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SHAPE-PRESERVING APPROXIMATION
BY SPLINE FUNCTIONS

Wane X1anc(E #)F

Abstract

The._author'establishes the J ackson—tj}pe estimates for monotone and convex approxi-=
mation by spline functions with non-equally spaced knots. These estimaes involve high
order modulus of the approximated function and its derivatives. Hence some Bernstein~
type theorems can be got conveniently. '

§ 1. Introduction

Let 4,2 =ty<ty<+++<fpyz=1 be a partition of I=1[0,1]. Given any positi‘fm
integer m, we call the space ’
There exist polynomials of degree
Sy (4,) ={s€0’”“1 [0, 1] |m, {s}7—o, such that }
s(@) =s8;(x) for @ € [t;, 4] .
the space of polynomials splines of degree m with knots #;, -, #,. Given 1<p<+co
and any positive integer ¢, we define
» For 0<<k<r-1, D*f is absolutely continuous
[0, 1] = {f ) }
on [0, 1] and | Df],<+ oo.

(L@ ra]”, s<e
9l,=
i max |g@)],  p=-+oo.

In this paper we obtain Jackson type estimates for I,-approximation by convex
(monotone) splines whose knots are not equally spaceds These estimates involve
higher order modulus of some derivative of the given function and can not be:
improved. By using them, we can improve the resulis obtained in [1, 2, 3, 4].

Given f€ L,[0, 1], define its #—th L,~modulus of smoothness by

wr,p(f, h) = oilggp Hﬁff( . ) "L,,coyi-rtj;_

where 4" ig the r—th forward difference, ahd define

B, (f, 4) =int {lls—fllp

s is an arbitrary convex}
[

function in S, (4,).
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We state our main results as follows:
Theorem 1. Let m be a positive integer and 1< p <<+oo. There exists a positive
constant O only depend%g on m and p such that the following hold.
(1) Let m>2 and p=+oo. For any convew function f in L3[0, 1], we have
B (fy 4) <OLion-1,(D*f, 4,), Zn———liggi (b= ti1)- 1.1y

(2) Let m>8 and 1<p< +oo. For any convex function f in L3[0, 1],

By, p(f: n) <Odza’m—2,p<D f; 4 ) (1-2> _

A more desirable estimate would be

B, p(f: 4,) <0wm+1w(f; An)
As pomted out in [1, 8, 4], this estimate is important in yielding inverse theorem:

characterizing smoothness properties of f by E,., (f, ‘4, . Unfortunately, this -

estimate does not hold. In fact, we have the following theorem.
Theorem 2., If 1<p<+co, then '

f s an arbitrary convex function
B o (f, 4 - {in L3[0, 1]. n.ds an arbiirary
su . 3 r= + 0, 1 . 3
P\ Zes,y (DF, 4,) positie integer and A4, is an (1.8
' Narbitrary partition of [0, 1].
If p= o0, then N
[ és an arbitrary comves funotiony
sup _E*m,+m (f, 4,) |in LL[0, 1]. n is an a'rf)@t'ra/ry _ teo. (1.4
Anws,w (Df, n> positive integer and 4, is an
arbitrary partition of [0, 1].

For the monotone approxnxiation we can egtablish similar results ag above. Let

B, (f, 4) =int {uf—su,

We obtain the following results.

Theorem 8. Lot m be a positive integer and I<p<oo. Thefre ewists a posttive
constant C only depending on m and p such that the following estimates hold.

(1) Let m>1 and p=+oco. For any increasing function f in LL[0, 1], then

$ ig an arbitrary increasing }

spline function in §8,,(4,).

B o(fy dn) <O4om,e (DS, 4,). 1.5)
(2) Let m>2 and 1<p<<+oo. For any‘mweasmg Sfunction f én LE[0, 1], then
By o (fy 4e) <OLops,s(D*f, 4:). . (1.6)
Theorem 4. If 1<p<- oo, then
. .| f és an arbitrary increasing funciion
[ B2 (f, 4)  |on I3[0, 11, n is an arbitrary

w3, 9(Df, 4s) |positive integer and 4, is an

suplz . 4 ' — oo, (LT)

