Chin Ann. of Math.
8B (4) 1987

SADDLE VALUES AND INTEGRABILITY
CONDITIONS OF QUADRATIC
DIFFERENTIAL SYSTEMS

Zuv DEMING (% i&E)*

Abstract

In the first section of the paper, the first three saddle values Ry, Ra, R, of the real
quadratic differential system (QDE) are computed by use of the method with which Poincaré
researchs on Hopf bifurcation. In the second section, by applying the method and results of
Dulac seeking integrability conditions of @DE it is proved that the system is infegrable if
and only if By=Ry=R3=0, and it is also true when the system is complex. The integrability
conditiong given here can be applied much more easily then Dulac’s. In the last part of
the paper, it is pointed out that iRy, iR,, R are the first three focal values of the weak
focus of the complex system. By the formulae of Ry, Rs, Rsand the result in section 2,
one can easily give the formulae of the focal values for the real @QDE with Bautin form
and give a new proof of Bautin’s famous result.

In this paper, {irst we compute the first three saddle values R, Ry, R; of weak
saddle of QDE with Poincaré’s method, then, using the method and results of Dulac,
prove that RB;= Rs=R;=0 is the necessary and sufficient condition of integrability
and it is also true for the complex system. At last, we point out that the formulae
of the saddle values of real system are different from the formulae of the focal:
values of complex system with the same form only by a pure imaginary factor i,
Thus we can give a new proof of Bautin’s famous result.

Remark In other paper, we have proved that the real QDE with weak saddle
bas no closed and singular closed orbits which ‘consist of only separatrices and
saddles when R;=0, Ri+R;+0.

§ 1. Computation of the Saddle Values

In this section, we consider the real system with weak saddle
& =0+ 0352 + Aoy + asy®,
y=—y+bsy?+ bawy+ bga®.

We will seek the polynomial transformation as follows:

(1.1)
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& =U+ @got® + G UV + GpaV? oo =u+ 3 aul,
2<btf<r (1.2)
Y=+ bag®?+ byt + boguiZ oo = D byt
2&é+j<r
where a;;, by are coefficients to be determinated such that (1.1) is transformed into
U=U+ €10+ 0P+ oo+ + U 08 - O (| u| #4320 | 0] ¥41),
o= —®+d1m2u+d§fv3u2+---+dm)"“u’“+0(|_fv["“o |w|¥t1),

Definition 1 Lot R, be the divergence at O(0, 0), B;=k;(c;+d;), where i>>0, kis
are proper positive constanis. Then O és called @ weak saddle of order | and R; is the
j—th saddle value of saddle O 4f R;=0 for-eny 0<<¢<j and B;+0,

Definition 8 Let Ws(W*") be a stable (unstable) manifold of the saddle O. If
We=W*, then the loop {0} UW?* is called the homoclinic loop bifwrcation (simply
by HLB). Moreover, if B,=0 for any 0<¢<j, R;+0, then this HLB is of order j,
where Ry.1= Ry and Ry, (see [2]). We also say the HLB is degenerate when §>>0.

Theorem 1'%, If system (1.1) has a degenerate HLB of order k, then any
perturbation of (L.1) has @t most &k limit cycles and, for any o<k, there ewists &
perturbation with exactly ¢ limdt cycles. :

For the proof see [2].

Now we compute the saddle values of weak saddle O of system (1.1),

Differentiate (1.2) ' '

(1.8)

‘E’ = u + (X et~ 1o?) “ + (2 j“i:‘ui’v’_l) "%: (1.4)
y=v+ S byl u+ (b ul)w. |
First substitute (1.2) into the right hand of (1.1), then substitute (1.1) and
(1.8) into (1.4), we have
(u+ 2 ayuiv?) + oy U+ auitv’) 2+ s (u+ 2 au'e?)
s (0+ 2 o) +azs(v+3 bijviud)?
= (1+3 5@ 0%) (W 01y + osudpP -+ o+ + et 1pP)
+ 3 ja it (— v+ dyv®u+ dgvu? 4 ooe +dip" ) +-hoo. b,
— (v+ 3 byv'ud) + by (v+ 2 byv')?
S+ ba (U auiv?) (0+ 3 biv'u?) + by (ut+X ayute?) 2
=3 jb‘;jro'u";1 (u+ e+ couPv®+ « o+ H1o¥)
+ (A+3 ib ) (— v+ div®u--dav®ud+ o o+ do* ) +h.o.5.

