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Abstract L

In thls pa.per, the authors dlscuss a kmd of dlscontmuous initial value problems for tl

system of om—dlmensmnal isentropic ﬂow a.nd prove the existence or nonezistence of glob

‘ dlseontmuous solutmns only eontammg one shock in a class of piecewise continuous ar

o opi i th - nnctlons As apphcatxons, va.nous mteractmn problems of a typical “shoc
54 “e'cons1dered

In this pa.per by means of the results in [1] on the globa.l esttenoe of ola

soluinons $0 some free boundary problems with oharaoteristio boundary for quasil

hyperboho systems, we disouss a’class of discontinuous initial value problems fc

- system of one-dimensional isentropio flow and prove the existence or nonexis

of global discontinuous solutions only containing one shook in a olass of piec

continuong and: piecewise -smooth, functions., As applications; various intera
problems of a typical shook with a rarefaction wave are considered,

§2. Preliminaries |

The system of one-dimensional mentropm flow oa.n ‘be written in Lagran
representatlon as follows:
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ered is a positive constant and 7>1 is the adlabatm expcment L '
Introducing the Rlemann 1nvar1ants '

r=3-(u= IJ——p s |
el [ mmm

new unknown funotmns system (2.1) oan be eqmvalently rewntten as

2.3)

g;” +7~.( 7, s)——-O | .
Aoge o -1 (2.4)
. ...._s_. _s= TR
[ SRR __ T _*—,M,(m’ s)%g,, 0,
Whlch pec e e (ISR Tronw affe e (VI .A:-";‘ ) »
‘ —A(rr s) u(r, = «/—p (w(s——rr)) —a(s r)“""")/“"l’“;___ .. (2.8)
d a is a positive constant. '
Notmg @. 2), the local speed of sound S e -
" c=\/——7(1—‘1)/2 ‘ (2.6) .
en, byr (2.8) we hafve_' el |
@
herefore . - T I LI R ) i
A k. WE-r)<0. T (2.8)
It is easy. to see that only in a. domain where: there never ex;sts ‘the’ vaeuum
a.tele R T TP S e S TR LR
s—r>0, ' 2.9
rgtem (2.4) is stnotly hyperbolic
A, s)<u(fr, s) ‘ (2.10)
1d genuinely nonlinear in the sense of P. D. Lax -
A o : ‘ !
E,-('f', 5)>0, -a%("'; s >0, - (2.11)
ioreover, we have
67\. (rr $) <0, o (r <0, . (2 12)

We now give some basw facts about shock The Rankine-Hugoniot eondﬂuon on
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a forwa.rd shock & =m5(¢) can be written as . ‘
(u—u)?=—(p—ps) (v— '»‘+), (2.13)

da;' ___p —Ps 2
at Ty 2.14)

where (u;, 7,) denotes the. stabe just on the right, Slde of the shook Moreover

according o the entropy condition, we have o X

Oy ‘ w>uy @

T<Ty. - 2
“Th terms of the Riemann invariants (r, s), the preoedmg oond1t10ns on a fom

shookiz=#,(t) can be rewribten as'' ‘ s !

i 8) — (r++S+) ~/ (p(w'(s N p(r(S+—r+))) (r(s—'r) 7(8+ r+)), (2

SN S “dw (-r(s ) =p(w (S =ry)) o (2
: ' ’ g N e —r(e—re), o - AL

§— fr>s+ ——fr.,.>0 (¢
Where (rs, 84) sta.nds for the state just on the right side of the shock, (r, s),
state’on the left sude can be connected w1th (fr,,., s;) by a forward shock, and (2

L g%ubwg Pha,_j;wlh 9 D never exlsts th@ vaquum sta.te on Jboth sldes of the shock.

ChE Itﬂs a8y . to see from (2. 19) that -the oharacteristic dlrectmns on both sides

forward shook T=a (t) sa.tlsfy ‘the following. condﬂnon

dt >I-" (7'4., S.,.) >7\.(’l‘+, s+): .

| @
R : [-b('l‘, dt v S) - ‘ :
whmh isan 'eqmvalent from of the entropy oond1t1on
0 easﬂy fo]lows from (2.17) that
. (1+A) ~1+3B,
oy (2
113 LA I S ‘
( +A). ds+' 1. B’...
where
Z S

('r(s r))'v’(s ) (2(se—74)=v(s=71)) ~ 'r(s —r) (p(w(s—1)) —p(w(s, —r.)

