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A MODIFICATION OF POWELL-ZANGWILL’S
METHOD AND ITS RATE OF CONVERGENCE

He Loumy (4] R)*

Abstract

In this paper, a modified version of Powell-Zangwill’s method for function minimization
without calculating derivatives is proposed. The new method possesses following properties:
quadratic termination, global convergence for strictly convex function and @-linear
convergence rate for uniformly convex function. Furthermore, the main part of this paper
is to show that the rate of convergence of the new imethod is quadratic for every n»(2n-+1)
line searches if the ohjective function is a uniformly convex and suitably smooth, function
on R»,

§ 1. Introjucton

There is a class of direct methods s ng one-dimensional line serach for solving

nonlinear unconstrained optimization problems, and its typical model is tho basic

Powell’s method (the first method in [1]), others are its modifications somehow™ 5,

In[2]W. I. Zangwill proposed a modified version of the basic Powell’s method, whick
is called Powell-Zangwill’s method, and proved that it possesses the properties of
quadratic termination and global convergence for strictly convex funetion with
bounded level set. In [5] P. L. Toint and F. M. Callier proposed.an algorithm medel;

- a generalization of the basic Powell’s method and Powell-Zangwill’s method and

showed that it has @-linear rate of convergence for uniformly convex functiom
provided that the search -directions are uniformly nonsingular. They also showed
that under some hypotheses for the points generated by the algorithm model, it has

w-iteration Q-superlinear rate of convergence™™, However, they could not verify

the tenableness of these hypotheses for the basic Powell’s method or Powell-
Zangwill’s method. ' _ |
The purpose of this paper ig tO'propose a modified version of Powell-Zangwill’s
method and 1o estimate its rate of convergence. In section 2, we will deseribe thez
new method——PZM method and give some simple properties of this method, such ag
quadratic termination and global convergence, efc. Then, in sections 8, 4, we will

make great effort to estimate the convergence rate of PZM method for uniformly
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convex function whose Hessian matrix has Lipschitz condition at minimum point.
Using the thought of comparing the uniformly convex function with its quadratic
approximation™ we will estimato the difference of two points found by several line
searches with respect to the two functions. By these- es‘nimaﬁons and quadratic
termination property of the method, we will show that the rate of convergence of
PZM method is Q-linear and n—iteration quadratic.

§ 2. PZM Method

 Let us consider the following minimization problem

- min f ().

@wER?
The procedure of PZM method is as follows: _

. Step 1. Given an initial pointa®, n fixed search directions éy,--, @,, Which
are linearly independent, and m nonzero initial variable search directions p}, ««
ot, sebt k=1,

Step 2. Set t=24""2, choose €S (f, &, pL). |

Step 8. For ¢=1, -+, m, choose #,4€ S(f, #, e).

 Step 4. Forg=1, -+, m, choose 4,1 ES(F, 45, DY)

2

Step 5, Set _ _
Prtt=pha, 6=1, =, n—1, e
PZH = t2n+1 - tl: , (2 . 2)

a’= t2ﬂ+1) (2 . 3)
&=k+1 and go 1o Step 2. :
The notation S(f, #, d) above is defined by

8/, &, &) ={o+dd| f@+dd) —minf(o+ad), ' €RY.  (2.4)

The sequence of {m"}, {t} (4=0, -+, 2n+1) and {pk,---, pi} are said to be the sequence
of iterative points, auxiliary points,and variable search directions, respectively. The
process from one iterative point to the next is called one ifteration. . . :

The PZM method adds line searches along n linearly independent fixed search
directiong, and dose not like .Powell-Zangwill’s method which adds line searches
only along one or several alternate coo:._'dixiate directions. In a way similar to the
-prbof in [2], we can proVe that PZM method has the properties of quadratic
fermination and global convergence for strictly contex function with bounded level
ot o | | .

For later discussion, following lemmas about PZM method are given,

Lemma 1. (i) Suppose that k=1 and 1<é<<n. Then.. |
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e @.5)
Byt — T otherwise. g

- (ii) Suppose that the objective function f is a continuously defferentiable and
strictly convew fumction. If pfi=0, then &t i3 the minimum point of f.

