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SHAPE-PRESERVING. APPROXIMATION 
BY SPLINE FUNCTIONS

W a n g  X i a n g  ( i  =£$) * * *

Abstract

The author establishes the Jackson-type estimates for monotone and convex approxi
mation by spline functions with non-equally spaced knots. These estimaes involve high 
order modulus o f the approximated function and its derivatives. Hence some Bernstein- 
type theorems can be got conveniently.

1. Introduction

Let An‘ be a partition of I  =  [0 ,1 ]k Given any positive
integer m, we call the space

r There exist polynomials of degree
$т(Д>) =  js£<7n~1[0J 1] m, {Si}r=0, such that

s (cc) = Si (a?) for cc £  \ti}
the space of polynomials splines of degree m  with knots ti, •••, f„. Given +
and any positive integer r, we define

For — 1, Dkf  is absolutely continuous'
on [0, 1] and 11Г Д ,<  + оо.

Г С1 I 1/2’
, [ , P< °°,П = J L̂ o J

^ [ 0 ,1 ] =  /

where

max |$r(®)|, pr= +00.

In  this paper we obtain Jackson type estimates for Ls-approximation by convex 
(monotone) splines whose knots are not equally spaced* These estimates involve 
higher order modulus of some derivative of the given function and can not be- 
improved. By using them, we can improve the results obtained in  [1, 2, 8, 4]. 

Given /  £  LP [0, 1], define its r - th  Lp-modulus of smoothness by 
a>r,p(f, h) =  sup \Art f (  . ) ILp[Q,i-rt}3

0 <t<h

where Ar is the r - th  forward difference, and define
s is an arbitrary convex

K A f , A )  = in f | . - / |
function in  S m(An). }•
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We state our main results as follows:
Theorem  1. Let mbe a 'positive integer and 1 <  <  +  oo„ There exists a positive 

constant О only depending on m and p such that the following hold.
(1) Lei 2 and p=  + 00. For any convex function f  in L t  [0, 1], we have

Жrn,e° ' (1.1}

(1 .2)

, ( / ,  4*) < OA%a>m- i , ( D 2f ,  An), 4  = m ax (ti-tt-_i).l<4<ra
(2) Let m > 3  and l < p <  +  eo. For any convex function f  in L\\f), 1],

E l M ,  A)<OAlcom_2>p(D3f ,  An).
A more desirable estimate would be

E*m,v( f , Af)<,Oa>m+i,p( f , A,?).
As pointed out in [1, 3, 4], this estimate is important in yielding inverse theorem 
characterizing smoothness properties of /  by E*m,v (J, 40 . Unfortunately, this- 
estimate does not hold. In  fact, we have the following theorem.

Theorem  2. I f  l< p <  +  00, then
f  is an arbitrary convex function' 
in  Ap[0, 1]. n is an arbitrary 
positive integer and A„ is an 
arbitrary partition of [0, 1].

sup E l M ,  40
Ala>2,p(D*f} An)

=  +  00. (1.3}

«= + 00, then

sup E m,+c°(f> Д»)
A„a>3,„(D f, A„)

+  00. (1.4)

K : , ( f ,  a ) - inf  11/ - S|

f  is an arbitrary convex function • 
in LL [0, 1]. n is an arbitrary 
positive integer and A„ is an 
arbitrary partition o f [0, 1].

For the monotone approximation we can establish similar results as above. Let
s is an arbitrary increasing 1 
spline function in Sm (4 )  „ j

We obtain the following results.
Theorem  3. Lei m  be a positive integer and l<y>< -foo. There exists a positive 

constant G only depending on m and p such that the following estimates hold.
(1) Let -нг> 1 and p — + 00. For any increasing function f  in  Z4[0, 1], then

E Z A f ,A n)<OAna>m̂ ( J ) f ,A n). (1 .6)
(2) Let w > 2  and l< 'p <  +  oo. For any increasing function f  in L%[0, 1], then

E Z A f ,  A ) < 0 £<*m-i.,t(l>*f, 2„). (1.6)

T heorem  4. I f  ±<,p<  +  00, then

r f  is an arbitrary increasing fu n c tim
in  L l  [0, 1], n is an arbitrary 
positive integer and 4  is an

sup <-=■к * м ,  4 )
Ana>2, p(Df,  4 )

arbitrary partition of [0, 1]„

+  00. (1.7)
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I f  p —+oo, then

sup

' f  is an arbitrary increasing function•

4.) in 0  [0, 1], n is an arbitrary positive
integer and A„ is an arbitrary

■ partition of [0, 1].