arbitrary partition of [0, 1].
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If p=+ o0, then
J s an arbitrary imereasing function
sup Frneo (fs 4n) fm o[o, 1], n fz,s an arbfi,t.ma"y positive| _ + oo 1.8)
w3, (f, 4) |integer and 4, is an arbitrary
partition of [0, 1]. ‘
In [1], DeVore conJectured that when the partﬂnon 4, is a uniform parb1t10n
- EnL(f, 4 <O0m1,(f, Do),
where O depends only on m. Here inequality (1.8) implies a negative answer to
DeVore’s conjucture.
Because Df is increasing if f is convex, Theorem 1 and Theorem 4 imply
Theorem 8 and Theorem 2, respectively. Hence we only prove Theorem 1 and The-
orem 4 in this paper. Throughout this paper O;, 0., etc. will denote constants

independing on f and 4, but depending on m and p.

§ 2. Some Lemmas

Let I be.an interval and K,,,(f, %, I,)denote the K-functional of Peetre on I,

that is
Ky o(f, t, I)= inf {| f =gl +¥|Dglz,0}-

1S 77 v
Lemma 2.1, There is a positive constant Oy such that for. any function f in

Lia, b] -
K,m(f, b—a, [a, 0]) <O4[(b— w)"””x'f'(f, b—a, [w, b1,)
' + (b—a) i~ rErve(Df, b— —a, [a, B])]. 2.1)
Proof It is sufficient to prove that (2.1) holds for the case in which ¢=0 and
b=1. : _ NI
It is well known that K, ,(f, £, I,) is equivalent 10 w,,¢(f, %, I, ). By using [5,
Oorollary 8.1], we obtain a polynomial ¢ in ,_; such that v
| |D*(f — ) |0 <OaK iy (D, 1, [0, 11, 6=0,1.
Hence K,,.(f,1,[0,11,)<|f~¢|si0u<f ¢l z0u+[D*(f = [ rom
- <Oi[K,,(f, 1, [0, 1], ) +Ka,,(Df, 1, [0, 11,)1.
Let 4,:0=to<ty<+:-<f,=1 be a partition of [0, 1]. The space of piecewise

polynomials of degree m with knots %y, -, %, is denoted by
There exist polynomials of degree m, {s; ;';(},}

P Sm An ={ i ) ;
(4) s such that s(z) =s;(x) for @ €[4, f-4].
Lemma 2.2, Let 0<r<<m. There isa positive constant Og such that for any
sE PS8, (4) |

H_Drs [I Lp[O,i] <03_A_;rwr, ] (s, Zn) 9
where dy=min (§—7%_y).

1<i<n
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This is a corollary to Markoff’s inequality and Whitney-type inequality (See
[6]). The details of probf is omitted here.

Lemma 2.8. Lot A be a compact set im m,, satis fying that if fE€ .4, then D f0.
Let n>=2m—1 and 4,: 0=wo<<tq<+ee<Bpya=1 be a partition of [0, 1]. Then there is @
positive number 8>0 depending on n and m such that, for any function g€ A, there is
an @'ﬁteger 8, 1<<e<<m, such that

|Dg (%) | =38, for « € [@, wi,4].

Proof Suppose that d does not exist. Then there 18 a sequence of functions, {g;},

in A, satisfying that for each ¢ there is a point @;,; in [;, @iy1] such that
| Dg;(a;,0) | < 47 ' (2.8.1)
A is a compact set. So we can suppose that there is a function ¢ in A such that

ig;— q].—0, as j—>o0. (2.3.2)

By using Markoff’s inequality, we have |
1D(gy—q) [0, 35 j—>oo. @.8.9)

We can also suppose that there is a point @,4 € [, #141] such that
| wo,1—23,:|—0, a8 j—>o0. (2.8.4)

From(2.8.8)and (2 ;3<4), it follows that Dg (xe,;) =0 for 0<<é<<n. Because n=>2m—1,
Dq has af least m zero points. So Dg=0. It implies that g¢ 4. From (2.8.2), it
follows that A is not a closed, contradiction. _

For a positivé number « and an interval [—b, b], we introduce a function set
denoted by Bfa,[—b, b]). f is a function in B(w, [~b, b]) if and only if f satisfies
the following conditions:

(1) There are two polynomlals f1and fa in @, such that

,f.( @) = {fi("’> o »
T fa@), 200, +o0).
(2) f1and faare convex on (—b, 2/b) and (—2/b, b), respectlvely
(8 Let Fila) =fi(2) — Dfi(0o—1:(0), i=1, 2. |
o f) {“Df sloc-v03, [Tl 0c~b,on,}
|DFslowom, [ F2loom,
>0‘" J1— faloc-v/zom.