Comparing the coefficients of two sides, we have

(1.8)1

(1.5)s

=01, Q11 = — G2, Goa= — A3,

3
1 (1.6)

bao= — b1, by =Dba, boa= gba;

1= 2013011 + @2 (bia + @g0) +2azbos,
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Pgo == %‘- <2wiw20 + 02b02> P)
ig= — —%— [2(31@02 +aq ((Z;u_’*" .bzo) -1 2“3511] ]
Gog= — -gi— (wzwoz + 2w3b20) ’

Qa0 = %. (a1 Qaze+ ado) +aa(bog+ G2obos) +ashial ,

@1= 2001 (a1 + @a0@11) + a2 (D1a+ @30+ Waoba1+ B11bo2)
+2a3 (bos+ boab11) — 2aa001,
’ @2a= — a1 (2012 + 0%1+ 2da0@o2) — 2 (ba1 -+ G2y + @11b11+ B20b 2o+ Goabos)
— a3 (2b1a+ b3i+2baobos) +an(ci+dy),

Gy3= — %— [ay (2aoa + 2a11002) + @2 (bso+ ia-+ @11b 20+ Babia)
+ (2 2+ 2b1sbao) —2a0ad],
Gos= — %— (@182 + a2 (dos +- %abzo) +ws (b30+2bs0) 13
€2=2a1021 + @202+ 203055 — a,zi (20i+ dv),
@y = % [2a1 A%+ asBi+ 2a30% — 8ase04],

Gs= —_12.[.2“14;+a232+2a30%—wm(oi+2di>],

@ig= — _}f (20143 + @2 Bi+ 20501 — 8agsdi] , -

‘Where O'a1 = G2a+ @11@21 + Aoa@s0 + A20@13,
O 22==baa~+ @g1+ @a0ba1 -+ 11013+ Aoabos + W30b20 + Fa1 b1+ @12Doa,
O2g=b1g+ b2obos + b11b12+ bozbas,
Al = a1+ Gaoter + wabau, :
Bi= b3+ a0+ G2biat tsobi1 + @11bos -+ taroa,
O%=Dbos+ bosb1a+ bi1bos,
A3 = tr13-+ Ba0@os + G110h12-+ Goaban,
BS = b1+ asa+ @20bso+ @101+ Gpabia-+ dosboa+ Giabis -+ daibso,
O3 = boa-+ Dagh1a+ basban + boabso,
At = s+ G212+ Gadios,
Bi=bo-+013-+ dgabas+ G11Ds0+ B1abao+ Goshys,
O1="bg1+ b11bgo -+ b2obay;
an =203 A3+ @ B3+ 05075 — 8015161 — 1 — 2etng0a,
@ss = —201.43 — 4B — 20503+ 225 (61 +dy) -+ 11 (ca+dy) ’

 Baum - Tba03 BB+ 2B, A~ by (B0 d) ~2beats],
05 =201031+ @305+ 205053 — @132 (861 +2dy) — @ty (200-+ds)
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where  A3= s+ Gao@aa-t Gridiss + Bosiso+ Asolhya -+ Ga1a1/2,
B =bas+ a1+ aaoban +611b15 -+ Goabost Gaoba1 + Azbia
+ @12D03 + G20b20+ Bg1D41, + @22D0a,
N 0= 2614 +2bg0bos +26;|_-|_b;(3 +2b02baa-- 2b03b a1 + bgz,
A=+ @6@3 ~+ G11Gon + Goaz1 + Agoos + G119,
B = baa-+ @32+ a20bs1+ d11bas + @oabis + @aobso+ a1
+ @12b12+ dosbos + Waibao+ Gazbas+ Bisboa,

! Og = "623 +4b20b13.+‘ b;[_ibzg"l" b02b31+ bSObos -+ bzibiz, 2 : ":\

 Og1= g3+ Gaolas + 1102 -+ Boass -+ G013 -+ a1 aa + Gasttgr -+ BosGao,
Cga= bgs -+ tlaa+ Gaobsa+ @11 2g+ Goob1s + dsobs1 + Ga1b 92 + @12b13 + Gosbos
‘ ~+Geobso+- wsibzi + Gasb1a+ @13bos + Ba1baot Gsabiit+ A2sbos,
Ogs=Dbas+ b20b14 + bubza ~+ bosbsat bgobos+ b21b13+ bi2b22 -+ boabsio
If we denote