Proof (i) By (2.1) and (2.2), (2.5) can be derived immediately.

(ii) From Lemma.1. (i), we know that ko-+go>n+1 and @ih "t =ghotbn-2,
Since PZM method is a descent method and f is a strictly. convex function, it can
be shown that ffoth-n-l=ghtie=r1 for 1<i<2n+1. Taking notice of the linear
éndependence of the fixed search directions,. we are sure that a¥%=r=1 jg.-the
minimum point of f. )

Lemma 2. Let Q be a nonsingular nXn matriz and f & strictly convew function.
If we make two parallel applications of PZM miethod, the first to the funciion f with
indtial point a°, fiwed search directions e, «-<, e, and nonzero imitial variable search
directions p}, -=, Db, the second to the funciion f, which satisfies f () = f(Qu), with
$nitial point Q1a®, fived search directions Q ey, +-+, @ "6, and nonzero initial variable
search directions Q 1pl, «--, Q '}, then the following equations are satisfied for all
positive integer k:

T l= Q—iwk—n,, (2 . 6)
B=Qigh, i=1, e, @.7)
where the bars distinguish the second application of PZM method. ‘ '

Proof Tt is eagy to verify these equations by induction. The detail is omitted..

§ 3. Some Estimations

Definition 1. Let Q be an n X n positive definit matriz and dy, «--, d, be nonzere

vectors of R*. We define A -
dolds, -, ) = (Aot Q) |dob(d, -, d) |/I1 (@rQd)? 3.1)
to be the conjugacy of dy -+, d, with respect to Q.

Definition 2. Let f be a function on R and z, di, +--, d;ER", wherel is an
integer. S(f, x, di, «=, dy) is defined 1o be a set of points found by I successive one—
démensional line searches along the directions dy, <--, d; with the stating point @ with
respect to the fumotion f. For convenience, we usually do not distinguish the set S f, @,
dy, o, dy) fmm its point &¢f S(f, a§, dy, =, dy) has only one poins.

Lemma 3. Let f be a quadratic funciion on RB" with positive definite Hessiam
matriz A and dy, *-, d, be n nonzero vectors of R* If 2a=8(f, #1, dy, -+, dy), then

F () —f @) <[1— £ (dy, -+, AL (&) = £ (@)1, BNCE

where & is the mindmum point of f™%
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In this paper, the vector norm and matrix norm are always Euclidean norm
and J; matrix norm respectively.
Assumption 1. f és a twice contimuously differentiable fumction on B® and thefr'e
ewist positive numbers m, M such that for », yE R",
- myfy<y"Vif (@) y<My'y. - . (3 3)
Assumptlon 2. fis & twice continuously differentiable function on R" and there
ewists @ Lipschitz number L such that for « € R",
» V3£ (2) — V2 £ (&%) | < Lo —s"], 3.4)
where ©* is the minimum point of f. :
Lemma 4. Suppose that f satisfies Assumption 1. If f(2)<f(y), then
| . le—a*| <~ M/m |y—a*], (3.5)
where &* i8 the minimum point of f. :
.Proof By the second order Talor expansion formula, we have
F@) = f @) =5 a7 [ V2 @+t (=)t (o) 3.6)
- for all wER” In virtue of (3.6), (8.8) and f(2)<f(y), (3. 5) can be-obtained.
| Lemma 5. Suppose that f satisfies Assumption 1. If d i3 @ nonzero vector of R"
amd 2a=8(f, 21, d), then ‘
. | ta=ry— (VIS (%) d/deﬂf (@)d)d, 3.7
avhere 2 lies between 2 and 2a, and f (z3) < f(z). _
Proof . Let A be real number such that za=2+Ad. By mean value theorem
vrf (z2) d—VT f(z)d= d’-"V”f (25) (2a—21) =Ad*V2F (25)d, (3.8)
where #; lies between #; and z,, Noting that f is a convex function and f(22) > f (21),
we know f(25) <f(2). By (3.8) and VZf (25)d=0, (3.7) can be derived.
. Lemma 6. Suppose that f satisfies Assumptions 1, 2 and its Hessian matris ab
ménsmum point &* is the identity matriw I. Let F be the quadratic appmmmwt'wn of f

at «*, G.e. B
F@ =g lo—a' I+ @), (3.9)
If 4, d are unit vectors and z3=15 ( f,.zi, dy, §2=-S’ (7, 74, 5), then
Nra—2al <2|z—2:1] +2] 21— [d—d] +o1]2s—2"]?, - (3.10)