Lemma 2.4. -Let m>2 and b=4m? Let x,=4 f0fr = b<o<Khe day: oo <Ly,
is @ partition o f [ b, b]. Then there ewists a positive real number o such that for any
Sfunction f in B(w, [—Bb, b]) there is a functfwn s€om1(— oo, ~+00) sat@sfymg the
Jollowing properties: ' ' 8

(1) 5= F on(~co, —b) and (8, +o0).

(2") Restricted to [—b, b], s is @ convex function in Sy(da). .

(8) There is a positive constant Oy fz}ndefpeo"d@'ng on f such that

| f =8l ot=cor 4 <05 f1 = Saloc-v/2,1m: -
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Proof At first we suppose that ¢(f) = | Dfi]oc—s,0-

Lot Ayt 0=wy<+o< w9, =2m? denote a partition of [0, 2m2]; By using [6, Lemma
2.1], we obtain a function sy €0™ 2 (—o00, +0c0) whose restriction to [0, 2m?%] isa
spline function in S,_a (dom) and for each point #& [0, 2m?], si(z) is a number-
between D?f; (2) and D?fa(w) and whose restriction to (—oco, 0) and (2m?, +oo)-j
are identical with D?f. Define

52(@) = f1(0) +Df1 O+ j “ j’ 8. (v)dr.
Then s, is a convex function on [—b, b] and satisfies that |
r- $allor0,<26%| D fa— 1 oo+ | £1.(0) — Fa(0) | +|Df1(0) - Df:(0) |
<2?| D*(f1— f2) laworm+ | f1— Faloro,ormy+ | D(f1= f2) | oco,vrm
<O f1— faloco,p/m- (2.4.1)
Let Ny (o|@i, -+, %ipnsa) denote the normalized B-splines of order k+1 whose
support set is [w;, w¢+g+1] and whose knots are {@;}itk+1, Define | |
s(z) =s2(w) +Ji”dt J;I:%N m—a(T| @1, oo, Bramt)
+YalN 2 (7| Brom—1, ';', a’l+2m—2)]d7'
If ~i<I<S—-2(m—1), then s=f on (—co, —b) and D?*=D% on [b, + ). Let
M (z) =s(2) —s2(2).
It is obvious that we can choose gy and y, such that M (b) = fa(d) —sa (b) and DM (d)
=D(fa—ss) (b) and
max{|y:|, [ya|} <07 max{| (fa—sz) @1, | D(fa—sa) (B) [}
Sos=f on (b, +0o0) and
[ DM | o¢—cor 4y <Os| f =82 or0,1s <O | f1~ faloro,/2se
‘Now we choose the integer I such that s is convex on [-b, b]. Let

A={g€xn-1|g(0) =0, |glo-s0=1}
Then A satisfies the hypothesis of Lemma 2.3, Hence there is a positive constant
3>0 such that, for the polynomial
(D f1(w) — Dfi(O))/ 1DF sl oc-v01

in A, there is an integer ! with —b<\I<—2(m~1) such that
min | D*fy(a) | >8] D £1(0) — D f1(*) loc-,s=>0d| f1— Fallog-va,v/ame

@€ [21,on90n-0]

Hence min | D*,(®) | >ad| fi" lelgf_b,z,g,gl,

06 [B10pra0m-]
By more careful analysis, it can be proved that Uy depends only on m. Let =820, .
The support set of D*M is contained in [#;, @y.am-1y]. Hence Ds(x) =D? (s34 M)
(@) >0, for x €[ b, b].