. 2~/(p('r(s r)) p('v(8+—r+)))(7(8+—'r+) ~7 (s=7)) )
@

e

7 I(""(s+""'+))7 (3+—"' 1 X (sy — T+)—7(s ‘7)) 7(3+—T+)(Z’(7(3 ) —p(e(si—1r +)

R 2~/(P(T(s ) =P (se—7ry))) (w(8s ~r) —v(s—71))

i (2.23)
Noting



4 S e . OHIN. ANN OF MATH.. - ..., Vol 108er. B

('r) =—A77r1
1. ,
{ PRAER

t 7'(8.-"‘). T A"

e

° liave ; | |
: R ('z:(s—-q'))r”(s-—r) =100 e e (@l 25)
oticing (2 19) (2.8) and 3 C o he e e
, p’(ﬂr) <0, o - @. 26)
ad usmg the fam_ﬂlar formula, ' s
L “‘;”>~/‘5 @80 . @)
she sugn of equallty holds 1f and only if a=b), 11; follows from (2 22) (2 23) that -
ST AL, BEL, T s (e, 28)

L Wthh the sign of equa.hty holds if and only if (fr, s) (rr,,.,s,..) , namely, no discon-
nulty Therefore, it holds on'a forward shock that ‘

‘ dfr o :
ad .. e
the gign of" equahty
mmnmty*)““ -

F‘m-thermore 11; fellows from (2 17) in'a’ 51m1la1' way that ' e ” o
W(r+s) iR : e e
b(s— -r) S ; "

—7(s—1) (p(v(s-'r)) p(r(&;—n))) pl(f(%f))% (s—r) (w(s—1r) —'v(s+—a~+))

- PR

2~/(P(7(s ) p(r(8+—r+ ) ('v(S+—r+) —Teon) |
>1’ ~ o FrEn ( (2.31)\
enoe, it holds on a forward shook that o o o
0<d_””<1 o (2.52)

nd the sign of equality holds if and only if (r, s) ('r.,., $1), i e.,, no dmoom‘.mmty
Rowriting conditions (2.17),(2.18) on a forward shock =g, (t) as

SRR A (.59
| GG, 230
7e have, by (2 32) and (2.29), (2. 30),1:}13,1; S Do
0<% ag <L @)
W o am

o9 B 2.3
084 <0 _ ' ,( 7)
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and the gigng of equa.hty in both(2 35) and (2.37) hold if and only if (r, s) = (r,, s R
i. ., no discontinuity.

§ 3. A Class of Discontinuous Initial Value Problems
for the System of} _Ise'ntropic Flow

Now we consider the following discontinuous initial value problem for the sy
of one-dimengional isentropioc flow (2.4) with the initial data
t=0: T={'r5(w)' —{ - w<0 (
, & (@) s;, o=>0 o :
where s._ and s, are constants while.rs (@) and ri(x) are smooth funoctions def
on <0 and >0, respectively. Settmg _ .
L L =18 (+0), L . (
we suppose that.- e L
o (r4) s0)+(r, 82) _ (¢
and moreover ’ : o
s, —r¢ (@) >0, Va,>0 .
{ s-—rg () >0, Va,-<0, a L ¢
i. e., there is no vacuum state at the initial fime.

For the corresponding Rlemann problem with ‘the followmg Piecewise ~ong
initial data '

r- s, v<0, s ’ -
1=0: r={ y s={ o : . (
Ts . Sy, w>01 ’

sappose that its similariby solution is composed of constant states, a baokw
centered rarefaction wave and a forward typical shock, that is to say, there exisf
gtate (ro, %) such that (r_, s.) and (ry, 84) can be connected with (r,, s,) by a b:

- ward oentered rarefaction wave and a fOJ. ward typical shock &= V3, respectiv
Henoe, we have : '

8=38_, To>r_ (8

and ‘ o
T0=9(T+, 84, %), @
V=G(T+’ ;g+7 To, 30)7 (3

moreover, we have

{V>.“'(""+; 8.)>A(ry, 83)

X (o, 8)> V0o, 50) @
and

| ~ro>8y —ry >0, S (8.10)
Theorem 1. Suppose thairs (z) and r5(x) are bounded, O functions on =0
and 1<<0 respectively. Suppose that (3.4) holds and
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e’ (9) =0, Va=0,

{rr;’ (2) >0, Y<0.
pposg furthermore that the similarity solution i the corresponding Riemann problem
.4), (8.5) is composed of constant states, @ backward céntered rerefaction wave and
forward typical shock. Then, the discontinuous mitial value problem (2.4), (3.1)
mits @ undque global discontimuous solution on $>0 in a class of piecewise continuous

(3.11)

d piecewise smooth functions. This solutson has a global structures similar o that of

8 corresponding Riemann problem (2.4), (3.5), namely, the solution only contains a

chward centered rarefaction wave with the orégin as its center and @ forward shock

=w4(t) passing through the origin. Moreover, on both sides of the shock, the solution

a backward rarefaction wave s=s_ and $=3, 1 331wcz‘mely, and there never ea.@sts awy

ouum, state on 1=0. T ' EE

Proof By solving the corresponding Cau hy problem for system (2.4) by meang
‘the initial data on #<0, we can get a backward rarefaction wave solution

r=r.(4 a;), §=s. (3.12)

1 the maximum determinate domain ' ' . R

| B_={G, w)|t>0 m<a:1(t)AA.(fr_, s_)t}. (3.13)
oreover, we have TR L :

em) 5y, w)eﬁ_, T e

r-<t D>0 v, ek, . @.15)

od r_(¢, @) is bounded .