.=  -f- oo„ (1 .8)

In  [1], DeVore conjectured that when the partition An is a uniform partition,
•®»»,oo(/, 4 )  ^ o o  ( / ,  A„) ,

where О depends only on m. Here inequality (1.8) implies a negative answer to 
DeVore’s conjucture.

Because D f  is increasing if /  is convex, Theorem 1 and Theorem 4 imply 
Theorem 3 and Theorem 2, respectively. Hence we only prove Theorem 1 and The
orem 4 in this paper. Throughout this paper 0 1} 0 2, etc. will denote constants 
independing on /  and An but depending on m  and p.

§2. Some Lemmas

Let I  be an interval and K r,p( f ,  t, I,)denote the ^-functional of Peetre on I ,  
that is

P( f ,  t, I ) =  inf { \ \ f - g \ lp(i)+ I I b fd)}«
aei4(D

Lemma 2.1. There is a positive constant Oi such that for any function f  in  
L\la, 5]

K „ ~ ( f ,  Ь -а , [a, Ъ-а,  |>, й],)
+ ( b - a ) 1- 1'*K'-'” (D f, Ъ -а, [a, 6 ])]. (2.1)

Proof I t is sufficient to prove that (2.1) holds for the case in which « = 0  and 
5=1 .

It is well known that K r,P( f ,  t, I , )  is equivalent to cor,9( f ,  t, I ,  ) . By using [6, 
Corollary 3 .1], we obtain a polynomial q in sFr_i such that

W ( f - q )  (kco, ъ < 0 2К ^ , Р(1>У, 1, [0, 1], * -0 , 1.
Hence K r,„( f ,  1, [0, 1 ] , ) < [ |/—S'lU .co.i^I/—9'lrJco,i]+ \\Dl ( f  — f)  Цвдыз.

<Oat K r.P( f ,  4  [0, 1], ) + K r̂ , p(Df,  1, [0 ,1], ) ] .
LetAln:0=to<^i<*"‘< t» .= l be a partition of [0, 1]. The space of piecewise 

polynomials of degree m with knots to, •••, tn is denoted by
There exist polynomials of degree m, {в4}”г^, 
such that s(x) — Si (x) for \ti}

Lemma 2.2. Let 0 < r< m . There is a positive constant 0 3 such that for any 
s € P S m (Д.)

li Drs 1 jj^o, i] ̂  О3An ro)r,p(s, 4 ) ,
An =  min ( t i- t i - i) .where
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This is a corollary to Markoff’s inequality and Whitney-type inequality (See 
[6]). The details of proof is omitted here.

Lem m a 2.8. Let Abe a compact set in  avm satisfying that i f  f  6  A, then Dfi*Q. 
Let —1 and An\ 0 = ж0<Ж1<*”"<а;п+1= 1  be a partition of [0, 1]. Then there is a
positive number S> 0  depending on n and m  such that, fo r any function g £ A ,  there is 
an integer i, l ^ i ^ n ,  such that

IЩ  (ж) I >§> for x  €  CXi, *i+J .
Proof Suppose that 8 does not exist. Then there is a sequence of functions, {ff<}# 

in A, satisfying that for each i  there is a point xjti in  [ж{, a>j+i] such that

\ Ш * ь д \  < r 1- (2 -3 -1>
A  is a compact set. So we can suppose that there is a function g in  A  such that

Iff,—g Ioo—>0, as j—>co. (2.3.2)
By using Markoff’s inequality, we have

|Ж & -0)1~-*О , as^-*oo. (2.3.3)
We can also suppose that there is a point ®0,i€  [ * i ,  â i+a] such that

as j—>oo. (2.3.4)
From(2 .3 .3 )and(2 .3 .4), it follows that Dg(x0,i) = 0  for 0 < i< n . Because n>2m  —1, 
Dg has at least m  zero points. So Dff=0. I t  implies that g$.A. From (2 .3 .2), it  
follows that A  is not a closed, contradiction.

