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Л MODIFICATION OF POWELL-ZANGWILL’ S  
METHOD AND ITS RATE OF CONVERGENCE.

H e  L im in

Abstract

In this paper, a modified version o f Powell-Zangwill’s method for function minimization, 
without calculating derivatives is proposed. The new method possesses following properties.* * *: 
quadratic termination, global convergence for strictly convex function and Q-linear 
convergence rate for uniformly convex function. Furthermore, the main part of this paper 
is to show that the rate of convergence of the new method is quadratic for every w(2re+l) 
line searches if  the objective function is a uniformly convex and suitably smooth, function 
on Bn.

§ 1. Intro iuct'on

There is a class of direct methods i s ng one-dimensional line serach for solving1 

nonlinear unconstrained optimization problems, and its typical model is the basic 
Powell's method (the first method in [1]), others are its modifications somehowa_5:h 
In[2]W . I. Zangwill proposed a modified version of the basic Powell's method,, which 
is called Powell-Zangwill's method, and proved that it possesses the properties of 
quadratic termination and global convergence for strictly convex function with 
bounded level set. In  [б] P. L. Toint and F. M. Oallier proposed an algorithm models 
a generalization of the basic Powell's method and Powell-Zangwill's method and 
showed that it has Q-linear rate of convergence for uniformly convex function 
provided that the search ■ directions are uniformly nonsingular. They also showed 
that under some hypotheses for the points generated by the algorithm model, it has 
«-iteration Q~superlinear rate of convergence1-6'7-1. However, they could not verify 
the tenableness of these hypotheses for the basic Powell's method or Powell- 
Zangwill's method.

The purpose of this paper is to propose a modified version of Powell-Zangwill's 
method and to estimate its rate of convergence. In  section 2, we will describe th©
new method----- PZM method and give some simple properties of this method, such as
quadratic termination and global cohvergence, etc. Then, in  sections 8, 4, we will 
make great effort to estimate the convergence rate of PZM method for uniformly:
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■convex function whose Hessian matrix has Lipschitz condition at minimum point. 
Using the thought of comparing the uniformly convex function with its quadratic 
approximation118-1, we will estimate the difference of two points found by several line 
searches with respect to the two functions. By these estimations and quadratic 
termination property of the method, we will show that the rate of convergence of 
PZM method is Q-linear and те-iteration quadratic.

§ 2. PZM Method

Let us consider the following minimization problem

m in / (ж).
®e Д'-

The procedure of PZM method is as follows:
Step 1. Given an initial point a;0, n fixed search directions e*,»-*, en, which 

are linearly independent, and n nonzero initial variable search directions p\3 •••, 
pi, setA =  l.

Step 2. 
Step 3. 
Step 4. 
Step 5.

Set to=c^' 
For i —1, 
For i  = l ,  
Set

-1, choose t f e  8  ( / ,  tl, pt) .
•••, n, choose if+16  8 ( / ,  6i).
•••, n, choose tt+i+x ^ 8 ( f ,  i*+t, pX)>

Pi+1=pUi, *•*, (2 .1)
Л.Й + 1 _ jfc _ -fkРп —1>2п+1П} (2 .2)

cd° = Щп+1> (2.3)

and go to Step 2. .
The notation S  ( / ,  cc, d) above is defined by

$ ( / ,  ca, d) = {(e+ a'd\f(x+ a'd) — m in /(a ;+ ad), a '£ I 2}.
aeli

(2.4)

The sequence of {a?}, {$} (&=0, •••, 2 « + l)  and {p\,°°°, pi} are said to be the sequence 
■of iterative points, auxiliary points, and variable search directions, respectively. The 
process from one iterative point to the next is called one iteration.