‘awhere constant ¢y depends only on m, M, L.
Proof Let A, A be real numbers such that za=21-+Ad, z2=21+7&d By Lemma, 5,
YWe have ' '
: = —VT f (21)d/d*V*f(25)d, : (8.11)
X=— (z1—2")7d, - (8.12)
«where #g.9atisfles f(z5) <f(z1). By triangle inequality and Schwarz inequality, we
thave
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u'h'g—-ggﬂ < |]z1-—z1n =+ u?\.d 7\.d “ . .
< Ilzi-ziﬂ + Il?\ad'*" (Zi w*) Tdd“ -+ " — (Zi—"‘ *) Tdd"l‘ (zi—-w*)""ddll
+ ” - (Z1;W*>Tdd+ (zi CD )Tdd” -+ ” - (zi—w*)Tdd+ (zi—m*)"'dd“

<2lex—7 +2)7—a"| [d—d |+ |2+ (ea—a%)"d]. (8.18)
‘Taking notice of (3.11) and Vf@") =0, and using mean value theorem, we also have
% 1 #
A (21""50 )Td m { VTf(zi)d+VTf(w )d+ (zi-w )Td

+ @V () d—1) (1—a") 7}

=gy (G (e =D
b (— ") AP (V2 (25) — I)d}, (3.14)

where 2, lies between #; and #*, By Assumptions 1, 2 and Lemma 4

A Cea—a) | <_—1—’Lllz1fw*|i Cleamo| 4 lra—al]

\/M/m o —a"| 2 (3.15)

Oombmmg (3. 18) and. (3 15),and settmg ey=2L~M/m /m we obtain (3.10),
Lemma 7. Suppose that f and T satisfy the conditions of Lemma 6, and suppose
that . _ _ . _
() fE)SSS(ro), mEat, Tkt
(ii) 2a=8(f, 21, 64, **=, 0), 2a=8(F, 24, €1, **, €,)3
(i) flee) <f(2s) <f(22) FG) <F(zs) <F(a);
(V) d=2s—2, d =73—21
(v) %=8(f, 2, d), §5=;S’(f, 54, g);
‘where ey, +-+, &, are linearly independent. Then, we have -
(i) d, d are nonzero vectors, and : :
la/ldl—d/ 1| <ecalles—7al + |2a—Zs]) /|71 — "] - (8.18)
(i) Jas—7s] <2lea—2al +202(lex—21] + l2a—75]) +eslo—2"], - (8.17)
where constant o3 depends only on the conjugacy of ei, «+, e, with réspect to I, and cy=
(M /m)ey.
Proof (i) By hypotheses (i), (ii) and (iii), we know
S lee) <f o) < f(20), - (3.18)
FGa< 7 () <F(zw), | (8.19)
hence d, d are nonzero. By triangle inequality, we have
la/lal —d/ 1| <ld/ ] —a/1d11+ Id/1d] —d/ 1Ty
<2|d—d|/[d]<2(lm—7:| + [z —7s]) /4] (3.20)
On the other hand, by Lemma 8
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21123"” ']2<2”22-‘w ”2 Fza) - f(w)
<[1—4Li(es, -, e)1[F (z0) — —F @]

=2[1—-A%(61, oeo, @,,)] "zi—m "20 . (321)‘
Hence, if sot o =1—[1— A2(es, -+ , &)1%%, we have |
131> [51—a] — [Fs—a|>blFs =o', @