For a positive number a and an interval [ — 6 ,6 ], we introduce a function set 
denoted by B {a ,[ — 6, 6]). /  is a function in  B(a , [ —6, 6]) if and only if /  satisfies 
the following conditions:

(1) There are two polynomials f i  and / 2 in  uvm such that
0],

l/*(®), ®(0, +oo).
(2) f i  a n d /a  are convex on ( — 6, 2/6) and ( — 2/6, 6), respectively.
(3) Let / i/ж) = f i( x ) - B f i ( 0 ) x - f t(0), ® =  1, 2.

e ( / )_ m a x  W j №M, |й „ . в, J
/аЦос-ь/а.ь/аз-■

Lemma 2.4. Let m > 2 and 6 = 4m2. Let x ^ i  for - K i < b .  AZb‘ х_ь<°°°<хъ 
is a partition o f  [ — 6, 6]. Then there exists a positive real number a such that for any 
function f  in В  (a, [ —6, 6]) there is a function s£ O m_1( —oo, +oo) satisfying the 
following properties'.

(1') s— f  ora( — со, —b).and (6, +.oo).
(2') Restricted to [ —6, 6], $ is a convex function in 8m(AZb) .
(3') There is a positive constant О6 indeperding on f  such that 

J /  — s|o(-TO,+o»)<C,6 |/ i  — /а||ос-»/а.»/яз« •

m
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Proof At first we suppose that e ( f )  =  jcfn-ь.оз-
Let Л'2т:0 = a?o< °-0< x2m—2m2 denote a partition of [0,2to2]. By using [6, Lemma 

2.1], we obtain a function s*£O m~8 ( — oo, +oo) whose restriction to [0, 2m2] is a 
spline function in  8 m~2 ( J2»») and for each point x  G [0, 2m2] , Si (x) is a number 
between D2/ i  (x) and D2f a (ж) and whose restriction to ( -  oo, 0) and (2m2, +  oo); 
are identical with D2/ .  Define

s2(x) =  / i(0 )  +Df±(0)x+  f dt f 8 ±(v)dv.
Jo Jo

Then Sa is a convex function on [ — 6, 6] and satisfies that
I / —Sa||oco,b3<262||D2/a  —si[|oco,b]+ I / i(0 )  ~  / 2(b) | + 1 Afi(0) —D/a(0) |

<2&2||D2( / i  —/ 2) I C[0,b/2] +  1Л - М  CC0.Z>/2] а) У oco> 6/23

^(?б[|/1 —/гЦосО.ь/г]* (2.4.1)
Let Njn (® [£»i, •••, ж,+й+1) denote the normalized B-splines of order к 4-1 whose 

support set is [Xi, £c1+fc+i] and whose knots are Define

s(ж) =  S2 (ж) +  f dt ( Г2 /A _a (r I «i, •••, xl+m-a)/ —©o J —00 L
+  2/2-A m_a ( г  I ж*+ т  _ i ,  Жг+ат-2) dr.

If  — S<Z< —2(m —1), then s = /  on ( — 00, — &) and D2s = D2f  on [6, + 00) . Let
M  (x) = s (ж) — s2 (ж).

I t  is obvious that we can choose y± and y2 such that M(b) — f 2(b) — sa (6) and D M (6) 
= D (/a -S a)(6 ) and

max { |2/ i |,  Ы } « 2 Г max{| ( / a- s 2) (6) |,  |D ( / a- s 2) (6) |>.
-Bo s—f  on (6, + 00) and

J  D2M I  o ( - « ,  + T O )  <  0 81  /  —  S a  1  o c o .  S 3 ^  I  / 1  ~  / 21 c c o .  ь / a j  •
Now we choose the integer Z such that s is convex on [ —6, 5]. Let

A -  {q £  ovm-.i I q (0) -  0, || q 1 Сс_ь,0] -1 } .