The PZM method adds line searches along n linearly independent fixed search 
directions, and dose not like Powell-Zangwill; s method which adds line searches 
■only along one or several alternate coordinate directions. In  a way similar to the 
proof in [2], we can prove that PZM method has the properties of quadratic 
termination and global convergence for strictly convex function with bounded level

For later discussion, following lemmas about PZM method are given. 
Lemma 1. ( i  ) Suppose that 1 and Then



No. 4 Ее, L. M. MODIFICATION OF POWELL-ZANGWILL’S METHOD 48 f

Pi (2.5)
i f  k + i< n  + l ,  

t e + r”- 1— otherwise.
(ii) Suppose that the objective function f  is a continuously defferentiable and 

strictly convex function. I f  — O, then xli<,+k~n~1 is the minimum point of f .
Proof ( i )  By (2.1) and (2 .2) ,  (2.5) can be derived immediately.
(ii) From Lemma . 1. (i), we know that &o+io>» + l  and tftn+i-”"1 =  t f +i‘~n~h 

Since PZM method is a descent method and /  is a strictly convex function, it can 
jbe shown that ф+*°-п- 1 = х1с°+к~п~1 for K K 2 t i f l ,  Taking notice of the linear 
independence of the fixed search directions,, we are sure that se,Co'He~n"'1 is the 
minimum point of / .

Lemma 2. Let Q be a nonsingular nX n  matrix and f  a strictly convex function„ 
I f  we make two parallel applications o f PZM method, the first to the function f  with 
initial point ж0, fixed search directions ex, •••:, e„and попшо initial variable search 
directions p\, •••, pi, the second to the function J , which satisfies f  (ж) — f (Qx) ,  with 
initial point Q-1*0, fixed search directions Оггвх, Q_1c„ and nonzero initial variable 
search directions •••, Q~xpl, then the following equations are satisfied for all
positive integer k:

- Q - V '1, (2.6}
pi=Q _1p t i —1, (2.7}

where the bars distinguish the second application of PZM method.
Proof I t  is easy to verify these equations by induction. The detail is omitted*

§3. Some Estimations

Definition 1. Let Q be an n X n  positive definit matrix and dx, •••, d„ be nonzero 
vectors of B n. We define

M<h, dn) = (det Q)*|det(d*, dn) | / Ц  (<*Ж>* (3.1)

to be the conjugacy of dx —, d„ with respect to Q.
Definition 2. Let f  be a function on R ” and x, dx, •••, di£ R n, where l is an 

integer. 8 ( f ,  x, dx, •••, di) is defined to be a set o f points found by l successive one­
dimensional line searches along the directions dx, •••, diwith the stating point x with 
respect to the function f .  For convenience, we usually do not distinguish the set 8  ( f ,  xs 
dx, •••, di) from  its point i f  8 ( f ,  x, dx, •••, di) has only one point.

.Lemma 3. Let f  be a quadratic function on R n with positive definite Hessian 
m atrix A  and dx, d„ be n nonzero vectors o f R n. I f  Zz=8{f ,  z1} dx, •••, dn), then

f ^ ) - f ( ^ ) < i I - A % ( d x , - , d n) 2 L f ^ ) - - f ^ ) l ) (3.2)

where x* is the minimum point o f f :m°
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In  this paper, the vector norm and m atrix norm are always Euclidean norm 
and l2 m atrix norm respectively.

A ssum ption  1. f  is a twice continuously differentiable function on R n and there 
exist positive numbers m, M such that fo r x, у  £-й",

шутУ < У ^2К ^ У < М у ту, (3.3)
A ssum ption  2. f  is a twice continuously differentiable function on R n and there 

exists a Lipschitz number L  such that for x £  R n,
|7 * / (* ) -V */(»*) (3.4)

where x* is the minimum point of / .
L em m a 4. Suppose that f  satisfies Assumption 1. I f  / ( 2)  < / ( 2/), then

. (3.6)
where x* is the minimum point of f .

