}| —a/qd.
An application of sieve method leads to (see [8, 4])the following Lemma,
Lemma 2.2 For any positive number s, u>m,(8) we have

w(w; g, @) <%%>—%+R(Mq, D),

where ¢ is an absolute constant and
| R(JW D) 2 E’ Cy(w,8) 2 r(; vpieep),

D;<p, <D1"3
ssl

where (D) denotes a set of all subsequences of {D¥a+)” >0} 1n01ud1ng the empty
subsequence, for which Di>Dy>>--+>>D; and

DyDy+++ Dy, Dy <D '(o<q~\_. @-n),

8 isa sultable constant. Moreover, 2! 1ndlcates that » and p; (1<<é<<l) are respected
by the conditions
v|P(D*),  n|P@):
Finally the coefficients O (v, &) depend at most on (D), », ¢ and satisfy
|0y (v, &) | <1.
By Lemma 2.2 the proof of Theorem reduces to showing that

1 6 .
R(AY D)K—~ (g) @.1)
Let By (a; D) = P 2.0, & g PIRLIC Ry OF
S’b<l )
where ry(w; d) =Ly (z; d) —a/qd,
a1 - o \*
.sa?k(a:, d:) —-%T 2', (10gT> °

! I<w
I=e(modq ), i=0(mod 1)

We deduce from (2.5) in [2] the follwing implication:
i Ry D)<a*?/p(g), thon Byt (z; D)<a™ ¥/p(q).
Therefore the proof of (2.1) reduces to showing that
Ry(z; D) <a'/p(0), - 2.2)
subject to {D;} € (D) with any >0 and some 5= 8(6) >0. By the orthogonahty
of characters we have for d, g)=1

rio ) =g S 7@ 2@ 3}, 20)(log5) +0 (L),

The series {Dy, ---, D;} can divide into j parts, their multiplesare My, <., M;
respectively., Hence letting Li=a/M4, -, M,

- ~8 = ® -8 g -4
B(s, x)» gx(l)l , Mi(s, x) M‘<§<2M‘amx(77%)m AR
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i M,=D,, -, Dy, 1<, ',,., <,

w(i) = E “Pu w?{g a!’i};i (2 . 3)

Diy o Pip=m

Now the proof of (2.2) reduces to estimating that

1 .
2ai J (1) 85;»(9) 2, F@BG, 1) Mals, 2)-+My(s, 2)ds.

It is sufficient fo show that - - A

3 (BG, DMu(s, )My, )| <o @9
We have trivial estimato -

| BGs, 2) | <2LH% | MiGs, 2) |[<MI® (<)),
thus the characters y %y, for which one of the above bounds is less than (p(g)s®)~?
can be neglected. The set of remaining character x # ¥, can be classified into< (loge) *2
subsets 8 (Uy, <, U;, W) of characters saﬁsfying simultaneous conditions

W<|BG, x) | <2W; U< | M (s, ) | <2T,, <.

where W=24LY2 U,=2"%Mi"? u, v,;=1, 2, -, [2log «].
1t is, therefore, sufficient to show that for every U, W in question | |
WUy1-U;|S Uy, =, Uy, W) | K [s]?a?/27°. (2.5)

Here |s| stands for the cardinality of §. By the mean-square theorem we deduce that

{see [2])

|8 (U, +, U;, W) [ <K MU +qUs%, (2.6)

|8 Ty, ==, Uy, W) |« gW*|s| (log ¢L|s|)S, @.7)

8Ty, +++, Uy, W) | KMUP+ ¢ MU (1<i<<)), 2.8)

|S Ty, +=+, Uj, W) | K (LW 4+ g LW %) (log LS. 2.9).

By partial summation we deduce that, unless §(Uy, -+-, U;, W)is empty, '
W< |s| LY%~%, §=58(8) >0, - (2.10)

subject to Li=>q%/8te,

§ 3. Proof of Theorem

Let #=log q/log x+&', 9/20—s<ty<5/11l. s, &’ are the suitable positive
constants. J | '
Lemma 8.1 If j=2, let L>gY**, My=>q, Mo>¢"/2 Then (2.5) is true.