Then A satisfies the hypothesis of Lemma 2 .3 . Hence there is a positive constant 
3 > 0  such that, for the polynomial

cd/ . o ) - D u m n n J i U - ™ ,
in  A, there is an integer Z with — 6<Z< — 2(m —1) such that

min \D2f i ( x )  I > 8 | |D /i(0) — D f± ( ‘) Ц<?п_ь,оз>а8 | '/1 —/а1сс-ь/а,ь/Я]«

Hence min | D2s2 (x) | >ccd\\f1-  / 2 [| а-ъ/z, s/aj .a?6
By more careful analysis, it can be proved that 0 9 depends only on m. Let a —8-2£?9. 
The support set of D2M  is contained in  [xt) «г+гсю-п] • Hence D2s(x)=D 2 (s2+M)  
(ж)>0, for ж(= [-& , 8].

The obtained convex spline function s satisfies (1') and (2'). We shall show 
that it also satisfies (3'). In  fact
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a SII ос-ь, b] = f  dt f [ 2 /A .a(* | ®i, • • •, жг+m-i)
J J al

+  У2̂ т -2(г I Xj+m-1, ®j+2m-s)] dtf
< 852m ax{ |^ i|, f e  | }
< 8b20 7 max{| ( / 2- s2) (6) | , \ D ( f s ~ sa) (6) | } 

< 0 ,7l/i-/a|oco,»/a]
I /  ~ S S 0(-oo, +oo) *= 1 /  — s 1 ot-ъ, to <  II /  -  Sa II C[0. b] +  II s2 — S J CC-b, 6J

< 105II f i  -  /а  II oz-b/2,6/2],
where C?6==06+ 0 t.

We have proved the lemma In the case e( f )  =  ||-D/i|jo[-j,^. The proofs for other 
cases are almost Identical with this case.

L em m a 2.5. Let m > 2  and &=4m 2 and = -y for  — 6<&<6. Let A: —2 <  —1 <

0 < 1 < 2  and d': — 2 Аж_ь_1<а;_ь<  - • • < хъ< хъ+1̂ 2  be two partitions of [ — 2, 2]. Then 
there is a positive constant O10 swcA that for any convex function f  in O2 [ —2, 2], at 
least one o f the following propositions is true.

(1) There is a convex function s in  P 8 m (A) (]Ol—2, 2], whose restrictions to 
[ — 1, 0] and [0, 1] are Unear functions, respectively, satisfying

s ( ± l ) - f ( ± l ) (2.6.1)
and

D / ( - 1 )  «  ( - 1 )  < £ s_  (1) < D / (1), (2.5.2)
such that

1, [ - 2 ,  2 ]). (2.6.3)
(2) There is a convex function s £  $m (/!') satisfying

D(s ( ± l ) = D (f ( ± l ) , i = 0 , l (2.6.4)
such that

\\s~f\\cz-2,2riŝ C}ioKm-l,<»(.D2f ,  1, [~ 2 , 2 ]). (2.6.5)
Proof For the convenience of statement we suppose that / (0 )  = D /(0 )  =0. 

Let F  (x )  = f  (Ъ~гх ) . By using [5, Theorem 4.2, ] , we obtain two polynomials qt 
and g’a in  ягт_2 such that

I W F - V i U - ^ b ^ O u K ^ i P ' F ,  1, [ -2 6 , 5]), (2.6.6)
\\В2Я - д 4 а-ъ,*ы<Ои.Кт-1,~(Р>^, 1, [ - 6 ,  26]). (2.6.7)

Define

M<c) = F ( - 6 )  + D F ( - b )  (x+b)  f e W  + C № ,- i ,  M(DaF ,l ,[ -2 6 ,6 ] ) ]c k
and

/>(*) - F ( b )  +Z*F(6) (® -6) + £ * £  fe (v ) +C'11̂ m_a,M(D2F , 1, [ - 6 ,  2 5 ])]* .