The obtained convex spline function s satisfies (1’) and (2). We shall show
that it also satisfies (8'). In fact
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4
usz—snoc-b. 0= U:l dt Ll [yiN m-2(’77 Imz, oo, wz+m-1)

+ YoV a(w I Byymty °**y Bypom-2) AT

<8bmax{|ys|, {yal}

<8b*C; max{| (fa~s2) (B) |, | D(fa—s2) (B) |}

<04 f1— fal ocorv/m

1 f = 8oc-cor ooy =1 f =8l ot~0,0<| £ — 82| 010, 2+ [$2— S 02,3
' <Os| f1—fal oc-vr2,5/m,
where O5=0;3-+ 0. |
 'We have proved the lemma in the case ¢(f) = | Dfifot-e. The proofs for other

cases are almost identical with this case. '

Lemma 2.5. Let m>2 and b=4m? and a:¢=—;';— for —b<<é<<b. Let 4:—-2<~1<

0<1<2 and 41 —280_p_ 3 <t_y<<orr <@p<Xps1 Q2 be two partitions of [—2, 2]. Then
there is a posttive constamt Oyo such that for any comvew function f in O [—2, 2], af
least one of the following propositions is true. '

(1) There is a convew function sin PS8, (4) NO[-2, 2], whose restrictions to
[—1, 0] and [0, 1] are linear functions, respectively, satisfying

s(x1) =f(+1) . (2.5.1)
and . o »

Df(-1)<Ds, (—1)<Ds.(1)<Df(1), . (2.5.2)

such that : -
ls— Flo-am<Osw0Km1,(D*, 1, [-2, 2]). (2.5.9)

(2) There is @ conves function s €S, (4') satisfying

| Dis(£1) =D (1), =0, 1 :  (2.5.4)

such that 4 | S
Is— flloc-2,2<O10K m1,(D*f, 1, [~2, 2]). (2.5.5)

Proof For the convenience of statement we suppose that f(0) =D f(0)=0.
Let F(x)=f(b"). By using [5, Theorem 4.2, ], we obtain two polynomials ¢
and ¢s in ®,_g such that
||D2F—91ﬂoc—2b,b]<011Km—1m(DQF, 1, [~2b, b]); (2.5.6)
| D2E — ga| g5, 207 < O1 K 1,00 (D*F, 1, [ - b, 2B]). 2.5.7
Define

f1@) =F(=0)+DF (=) @+b)+ | db]" [02(5) + 0K s, o (DF,1,[~20,51) 1dv
and , A .
£2(a) = F (3) +DF (b) (w—b) +L oltL [ga(®) +OuKns,.(D°F, 1, [ B, 25])1dw.
Then f; and f are convex functions on [—2b, b] and [, 2b], respectively. They
satisfy that
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D'f;((—1)b) =D'F ((—~ 1)), 4=0, 1 and j=1, 2,
From (2.5.6) and (2.5.7), it follows that |
§f1— F | ore20,0<O12K o, (D2F, 1, [ -2, b]) (2.5.8)
and '
I f2—F | or-br2t3<O12K m-1,0. (D°F, 1, [~ 1, 2b]). (2.5.9)
Suppose. that f; and f, satisfy the condition (8) in the definition of B(w, [—b,
b]), where a is determined in the proof of Lemma 2.4, Let |
o [fa(@), z€[~2b, 0],
9(@) = {
fa(x), 2€ [0, 2b].
By Lemma 2.4, we obtain a spline function s; which has properties (1), (2") and
(8), that is _
Dis; ((— 1)) =D'f;((—1)%), ¢=0, 1 and j=1, 2,
and '
| F ~ 1] or—2p0 20y < | F — gl 0c—20, 207+ [| @ — 81 026, 281
<O033K 1,0 (D?F, 1, [—2b, 2b]).
Lot s(x) =31 (bx). Then the proposition (2) holds.
For the case in which f; and fa do not satisfy the condition (8), that is,

ax{uﬂfiﬂm—b.o:; | f1hoc-s.01,
1D fallow., | folorom,
where a i determined ih Lemma 2.4, we shall show that proposition (1) is true,
For A€ [0, 1] and #€ [-25, 2b], define
Us(A, #) = f1(—b)+AD f1(—b) (w—i—b),
Uz, @) = f2(b) +AD fa(b) (x—b).
At first we suppose that U, (1, 0) <Uas(1, 0). From the fact that F(0) = DF(0) =
0, it follows that F is mcreasmg on [0, 2b] and decreasing on [— —~2b, 0]. Hence we

b<al i il @510

have
| Us(l, 0) = —bD £4(b) + fa(b) = —bDF (b) +F (b)