The series {Dy,+-, D;, L} divides into j+1 parts, their multiples are My, ---, M;,
L, Tespectively. If Ly<<g'/?, by (2.6) we deduce that _
|8 (U, -, Uy, W) | <KW T+ ¢ <W ¢ b,
Therefore we agree Ly<g'/2.
Lemma 3.2, Ifj=2, let Mi>q, Ma>>q, Lo>q Then (2 b) is true.
Lemma 3.8. If j=2, we have '
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1
FH@® Y g

R(?, D)< 2 e N @.1)

| (g
where  a=1log Mi/log x, b=1log My/log &, o =1—a—b, co=1og Ly/log »,
%4-7], if a=b>1%, = - (8.2)
h@ =14 ifamt>b, - (3.8
_ B,  if to=>a>b, - 3.4
nisa suitable positive constant, | | | -
{t0/2+a/2+mm{b/4k (o/6+b/12k)}, of o<to/k, k>2, (3.5)

to/2+a/2+min{b/8, (¢/6+b/24)}, if k<2. (8.6)
’ ‘B=ty+min{b/8, c-/6+b/24}.

Let 8;=1og D;/log z, d= 10g D/log . Let M,,, ma, be maximun and minimun of
a if j=2, =0 and (2.B) is true. Let {D} € (D) be g-admissible if there exists a.
combination of {D;} that satisfies (2.5). ‘ '

Lemma 3.4. If there exist to and b (1<<éo<!, 1<k<I<<I—1do) such that 0¢.<t0/2,,

O+ k<M, —me, andlet g be the sum of some numbers in {1 —2 05, 64, +-+, Osy_1} such

that g<M,, and g+ 2+ 6;>my,, we hafve {D;} is g—admissible.

- Now we are ready to0 prove Theorem Tt is sufﬁclent t0 show that all of {D} €&
(D) are g-admissible,

It follows that {D;} is g—admasmble if 2 0;<1 to/2 by Lemmas 8.1 and 3.8..

gl
Therefore We suppose 2 0i>1—1,/2 and consuder four cases.

Case 1. 2 8:<to. In this case 05<M,,—my,, Wo get -{D;} is q—admwmble

J=1

Case 2. t0<2 0:< i;g gg to. Lot a= 20;, o =0g. we have {D,} mq—admmmble
§=1
by Lemma 3.8,
115 60
Case 8. T2 e t0<2 6’;<1/2 Let a= 26’;, o= 07 we get 07<t0/5 and then

{Di} is g—admlsmble
Case 4: 23}1/2 ‘We only discugss the case ofE 0,>1/2 and 2 6’¢>—-—~g— fo— g
§=1" ¢=1
d. The other cases follow from Lemmas 3 3 and 3.4. We congider four cages.
104
115
Lemma 3.4 we obtain {D;} is g¢—admissible. If 85> M 0y — maa, we have i+ 82/—3— 2 6,

§=1

and then 4+6y+05>my,. It is enough to consider that f1-+6s+05=>M,,. Let a=0,4-6
+05 and o =0g. Therefore we obtain {D;} is g—admissible by Lemma 3.8.

Case 4.1 01+ O <ot If Gs<<Mo,— Me,, W take fo=8 andg 61+02 By
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104 11 6
115 10 5 10

Lemma 8.4 we have {D;} is g-admissible. If §;>%,/5, the result follows from Lemma
3.8.

Qase 4.2. to<91+02< d. If 93<to/5 let g= 01+02 By

Caso 4.8, % F>01+62> '*1% g 1o 4 (>#). Wohave (D} is g-admissible
by Lemma 3.8. '
Case 4.4. 034-82>1/2. Let t'_gg‘i—g%d— gg 0. If O5< ¥, Lot g=+ (1 — 2 8).

‘We have {D;} is g-admissible by Lemma 3.4. If ;> and §,<#’, we have {D;} is ¢~

admissible in the same way. If §;=># and 6,>#, we have 8s<#’ and then 01-H93+0¢<.

M,,. Therefore we obtain {D} is g-admissible by Lemma 3.4,
The Theorem follows.
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