Combining (3.20) and (3.22), and setting ¢a=2/c}, we get (3. 16),
(if) Taking notice of f(z4) <f(z1) and f (24) < f (%), we have
Fi—al<li-a'], (3.28)
Jea—a*| <~/H/m |20—2"]0 (8.24)
By Lemma 6 and (8.16), we can get (8.17) immediately.
‘Lemma 8. Suppose that f and F satisfy the conditions of Lemma 6, Let | be a
- positive integer and dy, ++-, dy be nonzero vectors. I f
(1) fle)<f(0),
(ii) 22=8(f, &, dy, =, &), 2a=8(F, 21, dy, -+, ),
then
| Ilzz—zzll<2’(llzi—z1|[+os|]z'o—-w*ll”) (3.25)
Proof Letyi=z1, y1=71, Yua=8(f, 9, di) and §.,.a=8(F, ¥ y;, d) for 1<i<<l,
By Lemma 6 and taking notice of f(y;) < f(z,), we have :
lgess—Fual <2yl +os]yi—a* |2 <2|yi— y,|]+03|lzo-m i »
<¥ya—ga] + @1 +27 24 et Dosfo—a*]?, (3.26)
therefore, (3.25) holds. ' o

§ 4. Convergence Rate

Theorem 1. Suppose that f sasisfies Assumptions 1, 2 and A 4s - its Hessian
matris ot minimum point x*. If the sequence of iterative points {a"} generated by
PZM method for function f is not finite terminate, then the sequence {#"} converges to
z* 'wfz,th Q-Tinear convergence rate.and ’

,Eé[ .(m'(a;; ?:jgﬂi;)] <=4 (e, =, &)1F @.1)

holds, where e1, «-+, e, are the fived search directions of the method. :

Proof If welet @ be the square root of A4~ 1, then I is the Hessian matnx ab
minimum point of function f. which satisfies f (¢) = f (Qo). So by Lemma 2 we can
assume that A =TI without loss of generality, Let F be the quadratm approx1ma,t10n
of f at point 2%, and let

=8(F, o, i, e, oo, e B, P, “.2)
Using' Lemma 8 with zo=2", 'we have o
”wk-i‘i__ 76+1"<22n+163”wk_.-_m*"2. I , . (4'3),
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On the other hand, using Lemma 8 and faking notice of the descent proPerty of
one~—d1men51onal line search, we ha.Ve

Lipw—o = @)~ F @) <= By, -, a1 F @) ~F@1

———1'-[1——A2<ei, e, )] [P =2, @.4)

In virtue of (4.8), (4. 4), we obtain
o) <[ 1| =

<[1— 4oy, >+ e,.)] |o*—a"| +2”"“vsﬂfv" o H . 4.
Since functlon satisfying Assumptlon 1 is a strictly convex function with bounded
level set, the sequence {"} converges 1o &*, Hence, by (4.5), we get (4.1).
Theorem 2. Suppose that f satisfies Assumptions 1, 2 and A is its Hessian
matrio at minimum point &*. If the sequence of ilerative poinis {a*} generated by
PZM method for function f és not findte terminate, then the sequence {a*} 48 n—iterations
.qua;dmtoo oonoea*gent to «”, that is | ‘ .
| Hm"*"’ 1/ |0* — 2" 2<os, o (4.6)
wheq‘e constcmt ¢4 depends only on m, M, L, n and AA (ei, V é,._‘, 61, ***, 6, are the fived
sewrch dérections. L

~ Proof In a way sumllar 0 the proof of (4.1), we can assume that A=1,
Moreover because any iterative point o* can be regarded as an initial point, we may
prove (4.6) only for £=0,

v Let 7 be the quadratlc appromma‘ﬁlon of S at o*. W1th the same mmal point and
search’ directions as the apphcatlon of PZM method to f , we make an application of
PZM method to f and denote by {«}, {8} (6=0, -, 20+1) and {pi, ., ‘PF} the
sequence of iterative pomts auxﬂmry pomts and vanab]e search directions respecti—~
vely. Since {a:"} is quadramc termmai;e in at most n iterations, we can assume that #Ho
is ‘bhe first aux111ary point which equals t0 &*; of course A< fo<n, 1<bo<2n+ 1.