Since the right boundary o= a;l(t) of R is a backward straight characterigtio
assmg through the origin, on which (r, s) takes the constant value (r_,-s_), we can
niquely determlne a backward centered rarefaction wave on the angular domain

_ B_={( 2)|t=0, a:l(t)<a:<cv1(t)A7\.(fro, sy . (8.16)
o that (r_,-s_) can be connected with (re, 8o) = (1, s-) by: virtne of this centered
arefaction wave. In (3.16), s==,(f) denotes the backward characteristio pasding
hrough the origin, on which (r, 8) ftakes theconstant value (ry, s.).
Thus, on the domain
R.=B_UR.={@, ) |t>0, s<ei()} @.17)
we obtain a backward rarefaction, wave solution, still denoted by (8.12), and we

1ave , : .
-t 2) >0, V(t, =) €R\{(O, O} @.19)
Moreover by (8.6), (3.10) and (38.15), it still holds that

. s.—r_(t, 2)>0, V({§, ©) €R_. (8.19)
In a gimilar manner, by solving the corresponding Cauchy problem for fsystem
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(24) by means of the initial date on >0, we can get a hackward rarefaction wave

solution ‘ .
_ r=r,(t o), $=84 ' - (8.20)
on the maximum deferminate domain : ’
v A B.={@, 2)|t=0, w>m2(t)}, ' (3.21)
"where o= (t) denotes the forward Oha.ra.O'bBI‘lSth passing through the origin," i. e.,’
we ha.ve :
O a0, ), BO=0.
Here, 7, (t, m) is bounded and it holds that
———a““ 2) >0, v<t m>eR+ B
simra(t; ) >0, V(0 w)eR P

G Aooordmg to the looa,l exisbonoe theorem (of. [2] or Chapter 6.in (31),
$he agsumptions of Theorem 1, this diseon tinuous initial value problem 2.9,
admits a unique disoontinuous solution in a class of piecewise continuou
piecewise smooth funotions ab least on a looaldomam {¢ 2 |0<t<60, =
‘ w1th 90>0 smtably sma.]l Moreover thig solution only contains a backward ce:
'v rarefactmn Wave W1th the orlgm as its center and a forward shook o=a3(t) P
through the or:gm Observmg the entropy oondltlon (2 20) on a forwa.rd
. (wh.Loh beeomes .(;,,:(9) ab ¢= 0) a;—a;z (t) must lie in the interior of the doma
a,nd on the r1ght; srde of z =a71 (t) Therefore ‘the solutron on the rrght gide of z=
shoqu be furmshed by (r+ (t ‘o), s,.), and then in order to. construot a
dxscontmuous solutron containing only a forward shock on the do main {t>C
it is only neoessary to solve the fo]lowmg typlca.l free boundary problem
ohara,oterrstw bounda.ry for the system of 1sentropro flow (2 4) on the angular d
R={(3) |t>0 1 (8) <a;<a;2(t)} v o
. on the given straight charaoteristio & =4(), ‘ ' :

- 8=8_ {
with

T="To, . '

o A(re, 52), 21(0) =05 | o
.on the free bou.ndary z=a5(t), ‘

r= 9(T+(t 2), 84, 8, o
7{=G(T+(t1 w): St 8)y S

where . ,
‘ é("‘+v 84, = G(””+y 3+, 9T, 8¢ ,3) 8) (331);
Moreover, by (2.19), the solution should sat sfy the follow ng property ~ U



8 ) : CHIN. ANN. OF MATH. - Vol. 10 Ser. B

. 8= r>s+—r+(t x) >0, S (3 32)
Now we use the results of Theorem 2 and Remark 3 in [1] to prove that on the
gular domain R, this typical free ‘boundary problem with characteristic boundary
mits a unique globally defined olassioal solution: (r(% o), s( #)) €0 and ()
02.To do this, itis only neoessaljy.to justify all the hypotheses mentioned in §3
[1] B T A o IR : ‘- ; e A
The lilypothesish of smoothness (H1) is clearly satisfied. Next we verify (H2). Tt
only necegsary to prove that if the typmal free boundary problem with characteristio
undary (2.4), (8.26)- (3 31) admils a slassical solution on the domam