A= (ay, as, “3), B= (b1, ba, bs),
Ay= (a0, B11, @oz, Ao, ***, Guo, ***, “010):
By= (bzo, b:u, boz, ° bko, HARP) bo;a),
O=(os, 63, 3), D=(dy, do, dg),
ay=a;(4, 4y, By, C, D), a;=c,(4, 44, By, O, D),
by=by(B, 4y, By, C, D), |
then from (1.5), it follows that '
by= —a;(B, By, 4y, D, O), dy=c,(B, By, 44, D, C),
ay=—by(4, By, 4, D, 0). , @€.n
Proposition 1. In the iransformaiion (1.2), the coeﬁ‘icwnts @21, bay, Gsa, bsa can be
chosen arbitrarily.
Proof Compare the coefficients of the same power in two sides of (1.5), the
proposition follows immediately.
Proposition & R, R, and B; are independent of a1, by, @sa and bga.
- Proof By (1. 7) and the expressmns ci and Ry, it is easy to see that By is
independent of these four numbers.
Again by (1.7) and by the expressions ¢s and Ry, evidently, R, does not depend
on ags and bga. Now we show Rs has no relation 10 @gy (we can prove that By has no
relation t0 by similarly).

In the expression of ¢,, the coefficient of @y is

Fy=2a,(— a2+wu)+a2(b2+2w1+bﬁ)+2a3°—1—°2b3 (201+d1')

== —2wiaz+2wzba+%—wsbs—201— 1= —dia

and in the expression' of dy, the coefficient of @ is
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Fz = 2bib2+ bz( — @ bzo) +263Q§oa
= bybs — taba— 2-asby=dh.

So, in the expression of R,, the coefficient of agy is zero,
Similarly, we can show Ry is not relovant to the choice of sy, ba, @ss and bgs.
By Propositions 1 and 2, we take
a1 = by = ai3a=bga=0. 1.8)
If consider ay, ¢; as the functions of 4= (di, @, @3) and B= (b, by, b3): ay=ay
{(4,B), ei=¢,(4, B), then by (1.6), (1.7) and the expressions of a; and ¢ we obtain
by=(—1)""ay(B, 4), di=—c(B, 4). 1.9)
Using (1. 6) (1.9), we can get a;(4,B),e;(4,B),d;(4,B) one by one as follows.

. Ggo=ay +% ﬁzba,

a31=0,
! (1.10)
G19=5- @105 +—%— a3+ —;— @2b1 — ahy,
Gig3 = —117 @sas+ %%bi. _

1= — @y@a+agsba+ -%— a@i3D3,
(1 1)

ds=bsba~ agbs—2- asbs.
The following expressions are obtained by using the relations By=Fk;(e1+dy) =
‘ and Rz = ]Cz (02 +da) =0,

w1+ ],.78 wiwzbs""‘ 316 ﬁabzbs"‘ 17 dgb%,

1
ag1= wida— -%-ﬁiwzbg-f‘ -%— azbﬁ -+ %— wgbibg - —ZT w%bs-i— % wsbzba - ? G1G303,

G2a= — 2105+ a373bs -+ a3bs +i99- @attsbs — 2a5h3,
| (1.12)
3= 118 Q1T — i @1“361“%— azbi—l-%- @a3ba— :é 1 a3by+ o o7 @ a3bs,

1
s = — 4:}5 a3 — 610 a3 — é ﬂfzwsbi—-g— “3b§'_T5‘ @3ba.

€= — 20503+ —32— @3 a3ba-t+ 8wiaibat —— 87 @1 Gatigbs — %— 105105 — 2010503

9
+,2w§’bg _ aﬁblb3‘~ w%bﬁ - 175 wzwgbzbs ds 3 + 4 Gsbg,
, 86 o . (1.13)
dz = 2@%@% — 'g' azbng - 3
— 24303 + a1 a5b%+ @2bE 75 = Ga@gbabst— -5 w263