■ Proof By the second order Talor expansion formula, we have

f ( x ) - f ( x * ) = ^ ( x - x T \ y af (a*+t ( x- x*) )d t (x - x*)  (3.6)

for all x £ B?. In  virtue of (3.6), (3.3) an d / (z)< / (y) , (3.5) can be obtained.
L em m a 6. Suppose that f  satisfies Assumption 1 . I f  d is a nonzero rector of R n 

.and z2= S ( f ,  Zi, d), then
z2= z i - i 4 * f ( z f ) d / d* vy ( z3)d)d,  (3.7)

•where z3 lies between z± and z2, and f ( z 3) < / ( « f)
Proof Let h be real number such that z2=z±+kd. By mean value theorem,

VTf ( z 2) d - V Tf ( z d d = d Tv y ( z 3)t;z2- z 1) = M vV!if ( z 3)d, (3.8)
where z3 lies between z± and z2, Noting that /  is a convex function and /  (zf) >  /  (21) , 
we know/ (з3) < / (zfi) . By (3.8) and '4Tf ( z f ) d = 6, (3.7) can be derived.

Lem m a 6. Suppose that f  satisfies Assumptions 1, 2 and its Hessian matrix at 
minimum point x* is the identity matrix I . Let J  be the quadratic approximation of f  
at x*, i.e .

K x) = y  I N - ^ T + /(« * )’ (3.9)

I f  d, d are unit vectors and z2 = S  ( / ,  Zi, d ), z2= S (J ,  zi, d) , then

ll̂ a —22| |< 2 ||2:1- z i | + 2 | 2i —£C*||||d—d|+C i||2i - a ;a| 3, (3 .10)

' •where constant Ci depends only on m, M, L.
Proof Let X, % be real numbers such that z2=Zi+hd, z2=zt+%d.  By Lemma 5, 

\we have
: % ^ - ^ f ( z i)d/dT4f f{z3)d, (3 .11)

Х = - ( г 1- г * ) 2’5, (3.12)

\where <s3 sa tis fies/(« 3) < / ( 2i). By triangle inequality and Schwarz inequality, we 
ihave
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flea—«all <  ||2 i-3i|| +  ЦЫ—Xd|

+  N +  + 1| -  (zx-x*YM -\- (г1- ^ ) е д | |

+1 -  (z±-n*ydd+  { ъ - а Ч Щ  + 1 -  ( z t - x Y d d +  & - Х У Щ  

^ 2 | й1—2i|| +2||z±—®*|| \\d—d|| +  | A+ (zi—ccf^d]. (3.13)

Taking notice of (3.11)and V/(ж*) =0, and using mean value theorem, we also have

+  (oPV’/ f s . j c i - l )

■ w j w J ( - f e - * r w w - f l i ' -

. + («i-® *)a,daa,(V*/(«8).-J)d}, (3.14)

where g4 lies between «i and ж*. By Assumptions 1, 2 and Lemma 4

|х + ( й1- ж * ) % |< 1 ^ | |21-ж*||[||й4-ж*[|^1йз-ж1|]Wl

< _ ^ . ч/Ж М |г 1-ж*||2. (3.15)

'Combining (3.18) and (3 .15 ),and setting с%=2Ъ\/ M  fm  /m, we obtain (3.10). 
Lemma 7. Suppose that f  and J  satisfy the conditions of Lemma 6, and suppose

ikat

(Д ) /G*tX</(«o), ъФх*, 2i ¥=&*;' ;
( i i )  g2= $ ( / ,  gi, at, e„), z2= S ( f ,  z1} e±, •••, O ;  • -
(in) f { z4) < f ( z s) < f ( z 2), f ( z i ) < f ( z s) < f ( z 2)i
(iv) d=zs—Zt, d^Za — Zi)
( v )  z5= S ( f ,  g4, d), Zg — S(Jf, 24, d);

•where e±, •••, are linearly independent. Then, we have ■
( i ) d ,d  are nonzero vectors, and

|й /1 й ||-й /||й |||< с2(||21-2х« + ||2з-28||)/121-ж*|. (3.16)

( i i)  l«fc—гБК<2Цв4—* 4 |+ 2 0 s( |fc -» i| + |«8-*s|)+ee|*o-® *L (3.17)
where constant c2 depends only on the conjugacy o f e±, ••», e„ with respect to I ,  and c3 = 
(M/m)cx .