<\ :

. ( i) We ﬁrst prove it by indiction that -

Coy= max JH—HI< @) alo’ o j=1, 0 do, A
whers o5=22"*1(2+40,), 04, 03 are constants in Lemma 7.
For j=1, let ’ B
P?iu i=1, ]
di=le. s, 2<i<n+1, = (4.8)

A

P, nH2<i<m4l.
Accordmg to the process of PZM method o

=8(f,a% dy, s d), 4.9)
h =S(f, @, dy, o+, i) ' #.10)

Using Lemma 8 with #,=4°, we have
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8}~ <) a®—2*|2, 6=1, ees, 2n+1, : (4.11)
Therefore (4.7) holds for j=1.
Now assume that (4.7) holds for 1<j<r. If r=4jo, the mduc’olon proof is
_complete If #<jo, by Lemma 1,

P«:TH"‘PH-r—PHr'—Ps - (l<’l;<_'fb-—¢), : (4.12)
p£+1 g;i;l'_—in tr+z—-n (n—q~+1<@<rﬂ,), , (4_13)
L prtt=gpae gt (e I<i<n). (4.14)

We estimate [#**— +1|l by two parts.
(a) Oon51der1ng the first and last r line ‘searches in (fr+1) —th 1terat10n we have

tr+1 S(f, tr+1, Z’nﬂ') ' (4 15)
ta“—S(f, ta“, zon“>, - (4.16)
and ‘ -
3= S@?tmapﬁs (n—r+1<i<n), @
ERa=S(F B Y (h—r 1<), | 4.18)

In order to use Lemma 7, we set z,=2a°, zi——tl, zi—ti, B3 =thit, 23=bpnst, z4—t’+1 '

2e=14"1 for (4.15), (4 16), and set zo=2a0, 2, =", Zy =7 , Za=tamil", zs—t2,,+1 ;
2= t,,H, Za=111 for (4.17), (4.18). Since {2*} is'not ﬁmte terminate and »<Cj,, we
know that z; #4" and 23 4", By the structure of the method and (4. 13) (4.14), we can
easily verify that the conditions of Lemma 7 are satisfied. Hence by (8.17) of
Lemma 7 and (4.7) for j<r, we have

- < - ”W+%xmrﬂww&m—%uD+MW—fP

<2| 5+ — 5+ + [doa(os) +1] 0s] 2 — 2" |7, (4.19)
and , N '
intta— tn+e+.ﬂ<2ﬂt';::% B+ 2ea (1854 — 0]
+ et — 5 ]) + s 20— o] ?
<2[5F—Tt] + [ea(os) "+ L og 20— a*]2 .
(n—r+1<4<n). (4.20)
(b) Considering the other line seafches of (r-1)-th iteration, if set
e, I<é<Sm, v
= {p;t;, n+1<i<n—r, @.21)
we have
g =8(f, £, d) (1<i<2n—7), (4.22)
Da=8(FE d)  (A<i<n—r), (4.28)
Using Lemma 8 with 2,=2% we get . Y
heii =gt <efar =] 4-2e5] 0" — "] 2 4.24)

for 1<<2n-—r.
Combining (4.19), (4 20) 4. 24} we have
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lirsi—tit] <2l =+ 4 (doa+1) (05) 05 2 —2*|
<25t — T3 4 (2 oo +1) (4oa+1) 05650 — " ?
<285 — 54 + (dea-+1) ofos | 20 —a*] 2. (4.25)
Noting 5+ =45,,1, £+ =1},,4 and inequality (4.7) for j=r, Wo can prove that (4.7)
holds for j=r+1.
So far the induction proof ig complete.
(ii) Since jo<<m, we have
F @) =f @) <F ), (4.26)
By Lemma 4 A
lo"— o*| <~/ BT | — o], @.27)
Taking notice of that s =" and ineqﬁality (4.7), we have
| lon—a*| <M/ | — s | <~/ B /m (05) e} o — ", - (4.28)
Hence, if set ca=M/m(c5)" cs, wo get (4.6).

Remark., Suppose that f satisfys the inequalities (8.1) and (3.4) for all points
in an open neighbourhood of point 4", where &* is not assumed to be the minimum
point of f. If the sequences of auxiliary points {#{} (4=0, 1, -+, 2n+1) generated by
PZM method for function f are convergent to 2* and not finite terminate, then z* is
a Jocal minimum point of f and inequalities (4.1) of Theorem 1 and (4.6) of
Theorem 2 also hold. |

" I would like to thank Professor W. Yu for his guidance from the bottom of my
heart.
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