L

| R(T) ={(, o) |0<t<T, 01 (3) <o<aza(8)}, . (8.38)
sn the solution must satisfy the following condition: _
on s=u,(%) (0<i<T), A(r, 8) <ah(t) <u(r, s). (38.34)
fact, noting (3 31), (2.18) and (2.34), (3 30) can be rewritten ag A
J j’p (b'r(s fr)+(1 h)7<s+~-¢+(t a:)))dh " (3.35)
108, notlcmg 7 S -

soon as (3 32) holds we have

VTG w>>><wo<t><~/__——p GGy, (s

S (3.38) holds

It remams then to prove (3 32) for O<t<T under the assumptlon that the free
indary problem (2 4), (3 26) 3. 31) fadmlts a olassmal solutlon on R(T) By
10) and’ notmg ‘that s ahd T4 (0 O) fr+, (3 32) evldently holds a’o t 0
nce, by contmulty, (3 32) holds on an mterva.l O<t<'o‘ Suppose that there ex1sts
>O (T>80>6) suoh that (3 32) holds only for O<t<6o, but faﬂs a.t = 80 _

s—r= s.,.—-'r+\80. mz(ao))>o T ﬁ' (3 38)
are (rr $) ig the valus of the solution at the pomt (60, »:vz (50)) “In ‘this case, by
29) (which is equivalent o (2. 17)), we have s ' o

rs= rr.,.(Bo, mz(oo))+s.,., RS - '(339)

(r, 8 = (14 (80, ©2(30)), 54, (3.40)
mely, the shook musb dzsappear a.t “the point (3o, #2(30)). However, by the
aclugion in thé lash pa.ragraph (3 34) holds for 0<t<80, therefore the forward
\racteristic passing through any point (7, =) € R(5p) must intersect o= a;i(t) at
» and only one point. Since s must be a constant along every forward characteristio,
10lds on R (8) that -

10

s(t, ) =s_. } (8.41)
Moreover, since (ro, s_) can be oonneoted with (r;, s;) by a forward shock, noting
(3.10) and (2. 35), we haye .
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s_>8; ' o (3.42)
whroh, together with (3. 41), contra,dlets (3.40). Thig eontradlotron gives (3.32)
and then (3.34). In the meantime, we get that this forward shock z=wa(f) never
disappears and (3.41) holds on the existence domain of classical solution, that is the
solutlon must be a backward simple wave.

' Furthermore, by (8.34) the backward oharacteristio passing through any pomt
G, o)y €R(T) must intersect o=, (f) at oné and only one point, Since r must ’
congtant along every backward eharaoterlstle notrng (3 41) a.nd (3 32), it is
toseethat ‘ SR e .

. 3'T>0r"'~ . : .:1.(3
on the exigtence. domain of clagsical solution,-i, e,, there never exists any vao
state. Therefore gystem (2.4) is actually a genuinely noplinear and striotly hy
bolio system, and this fact is also a bagic assumption for uging the résults in [1
;. We turn now to ‘the verlﬁoatron of hypothesus of monotomolty (H3). Itis «
needed o prove that on z=a,(%), o
(afr.,.(t a;) + (t) 3¢+(t a;)) A R

=20 (@A) “AGriCe @), 2)' 3“(* Do, (@

By (2 36) (8.23) a.nd (3 3D, however (3 44) olearly holds
Fma.]ly, we verify (H4), namely, wewant t0 prove that on z=2,(3),
|G (rs G, ), 85 8) | <a1(To, B) +as(To, B)|a|, VO<i<To, V|s|<B, (3
where a, (T, B) and ay (T, B) are eonst&lﬁits;_ilepénding only on 7', and B. By (3.
we have

. , é(”'a-(t ‘”); S4s 3) é(”'-l-(t m), Sy, 8 s.), 3
'l;hen observmg that r, (¢, %) is bounded, we immediately obtain (3.45).
By the previous discussion, according o the results of Theorem 2 and Ren
8 in [1], on the augular domain R thig typlca,l free boundary problem -
characteristio bounba.ry 2.4, (3.26)-(8. 32) admits a unique globally dei
classical solution
GO = @, :v)€01 s=s 3
and : _ .
N = mﬂ@) EO : @
moreover, we have . .. . ] I
3T—g;>—>o veoer . @
Therefore, the solution is a backward rarefaction wave with the forward s
ourve ¢¥w2(t) as its’ right boundary. The shock &=, () never disappear in the
course. of propagation and the solution on the rlght gide of this ghook is the backward.:
rafefaction wave (3.20), R B R
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The proof of Theorem 1 ig complete
Remark 1.. If r#(z) are only assumed o be bounded, piecewise continuous and
ecewige smooth,Inondecreasing and sabisfy the {following condition .
{s+—'r0 (z£0)>0, . V2=0, ‘

3.50
ro (@£0) >0, . V<0, ( )

en the donolusion of Theorem 1 is still valid, only wﬂ;h a slight modlﬁoa’mon thati

e solution involved can also contain some backward centered rarefaction waves
th point on the 1m1;1a1 axig as center, '

Ag an application of Theorem 1, we oonsnler the mteraotlon problem of a
*ward typiocal shock with a backward rarefaction wave. Suppose that a backward

refaction wave (espeoially, a backward centered rarefaction wave)
ets a forward. typical sh_oek_{ NPT R )
‘ (r., 8.); . a<V3,.