Then / i  and / 2 are convex functions on [ -2 6 , 6] and [ - 6 ,  26], respectively. They 
satisfy that
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& М ( - 1 У Ъ )  - # . ? ( ( -1 ) '6 ) ,  $ - 0 ,1  and j - 1, 2 .
From (2.6.6) and (2 .5 .7), it follows that

l fi -F\\cc-2b,b,<O^Km. ltoa{D2F ) 1, [ -2 6 , 6]) (2.5.8)
and

\ \ h - F Ioc-b.2W „ (D2F,  1, [ - 6 ,  26]). (2.5.9)

Suppose that / i  and / 2 satisfy the condition (3) in  the definition of В (a, [ — 6, 
6]), where a is determined in the proof of Lemma 2.4. Let

,  ,  [ Й 4  [ -2 S , 0],
s w  ! / . ( * ) ,  « € [0 , а д .

By Lemma 2.4, we obtain a spline function s* which has properties (1'), (2') and 
(3'), that is

D 's i t t - iy b )  = & М ( - 1УЪ), i  = 0, 1 and j —1, 2, 
and

1F  — Si J a-zb, 26] <= 1F  — g | ос-гъ, a« + | g — Si || ос-гъ, zbj 
< 0 lsK m_lt„(D2F , 1, [-2 6 , 26]).

Let s(») =Si(6®). Then the proposition (2) holds.
For the case in  which / A and / 2 do not satisfy the condition (3), that is,

max^ш i||cc-b.oj> I / n  СС-Ь.ОП • II f t —/ 21 oz-b/i, ът, (2.5.10)J-̂ /alloco.w, I/2I oto.w, 
where a is determined in  Lemma 2.4, we shall show that proposition (1) is true.

For XG [0 ,1] and «G [ —26, 26], define
Ui(K *) = / i ( - 6 )  + XDfx( - b )  (x+b),

0>) = /2(6) +AD/a(6) (a; — 6)о
At first we suppose that Ux( 1, 0) <?72( 1, 0). From the fact that F ( 0) = D F(0) =  

0, it  follows that F  is increasing on [0, 26] and decreasing on [ —26, 0]. Hence we 
have

17,(1, 0) -  - 6 D / a(6) + / 2(6) =  ~bDF(Jb) + F (6 )
< F ( 0 ) < F ( - 6 )  =  / * -  (6) =Hi(0, 0).

I t implies that there is a number X0G [0,1] such that Ui(^0, 0) =Z72(1 ,0). We define

■AW, ® G [-2b ,'5 ],
Eifyo, »)* [ “ 6, 0],
U*( 1, *), «G [0, 6],
• /2(ж), «G [6, 26].

I t  is obvious that s3 is a convex function and satisfies that
Bs3(b-)<DF(b),

Ds3 ( ( — 6+) > D F  ( -  6).
Now we begin to estimate the error | jF - s 3J|

«з(я) =
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S / i “ E i (4  0)||а с-» ,о з  =  max | / i ( a s )  —  f i (  —  b) - X 0 D / 1  ( -  6) (ж+ 6) |
®e[-6,o]

<26 max | 'D / i ( a ? )  - k 0D f i ( - 6) j 
®e[-6.o]

< 2 6 (|2 )/1( .) - 2 ) / i ( 0 ) |o t-,,«
+ |D/1(0)-4D/1(-6)|).

If D / i  (0) > 0  or 0> D f  (0) > D / i ( -  6), then

1-D/iCO)- l o D f i ( - b )  I < P / i ( 0  “ D/i(0) ЦсГ-б.оз»
By (2.6.8), (2.6.9) and (2.6.10), we have

I/i-U i(4  0 \\ct-b,<yi< 0 liK m̂ ( E 2F ) 1, [-26, 26]). (2.6.11)
If  0> D f1( ~ b ) > D f 1(0), then

\Dfi(P) - h D f i ( - b )  I < \D M 0 )  I -  ID M 0 ) - B F ( 0 )  |

Hence in  this case we can also obtain (2.6.11).
Using the same method, we can obtain

• I/2-U2(l, 0 \Uo,bi<016K m_1,„ (n 2F } 1, [-26, 26]).
Hence ||F  — 8з|ас-2ь,2ьз^Сг1б-2’т-1,м(1?:2̂ г1, 1, [ —26, 26]).

Let s(x) =s3(6cc). Then s is a convex spline function in  P S m(A) f) О [ - 2 ,  2]. 
Its restrictions to [ —1, 0] and [0,1] are linear functions, respectively, and satisfy 
(2 .6 .1), (2.6.2) and (2 .6 .3 ).