Proof ( i )  By hypotheses (i), (ii) and (iii), we know

/(* & )< /(* * )< /(* l) , (3.18)

J  G  3) <  J  (z 2) <  J  (z i ) , (3.19)

hence d, d are nonzero. By triangle inequality, we have

1<г/И —2 / |3 f  l < | i / j i l - 4 / | | J i !  +  |< г / |2 | - 3 / |2 | |
< а |й —5 | / 1 3 |< 2 ( |^ —»i| +  |«i—» i | ) / |2 | .

Oh the other hand, by Lemma 8
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2 |Z ,-» * |4 ;2 |; ;J1- » T - . f & )  - / с о
■ < [ i - 4 ( « n ,  «.)] t? 6 D  - /(* * )]

- 2 [ l - 4 ( « * ,  - , < * . ) ] ( 3 . 2 1 )  
Hence, if set Cz — 1— [1—Aj(e1} • ••, en) ] 1/2, we have

||5 ||> ||z i—a:*||-l23-®*||>(?2||2i-a;*|. (3.22)
Combining (3.20) and (3.22), and setting Са=2/о'2, we get (3.16).

(ii) Taking notice of J (z4) ■</(zi) and /  (z4) <  /  (z0) , we haye
(3.23)

\^-х* \\< *У М /т \^0-х*\\с (3.24)
By Lemma 6 and (3.16), we can get (3.17) immediately.

Lemma 8. Suppose that f  and J  satisfy the conditions o f Lemma 6. Let l be a  
positive integer and d1} • ••, di be nonzero vectors. I f

( O  f ( z d < f ( e o ) ,
( i i )  zs= S ( f ,  zt, <k, dj), za=/S(7, zu (k, dO,

then
II йа Za I] <*21 (I Zi—Zi! + c8 J z0—x* |[2) . (3.25)

Proof Let yi=Zi, 2/ i= 2i, yt+i = 8 ( f ,  yt, dt) and y{+i - S t f ,  y if <h) for K K l  
By Lemma 6 and taking notice of f(y{) < / ( z 0) , we have

l2/<+i-i;i+ i l< 2 l^ - ^ i|+ c 1||^i-a :* |2<2||«/i-^ |+C 3||Z o-«*la
< 2 {||2/1—̂ i|| 4- (24 1+ 2 i 2+ ’"e+ 1 )C31|Zoж*||2, (3.26)

therefore, (3.25) holds.

§4. Convergence Rate

Theorem 1. Suppose t h a t f  satisfies Assumptions 1, 2 and A  is its Hessian 
matrix at minimum point x*. I f  the sequence o f .iterative points {со11} generated by 
PZM  method for function f  is not finite terminate, then the sequence {x1*} converges № 
sc* with Q-linear convergence rate, and

h *)]* (4.1)(жй—x*) T A  (®fc—ж*)
/io^s, where e±, •••, are the fixed search directions o f the method. • .

Proof If we let Q be the square root of AL-1, then J  is the Hessian matrix a t 
minimum point of function f ,  which satisfies f  (ж) =  f  (Qcc) . So by Lemma 2 we can 
assume that A = I  without loss of generality. Let J  be the quadratic approximation 
of /  at point x*, and let

хшг=*В(У, Xй, pl+1, 6i, •••, e„, Pi+1, •••, jp£+1). . (4.2)
UsingXemma 8 witli.z0=.a;fc, we have

||жй+1—жй+1||< 2 2п+:1Сз||жй —ж*]|2. (4.3)
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On the other hand, using Lemma 8 and taking notice of the descent property of 
one-dimensional line search, we have

«,)] [ /(У )  - J V ) ]

(4.4)

In  virtue of (4.3), (4 .4), we obtain
||â +1— ®*|| +  ||a/fc+1—Sft+1||

< [ 1 ' - 4 ( ^ ' - / ^ ) ] ^ 1 к й- ^ | |+ 2 2п+1С з !^ -^ 1 а. ■ (4.6)
Since function satisfying Assumption 1 is a strictly convex function with bounded 
level set, the sequence {a/5} converges to x*. Hence, by (4.5), we get (4.1).