36 27
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@1 =20} wz—?% aiaabs— 15 L alasbs— g “1“363’4‘“1“26%'!"%‘ @102D1bs
+%d1@36263 % agbzbg 45 a2a3b :3-2 (bz'bg 15 a3b1b3+ 15 agb%bs,
aga—o
oy = %a?wzar%—a"iaabﬁz @103 - FZ @103b1 — ZZ 01 @by — é masdi (1.14)
277 - 2 gbz 27125- a3asbs — ;:Z’ Go@sb1b3+ g azd;'z’ig 18 bzbs,
w14=—113 alal— ;Zg 1@ 4w3+ gi’ @1 @205D1 9:,[0 wiwabz
+ 130 ‘@iasb?+ 214 aé—}—i bi—l- 116 wgwgbz—l— azb3
?g a2w363+i dzbl 152 (Zabibg g Q§b2o
A2 ——2wiwab§+—2— by — _1_ a3babat A%,
A¥= ‘—éaga2+—1—a2a25 = 3 a0 bz+ 1@a03h
b 2 12" 2 1 ’ 1 2 102 27 11W2a3vs
§=——161—w§a2 w1b1+ 30 wlwzbz 2503 a1a3bs gi a1a2b3
~+--il-§ auaabiby L diazbé—%—aiasbgbg T 0Byt albabs
+ ';‘f;;’ axaab — ES L aty-25 f?f’g asbab} — S0 asbibs,
04—-l w1bz+ % alazbs g albib3+ 3 G]2.1)2 ggé widzbzbg
—%a1w3b§+2cvib§+w§b§——g—_ @abib2— :%9 @2b3bs
igg asbabitL & bibY+ 2 B,
_ 3—%- alwza3+3@102+%‘ a1a2b1 — 5 a1w2a3b2 ]2' w1w2b1""117' ﬁzbs
1??69 a2w363 178 a2a361b3 jég a2a3b2+ 9 bzba
= A3(4, B),
=Bi(4, B)=Bi(B, 4),
0§=A§ (B, .A.) = —'%" ﬁ?dﬂ’f‘% @%dzbz'f‘—g— %wgbg
2 aababs -+ Baaabl — — Buagbaba -+ albsbs
g 81020103+ 9010202 — 74~ 01830208 T =5 .
+ ](;)9 @a@gb3 — Z wabé’——————:ﬁjg asbébs.
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11 208 20

Bao= —-% aagba+ = ' @ a5b3 — S =2 gi08bs - 5 a1a26163 _
~ % Grasbibs— - antsbl -+ 200 afbaby + 12%72(;7 afacb3
272 1 070 4y %
~ 188 a2ab1b3 + =- 5 a3b1b3+—3— ashs+a, |
Emé é alaz—i- 193 @aabs+ 197 a;a9b% — :2%3 aasbabs
i adh — - Guantibot 1 aft+o afbdt
175 asb2b2— 3 asbi— ﬁ’gé asbibs -+ 115 AR (1.15)
gz = — —%— @i @aast -12?—)--@%@2“3172 - —431 @10203D5 — —?—’91— a10302bs
+-% w2w3b§+—%-1%9— ab3bs+e*,
bas= —ags (B, A) =5 aiazbg 123 wiaébiba;l-%— 1020303
— L ababs 11%9 dast+ 5L auaibisi £

Here axa®, agh*, aie®, a»f* are symmetric with respect to 4 and B, so by (1.9) and
the expressions of c¢s, ds and R, Ry is independenﬁ of a*, b*, ¢" and f*.

Ogy= 1

3 wﬂhwa"‘ ';2 01“266362"‘ 45 ﬁﬂaba 76 widzasbz
~— Q13 bzbs _5'1-8 b3 ; a361()3+%— (Zgbfbg

o+ 1??(;7 qzwsb 11257 a3b5bs+ O,

Oge= — gg w1 a3ba+ 27229 a1w3b§+ 4‘:3)0 aiwgbs —26§.w1w§bibs
36 wﬂsbg 7 wgbzbé\ 2%9;3501 a3asb3+- Zég wzaabibs
554: d3bzb2 g; a3b2+0'32,