For the case in  which 17* (1, 0) >  t7a(l, 0), we can prove this Lemma by the 
similar method.

No. 4 Wang, X . SHAPE-PRESERVING APPROXIMATION

§ 3. Proofs of Theorems

Proof o f Theorem 1 At first we suppose that Д, is a uniform partition.
Let я =  (26+1) (4d+1), where 6 is defined in  Lemma 2 .4  and d is determined 

in  [2, Lemma 4.4]. Let ю>я —1. For the convenience of statement we assume that 
there is a positive integer M  such that n + l = aM . Let ti=ia, 0 < ^ < Ж  — 1, iul— 
ia+ (4d+P)j, 0 < j< 2 6 , t{, j, ic—ia+  (4d+ l) jArk, 0<&<4d, Х*== [t<, It, j™
[fi, î,/+l] > Xi. fc"— [t{,̂ ifc, f{»y»7c+i] °

Let F (00) — f  (т~гх) . By applying Lemma 2 .5  to F  on each interval J {, we obtain 
a convex spline function s{ on I t, which at least has one of the following properties.

P ro p e rty  1. Restrictions of st to ith t(,b] and [tilb] £{+1] are linear functions, 
respectively, and satisfy that

Si (j>i+u) — F(ti+ii) , k — 0 ,1 , (3.1)
D F (id < D Si (id <DSi (f j+1) < D F (ti+1) , (3.2)

I S i-F lea,) < D t t K (H2F , 1, [ti_i,b, #i+i,b])e (3.3)

There exist two polynomials g<a and g,,a in  srm satisfying
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I S M - F U - , b * 0<OlsK m_1)m(I>zF } 1, [£<_i,b, k+i,b)t (3.4)
I I ^ I oe 1, 04+1, b] ) * (3.6)

B 3qu% (ti) =  B iF  (ti), j = 0, 1, (3.6)
JD3qitll(i+i ) - ^ ' ( t i +d ,  J - 0 , 1 .  (3.7)

P ro p e rty  2. Sj is a function in  <7т_1(14) and its restrictions to I u i i j — 0, '•••, 26) 
are polynomials of degree to. s4 satisfies

B% (pu-ie) ~~B3F(ti+̂ ), j , k — 0j 1, (3.8)
Is< —J ’||o(/<) « 7 195rm_i,00(D2J ,J 1, î+itb])• (3.9)

There exist two polynomials pit * and pil2 in  wm satisfying
B spi,i(ti) —B ,8i(ti) ,  j= 0 , • ••, to- 1 5

B lPi, 2 (ii+i) = D}Si (W ) > j =0, • • •, m -  l s
|у>4,i —2̂ 1 oĉ -i.,bj , 1, £{+1,ь]);
l! Pi>2 F \oti«, ^ ( t i . b 3 (71 l j  1»ьj ^i+i*bl)e

Define s(x)=Si(cc) for % £  I {, i= 0 ,  •••, M —1. Then (3.1), (3.2) and (3.8) imply 
the fact that s is convex on [0, то], s is a spline function of degree to and B m~4 is 
contiuous except finite knots. Now we use [2, Lemma 4.1 and Lemma 4.3] repeately 
to smooth s to От~г.

The points on which B m~4 is discontinuous can he divided into four parts:

A i={#< | Both Si and s4_i have property 2},
A a— {ti]Both Si and s4_i have property 2},
A s= {ti| One of functions Si and s4_% has property 1 

and the other has property 2},
Ад—{t{,61 Si has property 1.}.

Suppose that ti £  A ^  By [2, Lemma 4 .1 ], we obtain a convex spline function gt 
satisfying that

ff{(x) —S(x), Ccdz [0, TO] \ \ti-t,Zb,M, ,̂0,2d+l] 

and restricted to [t4_i,2&, t j . J , Qi is a function in  Cfl[ti_i,2s, #4, J .

l*-^|oct«..i» u,>i<\Ds(tt) ~Ds(tT) |
<  | Bs(tf)  — B F ( t^ ) | +  | (BF(ti) ~Bs(t7 )) |.