T heorem  2. Suppose that f  satisfies Assumptions 1, 2 and A  is its Hessian 
m atrix at m inim um  point- a?*. I f  the sequence o f iterative points {xk} generated by 
PZM  method fo r  function f  is not finite terminate, then the sequence {a?fe} is n-iterations 
■quadratic convergent to x*, that is

.. ' (4.6)
where constant c4 depends only on m, M , L, n and Aa (ei} •••, en), e1} ••*, en are the fixed 
search directions.

Proof In  a way similar to the proof of (4.1), we can assume that A —I .  
Moreover, because any iterative point of can be regarded as an initial point, we may 
prove (4.6) only f o r /с=0.

Let J  be the quadratic approximation of /  at a?*. With the same initial point and 
search directions as the application of PZM method to f ,  we make an application of 
PZM method to J  and denote by {ж?}, {£«} (4=0, 2я>4-1) and {p\, lpl} the
sequence of iterative points, auxiliary points and Variable search directions respecti­
vely, Since {жй} is quadratic terminate in  at most n iterations, we can assume that t\\ 
is the first auxiliary point which equals to x*, of course, 1<^о<«, l<4o<2»-|-lo 
4 ( i ) We first prove it by induction that

• Sj= max ' Jt{ — Щ <  (oB) ̂ 31|a?0>-»*||2, j  =  1,
0«i<«2n+l

^here  c5= 22n+1 (2 + 4c2) , c2, c3 are constants in  Lemma 7. 
For j = 1 , let

>», 4=1,
2 < 4 < w + l,

.pl-n-i, m+ 2 < 4 < 2 w+ 1. 
According to the process of PZM method 
: , ' « - « ( / ,  <  < 0 ,  ' '

R - 0 ( 7 ,  *», .... do.
Using Lemma 8 with 0O—a;0, we have

3o> (4.7)

(4.8)

(4.9)
(4.10)
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— =  ( 4 . П )

Therefore (4.7) holds for j  =  l„
Now assume that (4.7) holds for K j < r .  If r=jo,  the induction proof is 

complete. If  r<jo, by Lemma 1,
(4.12)

(n—r + K . i ^ n ) , (4.13)
(n—r+ l< ! i< » ) .  (4.14)

P*+1 =Pi,+>- = Р г +*•= p [ +1 ( l < a < « - r ) ,

Pir+1 =  № - ^ +i~"
n_2V+$—»Pi — *271+1 51

We estimate ft;T+l *1-4-1II by two parts.
(a) Considering the first and last r  line searches in  ( r + l ) - th  iteration, we have

tl+1~ S ( f ,  tl+\  p j« ) ,

& г- В ( 7 ,

(4.15)
(4.16)

and
t i+ i+ i^ S C J ,  tn i l ,  p l +1) ( n - r + l < i < n ) ,  (4.17)
t«+i+*===̂ (  Pi+1) («-—-r+K ® <w ). (4.18)

In order to use Lemma 7, we set 20 =  ж°, 2i=tfl', zx=t'1} 23=^«+15 24=to+V
z4 = to+1 for (4.16), (4.16), and set 20 =  ж0, Zi = ti+i' n, Zi=t{H~n, 23 =  4 h-Г", ^s^4 t+ ins 
Z4=tl+i, 'ii — ii+i for (4.17), (4.18). Since {a?71’} is not finite terminate and o'<j0, we 
know that 2.t #  ж* and Si ¥= ж*. By the structure of the method and (4.13) (4.14), we can 
easily verify that the conditions of Lemma 7 are satisfied. Hence, by (3.17) of 
Lemma 7 and (4.7) for we have

-£o+1| + 2 с 2(р1 —  111 +  2̂*1+11) +  Сз J £C° —  12

<  2 1| Й +1—?o+* || +  [4 c2 (c6) r + 1 ]  c3 A.a?0—oc* ||2,

r i l< 2 ||i ,
(4.19)

and

ll n̂+t+i- ^»+i+iI<2j^{— 1 +2c2(||ti+<_"—?i+i_"f
+  | | Й | Г - ^ Г | | )  + с 3\ \ х « - а;*12

< 2 |е й -3 й з ц  +  ^ ( ^ ^ - - ч - ц с з ! ^ - ^ ! 2
(га—r + l ^ i ^ w ) .