(r,s) = {(q~+, ), «=Vi . .
the origin, we want fo determine the state produced by thls mtera.ctlon
Here, in order that (3 51) denotes a backward rarefactlon wave, 7= 'r+ @, =)
15t be a bounded, 6* funot;on and sa.tlsﬁes the fo].lowmg propertles

| 3g+ +A.(fr+, s,,.) a"".fy—o L s . (3.59)
._ _—aa; o :
s+—'r+(t :v)>0 . ‘ (3.56)

the other ha,nd in order tHat (3 52) denotes a forwa.rd typlcal shock 11; must:
d that . ' o L ) Co | ‘ ;
U oregeses, e

V=G(ry s, r 8 0 (3.88)

V>l’-’('r+r s+) >)‘('r+) S+), ‘ . ;
3.5

{/w(a’—, -)>V>?u(0‘-, 52), : (‘ 9)

8. —ir_Sgp—ry>0. (3.60)

Thus, the interaction problem asks us to solve the discontintuous initial value
blem for system (2.4) with the following initial data
: {s_, <0,

=i =
r= *(a;) - iy, 0220,

(8.61)°

where o . o - -
1§ (@) =7, (0, ), _‘ - .(8.62)

rerh @), s=s, . (3.51)

' ('3’.’52)
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and then we have

rg(@ >0, V20, ’ (3.63)
+— 78 () >0, Vaz=0 (8.64)
and
- Crg(+0) =ry, (8.65)

. moreover, (ry, 8,) and (r_, s_) can Le connected by the forward typical shock
(3.52'). Thié discontinuous initial value problem corresponds to a special case of
Theorem 1, in which _
, , ro (o) =r_ e N ¢
and bhesimﬂarity golution to the corresponding Riemann problem (2.4), (8.5
not contain any backward centered rarefaction wave, then from Theorem 1w
the following corollary. '
Corollary 1. For the system of %semtrropw ﬂow (2.4), the interaction probl
a forward tyrical shock with a backward rarefaction wave s=s, admits a unéque
discontinuous solititon containing only one forward.shock s=2x1(t) on =0 én a ¢l
plecewise conténuous and piecewise smooth functions.-Moreover, after the colls son
waves, the orggzinal backward rarefaction wave s=83, becomes another backward ra
téon wave s=s_, and there never eaists any vacuum state on t>>0. Using the notati
Theorem 1, the global. discontiniious solution to this discontimuous imitial value p1
(2.4), (3.61) can be explicitly expressed on t=>0 as :
-, o< LA(r_, s)t,
r={r( o), o) <o<w(t),
ro($, @), o=z, ,
In particular, if there is a constant state on the right side of the or

N {s_, a<wa(l),
lsy, o=>m, (t_) .

backward rarefaction wave, then after the interaction of the original fo
ﬁypioal shock -with the backward rarefaction wave, the forward shock @=wa(f
beee;r;es a forward typical shock (i. e. with congtant speed of propagation)
well-known fact is simply denoted by

SE=RS. -

-§4. A Class of Discontinuous Initial Value Problems
for the System of Isentropic Flow (continued)

We turn now to the discontinuous initial value problem for the sys1 :
isentropic flow (2.4) with the following initial data
’ T . {8 0, S
{ 0(1;); 8={0 (!D), EAS ’ (4.1)
. § (@), st (@), >0,
where 7§ (z) and s3 (#) are all bounded, O* functions with the followmg properties:

t=0: r=
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{ré’ (@ >0, s/ (2)=0, Va0, @2
ro’ (#) =0, 5’ (@)=0; Va<0, ‘

{sg' (@) —7¢ (@) >0, V=0,
So

o (@) —15 (@) >0, Vo<0, (-3)
, ‘there is no vacudm state ai the inifial time, ' '
Setting : o . : S .
+=73 (£0), s*=s§ (£0), o 4.4y