<F(0) <F(—b) = f1— (b) =U1(0, 0).
It 1mp11es that there is a number M€ [0,1] such that Ui (A, 0) =TUsx(1, 0). We define
fi®), @€ [- 2b, b],
Ui(ho, ), sE€E[—0, 0],
Ux(1, o), =€ [0, d],
f2(®), ®€[b, 28],
It is obvious that s; is a convex function and satisfies that

- Ds;(b-) <DF (), ‘

. - Dsg((=b*)=DF (—b).
Now we begm $0 estimate the error |F — ssor-a, 25

83(2) =
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ﬁfi Uz.(?vo; °)Joc-b,01 nax lfi(m) fi( b) 9»on1( b)(w—*‘b)l
<2b max lDfi(w) Koni( b)l

v~

<2 ("Dfi( °) =D f1(0) |og—s03
+ |Df1(0) —AoD f1(—
If Df4(0) >0 or 0=>Df (0) >Df:(—b), then _
| Df1(0) —AoDf1(~b) | <"Df1(') — Df1(0) | oz, 050

By (2.5.8), (2.5.9) and (2.5.10), we have

[ f1=T1(No, )"0:-1,,03<014K m—1y00(F2F, 1, [—2b, 2b]) (2.5.11)
If 0>Dfs(~b)=>Df(0), then

|.Df1(0) ~ Koni( b)[< foi(O) | = [Df:(0) —-DF () |

‘ < "D(fi -~ F) "0:-2b,b]
Hence in this cage We can ‘also obtain (2.5.11). '

Using the same method, we can obtain
| | fa~Ua(d, o) oco,w<015Km_im(D2F 1, [—2b, 26]).
Hence |7 — s3] op-20, 3 <C16 K. metra (DF, 1, [—20b, 281).
 Let s(x) =83 (bw). Then s is a convex spline function in PS,(4d) NC -2, 2].
Iis restrictions to [—1, 0] and [0, 1] are linear functions, respectively, and satisfy
(2.5.1), (2.5.2) and (2.5.8).

For the case in which U;(1, 0) > Ua(1, 0), we can prove this Lemma by the
gimilar method.

§ 3. Proofs of Theorems

" Proof of Theorem 1 At first we suppose that 4, is a uniform partition.,
Lot a= (2b+1) (4d+1), where b is defined in Lemma 2.4 and d is determined -
in [2, Lemma 4.4]. Tet n>a—1. For the convenience of statement we assume that
there is a positive integer M such that n+1=aM. Let {i=da, 0<4<M -1, {,;=
ja+ (dd+1)j, 0<<j<<2b, %, 4, p=ta+ (4d+1) j+k, O<k<dd, Li=[h, tid, I, ;=
Céer 55 Bseads Lo g 6= Chinsmy Birsimasl.
Let F(x) = f (n"x). By applying Lemma 2.5 to F on each interval I;, we obtain
a convex spline function s, on I;, which at least has one of the following properties,
Property 1. Restrictions of s to |4, #,5] and [4,5, #.4] ave linear functions,
rospectively, and satisfy that

8:(tuw) =F (bu), k=0, 1, (3.1)

_ DF(#) <Ds;(t)) <Ds;(t11) <DF (414, 3.2)
ES; —-F u 0([‘)<D17Km-inoo (DQF, 1, [ti~1,b; t‘+1' b] ) ° : (3 . 3)

There oxist two polynomials ¢;,5 and ¢;,a in @, satisfying -
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U gion—F | octer 580 <O K sty (D?F, 1, Thict,p, Birarn), (8.4)
(2= Flor- ity <O18K mt, e (D*F, 1, [i-1,5, Brs,0]) (8.5)
Digi,s(b) =DF (8), §=0, 1, (3.6)