By using (3.6), (3.3) and (3.4) and Markoff's inequality, we have

| B s ( t j ) - B F  (ti) | =  | Bsi-1 (U) -  B F  (ti) | =  | Bsi-i (%) -  Bg/itl (tt) J

G(It- l»2b>ed)
<^022Km-l,*>(B2F } 1, \ti-z,bpi,b\) >

We also have
!B F ( t i ) - B s ( t f )  | « 7 23̂ m_a,M(D2̂ ,  1, C U b A J ) .

Hence
Us — gi\ott,.l,ab > ti,i'\^ ^ '^ 'm -tr^ (B 2F ) 1 , [£;_а,Ъ, £»,!>]) ° ( 3 ,1 0 )
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Si and S{-i are linear functions on X{ and I t-±, respectively. In  this case we 
improve the proof of [2, Lemma 4.1] and see the fact that restricted to 
<̂i0i2d+i]) gi is a polynomial of degree 2. So B m~1gi is continuous on every point in
$<-1,26, ,̂0,2<?+i}.

Using [2, Lemma 4 .3 ], we obtain a convex spline function Qi satisfying that 
Qi(00) =gi(x), « 6  [0, w] \ [%,CM+1, tuo,3,2+1]

and restricted to each interval Х{,0,й, 0<X <4d, Q4 is a polynomial of degree m and 
restricted to [i4, tit J , Q{ is a function in  <7т-1 \ti} ii(i] .

m—1
2  |^Vi(^0,2d+l) ~ X)fyi ($£<>»2d+i) |j=2 

m—1
2  I X̂ Sj (̂ iiOt2<Z+l) — X̂ (/j(̂ i,0,2d+l) I У=2

<  С7261s — I ад-i.sj,
‘̂ C f27-K"m-l>°° (X)2-?7, 1 , [̂ {—2>b> *4.b] ) •

Now Qj is continuous on every point in  [^-1,2», \-{А-1,2&,2<г}« By using the same
method we can smooth Q{ to #4, J .  Hence we can obtain a convex spline
function Qi satisfying that

Qi(x) =s(®), « 6  [0, ra] \ [̂ i—1,2b; 2ь]
lQ1-s||oci<-1,M.#(,as3 < ^ 8̂ m-l,c»(X)2X7, 1, [ti-2,b, tf»+2>b]) •

Eestricted to each interval of Х{_1,^1,, (0 < j< 2 6 , 0<&<4X+1) and Xjpo,fc(0<X<4X 
+ 1) „ Q{ is a polynomial of degree m.

We have proved that if 6  A 1} then restriction of $ to [ti-i,2b, ti,2b] can be 
smoothed to Crm_1[ij_1,2b, iil2b] • In  other cases we can use the similar smoothing 
method to smooth s to От~г locally. In  such a way we obtain a convex spline function 
<? which has a good local estimate

IF — O' 10(It, 3,H) ^ 02QKm-ltCO(D2F , 1, [ti-2,b, h+S.b]') °
Applying Lemma 2.1, we have

ЦХ7 — (?||by(JJ,i,K) ^ 0 ,3oXrm_2,i,(X)3X’, 1, [ti-2,b, 2,b]).
Let s (ж) = G(nx) for x £  [0 ,1 ]. Then s is a convex function in 8 m(An) such 

that if /  is a convex function in O2 [0, 1], then

1 /~ sIIcco,l]< Gn n~2K OT-i,со(D2/ ,  n 1, [0, 1 ]), 

if /  is a convex function in L\ [0, 1], then

llf~ sIUpi:o,ij‘ŝ Clf32,n zK m-2,9 (X)3/ ,  n x, [0, 1]).

The XT-functional is equivalent to higher order modulus of smoothness. In  other 
words we have proved Theorem 1 if An is a uniform partition.