#ill suppose that (3.3) holds and that the similarity solufion to the correspond-
Riemann: problem’. (2.4), (38.5) is composed of: constant “states, a bhackward
ered rarefaction wave.and a forward typical shock, namely, there exists.a state
(7o, 50) = (o &) SN - (4.5).
that (3.6)-(3.10) and then" (3.42) hold. L -
According to the corresponding local existence theorern. (of. [2] ‘or Oha.pter 6 in
. this - discontinuous initial “value problem- (2.4), (4.1) -admits a -unique.
'ntmuous solution in -a clags: of piecewise continuous and piecewise smooth
bions at least on a local domain { (%, o) [0<t<3o, {o| <oo} (6°>O suitably small),
this solution only contains a backward centered wave with the origin as its:
ir and a forward shook s=a,(f) passing through the origin. ' Wé want e know’
her or not this problem admits a global discontinuous. s'{)lutioh:-only containing
kward centered wave and a forward shock on >0, .
We first solve the eorrespondmg Cauchy problem for system (2 4) by means of
mslal data on a;< 0. Using the results in [4) and [5], we, can obtain a bounded,
1 O* solution (r_ (t ), s_(f,2)) on the maximum determinate domain

B_o={@¢ 2 |t=0, s<z: ()}, . . . (4.6)

Yo=2 (t) stands for the-backward characteristic passing through the origin:
| BouE) (e, oG, £0)); 60) =0, R
Iver, we have . - i
- (r-(0,0), 5- (0, 0) =(r_, ), 4.8)

a -— i, N a-—- t'

g o Blhn) oy v ek, @)
5@t @) —r.(G, ©)>0, V(G a) [ _ (4.10)

lext we solve a backward centered wave problem on the right side of &=y (%)
t(r_, s.).and (ro, 8) -can be connected at the origin by this centered wave.
ding to the results in {6] or.in Chapter 7 of [3], fhe solution of this problem
] determined only by the value of the solution on the. Jbackward characteristio
=13 (t) (r, 1)) (r 2.8, 34 (t))) and-the” given value ro. To show that this
centered wave problém can.be'globally golved, it is‘only necessary: to-consider the-
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following discontinuous initial value problem for system (2.4) with the initial data
75 (@) s5(@), <0
t=0: p= { , 8= {
: To s, =0,
Since the initial data are nondecreasing, this problem must admit a unique global

4.11)

continuous and piecewise smooth solution on #>0, and this solution contains a
"backward centered wave with the origin as its center, which realizes the connection
of (r., s.) with (re, s_) at the origin (of. [5]). Hence, the preceding centered
problem really has a global solution on the domain o '

B- {@, @) |60, 24(t) <o<z1(t)}, ' (¢
where z=a; (t) denotes the backward characteristio passing through the origin, :
whioh the solution (r, s) has the ]_umt value (ro, s_) as —0. Moreover, the rela
similar to (4,9)-(¢.10) still hold on A. ' '

Thus, we finally get a global solutlon (r_ (t,. @), 8- (t z)) on the domain

R_=B_UR_={@ o) |t=0, s<ses(®}. = ¢
This solution is continuous and piecewise smooth for >0, and it holds that
a — tv — \ Uy
-8 »o, 09 5o, v, HERNMO 0 (
and o ‘ G e ‘
£G o) -rG9)>0 VG DER.
Setting . ‘
, si(t) —s_(t wi(@), ¢
it is easy 1;0 see, that $1(f) is bounded _ ) '
9@<0, Viz0 o (
and |
Moreover, on =, (f) we have o o . . _' _
s=s(®), - o
= ’I'o e ’ (
and o _ .
i () = K(Tov 81(*)), 21 (0) = =0. ' K

We nowsolve the Oauchy problem for system (2.4) aocordmg to the initia
on >0, This problem admlts a unique bounded, globhal O* solutlon (r+ &, o),
2)) on the corresponding maximum ‘déterminate domain- ‘
R.={@,2) =0, s>2,®}, ‘
where w=2,(¢) denotes the forward oharacteristic passmg through the ¢
HFarthermore, we have

Mw M>o V@, o) €B,, (4.23)
' 8+(t w) —f/',,.(t a:)>0 V(t a:)Eﬁ (4.24)



14 o CHIN. ANN. OF MATH. Vol. 10 Ser. B

" Aocording to the entropy condition (2. 20) on a ofrward shook, for the solution
) the original discontinuous initial value problem (2.4), (4.1), it is easy to see
b the forward shock m==z4(f) passing through the origin must lie in the interior
' the domain R, and on the 'I'ight_'side of the characteristio T=wy (t)‘. Thereforé’
i® solukion on the right side of 7 =3 (t) should be furnished by (r, (, =), s, (¢, o)),
1d in order to consiruct a global discontinuous solution only containing a forward
ock on the domain {¢>0}\R_, it is only necessary to solve the following typical
ee Toundary problem with characteristic boundary for system (2.4) on the
igular domain . ' :

| R={(z, o) |#0, 7 () <w<w,(t)}: L (4.25)

~'On the given backward ocharacteristic #=a(t), Wwe presoribe the boundary
ndition (4.19), where s; (#) is bounded and satlsﬁes (4 17) ~-(4.18). Moreover,

v=i(£) we have (4.20)-(4.21).