Dig;,s(bp) =DF (4.40), j=0, 1. 8.7

Property 2. s, is a function in O™ *(I;) and its restrictions to I;,;(j=0, ---, 2b)
are polynomials of degree m. s, satisfies
Dis;(bi4%) = D'F (hys), §, k=0, 1, | (3.8)
lsi = Floao<O1K m—t,0e (D°F, 1, [his,3, figa0]) e (3.9)
There exist two polynomials p;,; and p;,s in m,, satisfying
-D"‘Pi,i(ti) =D’s;<t,-) , J=0, 0o, m—1;
Dip, 3 (biq) =D'si(b30) =0, +oc, m—1;
1201 =F | ottrssns :a<C20K mtyee (D2F, 1, [bi_1,0, fis1,0])s
1202=Flotuss tensd <O K m-t,00(D2F, 1, [fi-1,0, fis1,5])
Define s(») =s(a) for #€I;, =0, --., M—1. Then (8.1), (8.2) and (8.8) imply
the fact that § is convex on [0, n]. §isa spline function of degree m and D™ % is
contiuous except finite knots Now we use [2, Lemma 4.1 and Lemma 4, 8] repeately
o smooth § to O™1,
The points on which D"~ ig discontinuous can be divided into four parts:
Ay={t;|Both s; and s;,_; have properfy 2},'
As={1;|Both s, and 81 have property 2},
Ay={%;|One of functions s; and s;_3 has property 1
and the other has property 2},
Ay={ti,5] 8 has properisy 1.}, _
Suppose that € 4;. By [2 Lemma 4.1], we obtain a convex spline function g
satisfying that _
0i(@) =s(@), o€ [0, n]\[fi-1,2,2, 755.0.2«14-1]
and restricted to [4;_y,m, 1], 9 18 a function in C*[;_y, 5, #,4].
Is~— gillottinsuns tuy<<|Ds (&) — Ds (&) |
| <|Ds(#) — DF (8)) | +| (DF (#) - Ds (7)) |
By using (8.6), (8.3) and (8.4) and Markoff’s inequality, we have
lDS () —DF (ti) ] =’|D3¢-i @) —DF () ] = ]D«%—i (%) —-Dth(ti) l
<Ousi-1~ gut] ot
<O2Kp1,0(D°F, 1, [tio9,5,ti0])
‘We also have - '
IDF (&) — Ds ) !<023K m-i,oo(DzF 1, [t- 2,b,t£,b])
Hence
Is = 9illoctsramete ,:<0'24K mi—dyes (DzF , [bi-2,5, ti'b])u - (8.10)
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8, and §_; are linear functions on I; and I,.4, wespectively. In this case we
improve the proof of [2, Lemma 4.1] and see the fact that restricted to [4-1, 25,2,
$i;0,2a11], 9i is a polynomial of degree 2. So D™ ¢, is continuous on every point in
[hi-a,25, %i1] \ {Bs=s, 200 2, £ir0, 2001} -

Using [2, Lemma 4.8], we obtain a convex spline function @); satisfying that
Qi(@) =gi(x), €0, n]\ [%,0,a41, 10,8041 ,
and restricted to each interval I,,0,,, 0<k<4d, @, is a polynomial of degree m and
restricted to- [4;, %;,1], @; is a function in O™ [4, #;,4].

§Q¢—9¢ " Oct‘,t,,,]<025’j§: legi (&0, 2a41) —D’y¢ (870, 2041) I
<Ozsg | Ds; (44,0, 2041) — D¢: (uv0,2040) |

O3S — 9] ottson oty

KOCuKpi,(D?F, 1, [hio2yv, Bv)) - .
Now Q; is continuous on every poin’ﬁin (841,98, £5,1] \ {fi-1, 20, 2. By using the same
method we can smooth Q; to O™ *[#_4,m, #:,1]. Hence we can obtain a convex spliné
function Q, satisfying that ' 4

Qi(@) =s(w), €0, n]\ [fi-1,2, b 2]

and Q=8 oty a3 <C28 K ety o (D*F, L, [hioay, biga,5]).
Restricted to each interval of Ij_y,5s, (0<<j<<2b, 0<<k<<4d+1) and Ii0,s(0<<E<4d
+1), Q; is a polynomial of degree m.

We have proved that if # € Ay, then res.riction of s to [4;_4,2, #,25] can be
smoothed t0 O™ [t 4,2, #,2]. In other cases we can use the similar smoothing
method to smooth s to O™ locally. In such a way we obtain a convex spline function
@ which has a good local estimate

1F ~GQoa, 0 <C20K mtyeo (D2F, 1, [bio,p, tivarnl).
Applying Lemma 2.1, we have
1 F — Q1,050 <C30K m-2,0(D*F, 1, [bi_a,5, Fiz2,0]).