Cog=— 152 aizs+ ,?g aSasbat+ Ig a2@ab3— ;gg alashabs -
121 .5 48 2 29 2.4 2.
72 Gj_azb 18 wiwgb b3 18 ,sz:—; 18 bib
?3 303 ~-5. 14— 13; a359b3+ 415 BB O,

where 4,031, @032, @305 are symme’uric with respect to A and B
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U= —%— wlwzws—;- ?g @1203ba+ 425 @ a3bs — ?_‘9_,%11 aiazasb3
igg @l a3b2bg+ 189 alwzbg'——%‘wiwzbibs'*‘"g a1w261b3
+ 1187 @1@203b3+ Tg wiwsbgbs—l a%babg—-}%%l— a3asb3+ 79309 “2“3b1b2
= 250 sy~ 32 bt - lf;f b3y + At +, o
ds—%—mzblbs 20 caaibibe—2 bty + 2511 anaibbs lg"é PR 419
- 139 wiwzwsb§+—%9— a%azwabé—%aﬁwzw;gbg 1'?;7 o 263 45 w2w361b2
+—';— wgwgbé 113088?:)1 a3bibs — 7503) 10 3b b+ g,?o aaibabg
oo afbabst 02 alasbi— Gaby—o"

45
where ¢ =2a,03:+ 72032+ 2a303s. "
By (1.11), (1.18) and (1.16), the formulae Ri, .Rz, R; are obtained as follows,
Theorem 2, R;=b:bs—a:as,
Ry=abs (2a3—b1) (@a+2b1) — asba (2bs— 1) (ba+2a1),
Ry = (@11 + @aba— Baghs) [wabs (43 — al) — asba(4af —b3)].
Proof By Definition 1 and (1.11), and taking k=1, we get By=>b1ba— ks
immediately.
By (1.18) and faking k2=3,

R;a =8 (02+ dz) = - 631((32 bz +L94-' 65363) -+ 05263 (2a§+ 305261 —_ 2b§)

+ baars (— 203 — 8bawy +2a3) :
= 1305 (2009 — b1) (@a-+2b1) — asbs (202 — @) (Bat2a1) .
Take k3=24, then Rg=24(es+ds). Denoto

r=r(4, B) = 24a3< ——%— aias +% aiwzbg 585 aabi — 5Z a305Dabs
- -g— dj_azbg ZS 051(536263“" 214: aab%+—g—i—6§— wabgb3>,

ry= (Zabg (2“% - 8@162 - 26%) y Ta=1y (B, A) == wzba (26% - Sdzbi—' 26&%) N

Then Ry=0 means ry=rs. By aias=>01b, and the expression of (4, B), we have

r(4, B) = 24@3[ —-%— aiwz —'—é— a%wzbﬁ—l—-é%- azb‘é—l-% w%aabzbs 25 1 “sbzbs]
+ 24(—49— a1Gs— ;4 w363> 1y
= ~ agbs (4a2 — b9) (asb-+ aaba—Basdy) + ( Blasaa— 255 agba)rs,

From (1.16), it follows that
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33—24: <03+d3> = (A. B) r (B A)
= (Glbi"l‘ szz - 5“363) [ﬁzbg (4:62 ) agb;a (4.'661 b2) ]
Thus we have finished the proof of Theorem 2.

§2 Saddle Values and Integrablhty Condltlons

In this sec’olon we apply the method and results of Dulac“’ to prove that By=
Ry=Ry=0 is the necessary and sufficient condition of integrability of system (1.1),
where the variables and coefficients may be real or complex. Because Ry, B, R;are
- formulated with the coefficients of the same equation, the integrability conditions we
give here can be applied more conveniently. | :

Theorem The sysiem (1.1) (real or complex) has an andalytic integral if and
only 4f Ri=Ry=R3=0.

Proof First we prove the sufficiency. ;

‘We look for the integral of Dulac form of systein (1.1) »

,¢=W+¢3+¢4+." (2.1)
where ¢} s are homogeneous polynomials of degree j of , ¥.

Let Py=au0®+aswy-+asy®, Qo= b19°+baawy-+bsa®. Then.

dé _od +3¢
dt ow 8y
‘= 3963 8¢4 3(],')3 8q54 voe - '
(y+_ s )(w+P2)+<m+ e+ ..)( y+Qs).
By
Ods ,_ 3q53 _ .
weo have
b= ———b 2% — (@3 bs) %+ (a3 ) w9+ - g™ (2.9)

3
- 'We select ¢, such thatb

3¢3 P+3¢’3Q+ 38¢4 y88¢4
Y

thon i?’-s—= — (b1bs— a1a9) ®*y>+h.0.1.
Thus we have got the ﬁrst integrability condition of Dulacs
By =0b1bs~ a102=0.

According 1o [4], the coefficients @ and by are divided into followmg thres
different cases.