If there is a positive constant <r>0 such that

-ф-<сг for all n.
A„



then we say that A„ is a quasi-uniform partition. I t  is a obvious fact that any 
partition can be thinned out to get a quasi-uniform partition A*t, that is

and Uiin< J * < 2S*<cr22nj
where cr* and <r2 do not depend on A„. Bo we can assume that A„ is a quasi-uniform 
partition. Let A„ denote the uniform partition of [0, 1]. Then there is a convex 
function s in $m+1 (A„) such that

l / “ ®IUpC0.u 0 S3n 3com_2,p(J58/ ,  n x) (3.11)
and

t f-s \W o ,K < 0 Sin-*com_b „(D2f ,  O -  (3-12)
By virtue of [6, Theorem 2.1],  we obtain a function % in # т_2(4») such that

0< si(x)< D 2s(x), x £  [0, 1]
an(l IIL 2S — St 1 LPlO, 1]^^35^)? :1]|^m+lsIU„C0.a3.

Define s2(x) =  s(0) +  Ds(0)o o + ^ d t s*(v)dt. Then s — s2 and s2 are convex functions 

and sa is in S m(An) . Define
s (ж) =  s2 (ж) +  $ 4,,*, (s -  s2) ,

where is Schonberg's variation diminishing spline operator. Then s is a convex 
spline function in 8 m(An) .

1 s — s||LPio,i-}^OmAl|| D2(s—s2) ILr\;o,i3<̂ 0 '87̂ ™+11 Dm+1s ||LPto,i3°
By using Lemma 2.2, we have

Is — s 1 £що,i i ^ p(s j А ) ^С'зэСЦй — /IbpCO.ii +  ̂ m+i.siC/} 4 0 )  •
Because 4, is a quasi-uniform partition, we have n~1^ A n. From (3.11) and (3.12), 
it  follows that

II / “ SlUpCÔ ^^Ô raWjre-a.j) (D3/ ,  An) ,
II /  ~  sI I c c o . u со (D2/ , 40  о

The proof is completed.
Proof o f Theorem 4 For the convenience of statement we assume that An is a 

uniform partition.
Let a be a positive number determined later. Let

Р„(ж) =  (x — a)x.
DPn(x) =2x — a. Bo P n is incresing on \a, 1]. Define

,  ,  v JO, «],
■ . '1  P M ,  * 6 [ e , l ] .

T h en /„ is . an increasing function in РЦ0, 1]. Let s be an arbitrary increasing 
function in 8 m (An) . Then Z>s(0) > 0  and

« =  |D Pn(0) | < \D(Pn- s )  (0) | < ||D (P„-s) \0Z M
<^Oi2n1/P\\D(P„ ~ s) || Lplo,„-1]< a 43n1+(1/p) || Pn ■— s|| £pI;o,n-i3 
< O ^ W > ( \ \P n-fn \\ £p[0.U +  ||/n “  s||£fCo,i3) .
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where the third inequality follows from, the uniqueness of norm in finite dimensional 
yector space and the fourth inequality follows from Markoff’s inequality because 
restricted to [0, яГ1] ,  Р» and s are two polynomials of degree of m. Let a=  [04a (w+1) 
ewi+(i/p)] -p/cp+D̂  we have

\fn~~P и || x̂ cOii]=  ||Pn|£f[i,o]^«2+(1/J>)
<  (га+1)-1( | | Р /n|UPi;o.i3+1/«—sjb^o.i])®

Hence пЦР«»-/»|х*со.аа<1Л-*|л«о.й*
It follows that

Д.)> « lP n- / n| ijCo,1:. (3.13)
On the other hand, we have

' n^cos.piDfn, n '1) <4ra-11D ( / „ - P„) 1 iPcOii]
^ 4 »  1 1  DPn !  LptO,ai 

^G ^ sflT 1»  1||P«|U1,cO/«n
<(743й_1?г 1||Pn — /n|Urco.i3«

Hence m,p ■ > О̂ з1 биг_2~те1/(1,+1), as n—>+co.
№ 1Oi2,p{Dfn, n x)

If 1<£><оо, it implies(1.7). If p =  +  oo, we have
0>3,c°(fn, та"1)< 1 6 ||/ге- Р , 1|1ссо,1].

(1.8) follows from (3.13) and this inequality.
R em ark . Using the same method, we can prove the following theorem. 
Theorem  5. Let m > 2  and 1 < 2>< +  oo. Then there is a positive constant О such 

that for any convex function f  on [0 ,1 ],
% : М ,  4n)<OAna>2tP( D f , A n).
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