(b) Considering th© other line searches of (r-f-l)-th  iteration, if set

^ ^  f e ,  К К и ,

\p ltl, № +l<i<2№ —r,
we have

(4.20)

(4.21)

ft+1, dt) (1<6<2га—r), (4.22)
f iX \ = s ( ^ , i i +L} di) (K&<2ra—o'). (4.23)

Using Lemma 8 with 20—a>°, we get ■
tl+1 f +  2c31 ®0—®*’||3 (4.24)

for 1<&<2га—r.
Combining (4.19), (4.20), (4.24) we have
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Sit+i—?«+i||<2|ij+1 —?4+1|| +  (4ca+ l )  (c5)rc3||a;0—ж*||2
<2*+1Ii5+1-?5+1| +  (2*H-----Ы) (4ca+1)G5O3 1x° — ®*!2
"ч2е+1 [ 1 io+1—?o+1 II +  (4 c2+■1) C5C3 1 x ° —00* 12] . (4.25)

Noting to+1 = tln+h — istn+i and inequality (4.7) for j = r, wa can prove that (4.7) 
holds for r + 1 .

So far the induction proof is complete.
( ii ) Since jo ^n , we have

/  ( O  = /  (*2»+i) < / Ю  > (4  • 26>
By Lemma 4

1«" -  «• 1 <  V S M  || til -  ®* 1. (4.27)
Taking notice of that t(i = x* and inequality (4.7), we have

\xn—х*\\< \/Ж /т  \\ф0—£|“|< ч / Ж / т  (сбУ'СзЦа0—я*||2. (4.28)
Hence, if set С4 =  Ж /т (с 5)" c3, we get (4.6).

Remark. Suppose th a t/ satisfys the inequalities (3.1) and (3.4) for all points 
in an open neighbourhood of point x*, where я* is not assumed to he the minimum 
point o f / .  If the sequences of auxiliary points {%} (ъ—0, 1, •••, 2w+1) generated by 
PZM method for function /  are convergent to x* and not finite terminate, then ®* is 
a local minimum point of /  and inequalities (4.1) of Theorem 1 and (4.6) of 
Theorem 2 also hold.

I  would like to thank Professor. W. Yu for his guidance from the bottom of my 
heart.

References

[ 1 ]  Powell, M. J . D., An efficient method for finding the minimum of a function of several variables 
without calculating derivatives, Comp. J ., 7 (1964) , 155—162.

[ 2 ]  Zangwill, W. I ., Minimizating a function without calculating derivatives, Comp. J., 10 (1967), 
293—296.

[ 3 ] Brent, P . R., Algorithm for minimization without derivatives, Prentice-Hall, Englewood Cliffs, N. 
J ., (1973).

[ 4 ]  Sargent, R. W. H., Minimization without constraints, Optimization and Design, M. Avriel, etc. 
(Eds), Prentice-Hall, Englewood Cliffs, N. J ., (1973).

[ 5 ] Toint, P . L. and Callier, F . M., On the uniform nonsingularity of matrices of search directions and 
the rate of convergence in minimization algorithms, J. О. T. A ., 23(1977), 511—529.

[ 6 ) Toint, P . L. and Callier, F. M., On the accelerating property of an algorithm for function mini­
mization without calculating derivatives, J. О. T. A ., 23 (1977), 531—547.

[ 7 ]  Toint, P . L. and Callier, F. M., On the accelerating property of an algorithm for function 
minimization without calculating derivatives (Errata Corrige), J, О. T. A ., 26 (1978), 465—467.

[ 8 ] Cohen, A. I ., Rate of convergence of several conjugate gradient algorithms, SIAM . J. Numer. 
Anal., 9 (1972), 248—259.

£ 9 ] Deng, N. Y. and Zu, M. F ., Research on the theory of Powell’s method, Kerne Xongbao, 10 (1979), 
433—437 (in Chinese).