1. wibﬁéO.
Let us introduce the transformation
w=hx, v="ry. S 2.9
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Then U =u-+ ashud -+ aokuv + ash™ kv,
W= — -+ bikv?+ bohuw - bshh . - (2.5)
Tt is easy to see that if we take A=ar?, k=07", then wh=>bik=1, ak=bsh. So,

we may as well assume that ai=bi=1, ay=>bs. Now Ra=as(a2+2) Cas—1) (b3—as).

Thus, R,=0 exactly is the second condition of integrability (simply denoted by CI)
of Dulac under the fitst case (r.e., the first OI of eq. (A) of [4]).

Moreover, if @g=1bs, Or @a=0, 0T @s= —2, then the system (1.1) is integrable(cf.

[4] (A1)—(4s)). It is easy to see that we always have Rz=0 in these cases. If as=1/2,

then RBg= 47—5— (bs— a3) (1 —4aghs). When as+bs, Ry=0 is equivalent 10 agbs=1/4. By

[4] (cf. “uhe oq. (4,)), thisis the lagt condltlon of 1ntegrab111ty under the first case.
2, bi-—O ai-#O
Now R, =0 means a2~—0
i) If as=0, then system (1.1) can be rewritten info linear equation of Y-
Evidently, we have Ry=R;=0.
ii) If @30, then by (2.4), (2. 5), we may assume a@; =as=1.

Because Ra= _b2<262—"1) (bs+2), we see that Ry=0 exactly is the second oL

under the second cage (cf. [4], eq. (B)).

When by= —2 or. bz—-O the system (1.1) is integrable (cf. [4] (Bs),(Bs)) and By=

0. When be=1/2, R3—75 b3/8. By [4] (y), R3=0 is the last O under the second cage,
The case by+0, d1= b2=0 may be di_schssed similarly. |
8. a1=05b,=0 |
Now Rz-—z(azbs—agb ) and Rg= (Bagbs— a2ba) Ry/2. By the OI of [4] equatlon
(¢), Rs=0 is the second and last OI under the third case.
Thus, the system (1.1) is integrable when Ri= R;=R;=0.
Now we prove the necessity.

Lot ¢(w, y) =c be the general intogral of (1.1). By the analyticity of qSﬁ ‘

¢ (2, 4) may be written as
¢ =aw~+by+da®+exy+ fy?+PstPotoe.

From dd)—ad) (@ _I_P2>+3q5( y-+Qs) =0,

we got = b =0,d=f= 0 ’I‘hen by(2 2), we have ¢#0,and may assume e=1, A% last,
by the proof of sufficiency, we obtain Ri= Ry=R;=0.
The proof of the theorem is competed.

§ 3. The Formﬁlae of Real Saddle Values and the
Formulae of Cemyplex Focal Values

In the last section, we point out that the formulae ¢Ry, 4Rs, 0.Rs, exactly are the
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formulae of focal values of complex system

_ a:7=q3w+w1m2+w2a:y+wsy9, 3.1)
._ Y= — 6+ bsy*+ baxy+ bga?, '
where %= ~1, | o

First we give a definition of complex focal values.

Under the complex coordinate, (3.1) may be written as z=éz-+F (¢, z). Then by
the polynomial transformation

. p=ut+ > auiv’, v=u,
it becomes e
th= Gt 00+ 0PV + -+ o 0P+ b 0, b (3.2)

Definition. The singular point O is @ weak focus of order k and Re (ew) ds the
k—th focal values, if Re(6y) =+-+=Re(cy-1) =0, Re(cy) #0.

Then, by the similarity of the real system (1.1), (1.8) to the complex system
(3'.1) and it's Poincaré normal form (3.2) respectively, and by the Poincaré
method we applied in the first section to compute Ry, Ba, RBj;, we conclude that the
formulae Ry, Ra, Rjsof weak saddle O of the real system (1.1) and the formulae
Re(cs), Re(cs), Re(es) of weak focus O of the complex system (8.1) have the same
form. Moreover, we can conclude that Re(c;) =4k;R;, where k}s are proper positive
congtants, becaiise the linear part of (8.1) ((3.2)) is different from that of (1.1)
((1.8)) only by a pure imaginary factor 4.

Now we give a very simple proof of the corner stone of Bautin’s famous result,
a8 a check of the preceding conclusion and an application of the former two sections.