Let s(z) =G (na) for «€ [0, 1]. Then sisa convex function in Sn,(4,) such

that if f is a convex function in O%[0, 1], then

1S —slow0,12<Casn ™K m—1,- (D°f, n7%, [0, 11),
if f is a convex function in L3[0, 1], then
If 8] 2,00,0<Cloan™*K s, (D* f, #7%, [0, 11).
The K-functional is equivalent to higher order modulus of smoothness. In other

words we have proved Theorem 1 if 4, is a uniform partition,
If there is a positive constant ¢ >0 such thak

f—

—j—"—<o for all n,

=n
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‘then we say that 4, is a quasi-uniform partition. It is a obvious fact that any
partition can be thinned out o got a quasi—uniform partition 4,, that is ‘
£Ch and ol <L<H <0l
where ¢y and o, do not depend on 4,. So we can assume that 4, is a quasi-uniform
partition. Let 4, denote the uniform partition of [0, 1]. Then there isa convex

function § in Sp,1(d,) such that |
If —3) 5,001y <O *wp-9,5 (DS, n™%) | (3.11)
and : o ‘ '
b £~ 5] 00, 15<Csan 2wm—1,00 (D f, w~2). (8.12)
By virtue of [6, Theorem 2.1], we obtain a function s; in S,-2(4,) such that |
0<s;(@) <D%(2), 2€[0, 1]
and 1 125 — 1] 2,50, 10<Olasdy ™| D™*5] 1,10, 11.

Define s;(2) =s(0) +.Ds (O)w-i—f dtj 81(7) dr Then s—s, and s, are convex functions

and s, is in S, (A,,) Define

(@) =83(@) +84,,m(5—52),
where 8, is Schonberg’s variation diminishing spline operator. Then s is a convex
spline function in S,,(4,). | ’

15 = 8] 2,50, <Clsedz] D2 5 — 85) | 2,0, 1< Osr A ** | D™*5 10,130
By using Lémma 2. 2, we have
HS 8 210,11 Oss0ma1,9 (8, dn) <Oso (|5 — f(ln,,co,13+com+1,p(f, 4.).
Because 4, is a quagi~uniform partition, we have n~t~4,. From (8.11) and (3.12),
it follows that '
| f =8l 2,00, <Os0diom-2,5 (D° f, 4.),
| f = slowos<Casliowm s, (D F, 4r).
The proof is completed,
Proof of Theorem 4 For the convenience of statement we assume that 4, is a
uniform partition. |
Let a be a positive number determined later. Let
v P,(2) =(z—a)w.

DP, () =25—a. So P, is incresing on [a, 1]. Define

O

‘ 2 (@), 2€[a, 1].
Then f,is an increasing function in I;[0, 1]. Lebs be an arbitrary increasing
function in 8,,(4,). Then Ds(0) >0 and

= | DP(0) | <| D(Pa—3) (0) | <| D (P ~5) faro,mes
<Opn'?| D(P » 8) | ngt0swy <Oagn™* /P | P, — s} L0073
KOy * P (| Py~ fo 100,13+ [fa— 8] 200,12) -
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where the third inequality follows from the uniqueneés of norm in finite dimensional
vector space and the fourth inequality follows from Markoff’s inequality because
restricted to [0, n~t], P, and s aTe two pdlynomials of degree of m. Let a= [Oy(n+1)
ot t@/0]-2/@*D  Then we have '

& Ifa~ Pl zeco,13= | Pa|| zyet, < @®**/?
<(n+ DAPa=fal 20,12+ | Fn=—5]z,c0013) o
Hence | 0| P~ fal o n<[ fa—s || L0, 130
It follows that
EHP(fﬂ) 4 )>flb[lP,, f "cho,ijo (313)

On the other hand, we have :
0 wa,p (D, 1) <dn | D(fo— Py L,t0r1)
<4 DP,y| 1,00,
<0407 "0 | Py 100,02+
<Oua7 0| Pu— fal 00,170

' £
Henece By (f, ”)_1 >0 an 2~/ ®tD | ag n—>+co,
n" ws,y (Dfn, n™1)

If 1<p<oo, it implies(1.7). If p=+ o0, we have
_ wsm(fm 1) <16[ fa— Pa or0,13-
(1.8) follows from (38.18) and this mequallty.
Remark., Using the same method, we can prove the following theorem.
Theorem 5. ILet m>2 and 1<p<<+ oo, Then there is a positive constant O such

that for any convex funciion f on [O, 1],
! oo (f5 4n) <O’Z,,o)2,p(Df, Zn) .
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