On the free boundary o=a,(),

= g('r+<t 47)1 3+(t w)r s)’ EDEEEEE A (4.26)
——~—=@(r+t 2, 8.6, 2, ), S (4.27)

1970 @ is still deﬁned by (3 31) Moreover the solutlon should Satlsfy ‘the
Jowmg property: : .
on s=ws(8), s— rr>s.,.(t @) —r, (3, ) >0. T (4.28)

S nce 81 (£), r4+ (&, @) and s, (3, o) are ‘all bounded by (4. 19) and (4 26), it is
sily seen that the clagsical solutlon (fr (t a;) s(t %)) 1o this free boundary problem,
any. must be bounded. .

Now we compute the values of the ﬁrst denva.’olves of the solution (r (¢, ), s,
) at the origin: @r/dw (0, 0) and 2s/0x (0, 0).

We first prove that '

s .
'37(0, 0) —30’ (0) >0. (4.29)
faot, the forward characteristio passing through any point (¢, #,(f)) on m=é;1'(t)

>0). must intersect the initial axis ab one and only one poin} (0, z) (z<0) . Noting
18), we have v o

e s1(%) vés_ ”= . 85 () —
81(0) “hm————‘—— lim W (o — 7\-)
—(7\-("”0 8)~ p(ro, 8- ))ss' (0). | ~ (4.30)

system (2.4), ‘however, we have

, 31(0)~-——<0 0) -+ 1(0) (0 0)

= (h(ro, 3 —nu(ro, 3.0) 22.(0, 0). @.31)



No. 1 . I, D. Q. 4 Zhao, Y. C. GLOBAL DISCONTINUOUS SQL'UTIONS 15

Putting (4.30) and (4.81) together, we get (4.29). .
Differentiating (4.26) with respect to ¢ and using system (2.4), we have

on w=ast), @h(®) ~A(r, )2

2L @) ~2 ity @), 51, ) Tl D)

(%(t) p,(rr_,_(t z), 8:(, 2))) Mi)_
+a—‘g(w'z(t)'-—p;(rr.‘ ») & (@
Setting =0 in (4.82) and noting (4.29), it comes that
(V 7\.(’]‘0, —)) (0 0) __q'('rh S+ 3—) (V }\'(”'+y 8+))’l”3' (0)

N ("‘+: 84, 8) (V—pu(ry, 84))s3'(0)

+ %%(’G» 5, 8) (V—pp(ro, )% (0), - (4
where . .
‘ V=G(r,. S4r ) =G (s, 84, o, 8) - . @
and (3 9) (1n whleh 8o is replaced by s_) holds. '
" Then, we have the followmg theorem.

Theorem 2. ‘Unde'f' the previous assumplions, 6f

(r+, Sy, s_)(V —~A(ry, 8))r3' (0)

-+ W(“’ 84, S_) (V_I-L(T:i-v 8:))s3’ ('0)\‘

8y 00 ) Tl D& ©<0, &

then the disconiinuous initial value problem (2.4), (4.1) never admits a gl
déscontinuous soluttond only containing a backward centered wave and a forward s
on 120,

 Proof By (4. 33) (4. 35) and (3 9), we have

(o 0) <O0. , ' @.
Observing that the solution is bounded, thls theorem follows direotly from the e
in Remark 4 of [1]. ”
As applications of Theoremr 2, we discuss now the interaction problem
forward typical shock with a forward rai'efé.otion wave.
We first consider the interaction problem of a forward rarefaction wave
=r_, s=s_(t o) (4.37)
catolung up wrth a forward typloal shock (3.52) at the origin. In order to determine
the stato produoed by this interaction it ig only needed to solve the following
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liscontinuoug miua.l value problem for system (2.4) with the initial data

t=o:¢={r‘,s {s"(”)’ #<0 | | (4.38)