Write the real QDE with weak focus into Bautin’s form:

:.-- — g —Ag22+ (2ha+As) 2y + Aets?, (3' )
o=+ Aa@?+ (2hg+Ae) oy — Aoty )
Then by transformation '
v ' w=x-+5y, v=u-—73y, v=">f, (3.4
such that (3.8) becomes complex system with the same form of (1.1):

%u%_ =+ g+ aguv+ ag?,

o _ v+ o102+ bauv + bas?,
dr

where 1= — (\s+M3) /4, aa= (As— ) 5/2, az= (dha+As+ NG) /4,
bi=(As—M3) /4, ba=as, bg= (—4ha—As+N4%) /4,
M =Ag+he—Aes N =8hg+Aatg.
- Now, by the formulae of Ry, Rz, Rs, we can give the formulae of focal values of

(3.5

{8.8) very conveniently.

Let 75 = 4w Ry, 55=% i Ra, g =—o- wiRs. Then
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;3= ’lu’fb' (biba — w1w2> =’1';Wa2 (bi’— (11) == — 011?\.5 (Ks - ?\.3) /4. v (36)
‘Evidently, s is the first focal value of the weak focus O of (8.8), and when B,
m=O, Rng#O, we have '7}(7\.3—?\.6)/2=a2=b2=#0, 7\;5=0, hence, ai=by= —MZ.'/4:9 o

Vo= wiabs (23— bs) (s~ 2bs) — agha (2ba—a) (ba+20)]
=3 wias (24— a) (ay+ 2as) (b= o)
- DI KRS RIS T NES (ra=1)i— 23]+ (=22,
= s (s Do) (ha-t Bho—Bhe) e
B vl (asbs+asbs — Bashs) [ashs (46— ) —agbs (40— t)]

25 T wias (@i-+-a3 — Baghs) (4a} —a3) (bs—as)

m-—w(?\.s ks) M2~4(x3—x6)2—5(4x2+N@)(—4x2-+N@)]

ER I oua—xw- (~20s)

325’28 Aa(ha = o) [ (M-+A3HA3-+2Aghs — 2hgho— o)

+ (473472 — 8Aghe) —80A2~5(9A3+A2_+AG+ 6Asha+ Bhahe+2Nahe) T
o (—Af— 20gha+2Mahe)

125>< 35 Azha (s —Ng) [ —LOAZ — A2 — TAghs — 10AgA — Shehg — 20A3]

o (—Ae— 23+ 2Mg) .
"When Ry=R,=0, R;+0,by(8.6),(8.7), we have Ay+bhg—bhg=0. It follows that
b= — -‘g—g— hahe (g — he) 2 (ghe — 2A2—A2) . (3.8)

Evidently, (8.6) — (8.8) exactly are the formulae of focal values (9.40)
formulated in [1].

By section 2, when pg=75=1,=0, system (8.8)is integrable. Then by the Taylor
expansion of the displacement function, we get the lemma 9.2 of [1]. From this, we
can obtain Bautin’s famous result ([1] Th 9.8) with no much difficulty.

Remark. At last, we point out that the formulae of focal values Wy, W, W5 of
the real system

B= — g+ a0+ aswy -+ azy?,

. 3.9
y =+ byy®+ bary -+ b (3.9)
are different from that of saddle values R}, Rj, Rj of the real system
&=y +a:0*+ awy-+ asy’,
YT Ty Y (3.10)

g =o+ by + bawy+ ber?
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-although the form of (3 9) is similar o that of (3 10), and (8. 9) can be transformed
dnto (8.1) through complex transformation (8.4), (8.10) can be tmnsformed into
(1.1) through Joyal transformation : _
u=o+jy, v=05— jy,y = o (8.11)
which have a form similar to (8.4). This can be shown by changing Ry into R}
through (3.11). Also, we cannot transform R; to W, or reverse “through real
- transformation. (3 11). This paper confirm that we can deduce R,; and W, from one
0 one only through complex transformation (8.4) or it's roverse. But it 2lso needs a
great deal of computation no less than that we do in section 1 to deduce B, from W,.
This is because: (i) through (3.4), the coefficients a;, b, in (8.9) will be the sum of
six or four terms; (ii) the complexity of the formulae of W;, particularly, W, (W3)
is of degrep 6 (degree 8); (iii) it is very difficult to cancel a positive definite quadric
form factor such that By (Bj) is of degi‘ee 4 (degree 6) and have a simple form.
The relationship between W; and R; shows a deep dua;lity‘between focus and saddle,
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