RUES s.,.(a:), v=0,
vhere : : *
' 55 (@) =3-(0, @) IR (4.39)
vith . ' -
s’ (@) =0, VYao<0, (4.40)
& @) ~r->0, Va0 | _ (4.41)
ad - | o
s5(0)=s.. CoE (4.42)

doreover, (ry, s,). can be connected with (r., s.) by the forward fypical shook
'3.52) . This problem can be regarded as a speca.l case in Theorem 2, in which
: : Tr§ (@) =ry s0 (‘U) =84 (4 43)
nd the sumlanty solution %o the eorrespondlng Riemann problem (2.4), (3.5)
loes Dot contaln any “backward centered rarefaction wave, then we have the
ollowing corollary. ' o
* Corollary 2. For the system of osent/ropw flow, the imteraction problem of a
“orward rarefaction wave catching up with a forward typrwal shoak never: admots a
rtobal discontimuous solution contammg anly one forfwaa'd shoo]a on t>0 '
Pq'aof In the case . '
: s'0)y>0, - (444)
otioing (4.43), (2.35) a.nd (8.9); this corollary is a direch oonsequenee of Theorem 2,
We now prove that even if (4. 44) fails, the conclusion of thes corollary is ghill
rue. As a matter of fact, singe, as we have assumed, the interactioh bagins at the
»ngm there ex1sts mo<0 such that EN ig small enough and L
a &' @y>o0. (445)
)bserve that the typloal free boundary problem with characteristio boundary,
orresponding to the discontinuous initial value problem (2.4), (4.38), a.lways
«dmits a locally defined classical solution, and then on the free boundary o=, (%)
here exists a point (%, z2(¢1)) sufficiently close to the origin such that the forward
haracteristic passing through this point intersects the initial axis at the point (0,
') . Hence, by means of the method in [1], it is easy to prove that. -
0 (i, 22 (t)) -
ek(’~’*°“’°”s ! (wo)

1+J0 2 (1 (e, w(,,,’ w0)), 55 (@0) ) 857 (o) K- 55Ce= k(r(rw(wao))sg(amd,,

' (4.46)
where a=ao (7, 2¢) denotes the forward characteristio passing through the polnt (o,
%0), . '
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Zguna 05 o o
B v="6 K - | | (4.47)
and & (r, s) is determined by .. y
Cr . Op
ok _ or L A<
. 3')" 'U/—}\.. . .. ("48)
Thus by (4.45) and the genmnely nonlinear hypothesis (2.11), we get
o o , , (51, fﬁz(ti))>0 . L (4.4
Noting (2.35), (3.20) and . . . .. o
r. (&, a:) =r,, s+(t w}_s.,., “.t
it fo]lows from (4.32) (ab the point (£, a(%))) that _
| %Mﬁ@&ﬂﬂ@@@ﬁ@%@ym”’”*“df
Where T
fro(t) =r(, wg(t)) o (4

Thus Remark 4 in [1] dlreotly gives the desrred conclusmn The proof of OOro]la
2is then completed. e ‘
. . We next consider the mteraotlon problem of a forward typloa.l shook (3

catchmg up with a forward rarefaction wave - I .

r=ry, 3$=3,( o) S (4 5
at the origin, Slmﬂa.rly, in order to determine the sta.’ﬁe produeed by this interactic
it is only necessary to solve the following discontinuous inital value problem

system Q. 4) wn-,h the initial data.

.. _ : s—’ <0, - l L
=0 {T se{ o SR

Tfl-’ 33(‘”)’ w>0v
o st @) =50, @) AN CX:
‘with ' : o
st (@) >0, Va0, _ L (4
T s§(@) —ry>0, Va0 N N
ind e o _
- 55(0) =s,, - U @

moreover, (r;, s,) can be connected with (r_, s_) by the forward typical sh
(8.52). This probiem can be algo regarded as a gpecial cage in Theorem 2, in whi

ri (@) =r,, s (@)=s_ 4.!
and the similarity solution to the corresponding Riemann problem (2.4), (3.5) d
not contain any backward centered rarefaction wave. We have the follbow.uy
corollary.

Corollary 8. For the system of dsentropic flow, the interaciion problem of a
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ward typical shock catching up with fomua/rd ‘rarefaction wave never admils a global
scontinuous solution containing only one forrwm'd shock on t>0
Proof The proof is similar to that of Corollary 2. If S

8’ (0) >0, ' (4.60)
s corollary follows direotly from Theorem 2, If (4.60) fails, there must exist a
fficiently small number x>0 suoh that ‘

8§’ (o) >0, (4.61)
len we can similarly prove that on the free bounda.ry o =3 () there exists a point
i, wa(b1)) sufficiently cloge to the origin such that

(t1, 3 ($1)) >0, _ '(4‘_ 62)
oting (2.87), (2.20) and | ' |
h ‘ TG, D) =r4, $¢ 2)=s, (4.63)
y (4.32) we can gebt (4.51) and then the desired conclusion..
Corollary 2 and Corollary 3 tell us that for the system of isentropie flow, new
ngula.ntles must occur in a finite time in the solutlon to the inferaction problem
'a forward (resp. backward) typical shook with a forward (resp. back ward)
irefaction wave. Thereéfore, in thege cases we shou.ld seek the globa.l disecontinuous
lution in a wider class of functions instead of in a clasg of piecewise continuous
1d piecewise smooth funotlons :
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