AN UPPER BOUND ON AVERAGE TOUCHING NUMBER OF A VORONOI PARTITION

WANG CHENGSHU(王承睹)*

Abstract

A Voronoi partition is decided by the configurations of N centerepoints in n dimensiona Euclidean space. The total number of nearest neighbor points for a given centerpoint in the partition is called its touching number. It is shown that the average touching number for al points in a Voronoi partition is not greater than the n dimensional kissing number, that is, the maximum number of unit spheres that can touch a given unit sphere without overlapping.

\$1. Introduction

The Voronoi partition⁽¹⁾ in packing and covering theory is widely applied in fields of computer science, physics, chemistry and so on^{(2),8,41}.

There is a set of finite or enumerable points $\{y_1, y_2, \dots, y_N, \dots\}$. A Vor partition $V(y_1, y_2, \dots, y_N, \dots)$ is a sequence $\{S_1, S_2, \dots, S_N, \dots\}$ of convex polyt covering R^n (*n*-dimensional Euclidean space). The partition satisfies the follow conditions:

$$\left\{egin{aligned} igcup_{i}^{i} & S_{i} = R^{n}, \ M_{n}(S_{i} \cap S_{j}) = 0 \quad ext{for all } i
eq j, \ S_{i} = \left\{x \mid \left\|x - y_{i}\right\| \leqslant \left\|x - y_{j}\right\|, \quad ext{for all } j
eq i, \end{aligned}
ight.$$

where M_n is the n-dimensional Euclidean measurement, $\|\cdot\|$ is the Euclidean n of a vector, S_i is called a Voronoi region or a Voronoi polytope, y_i is called centerpoint of S_i . Clearly, a Voronoi partition of N centerpoints $V(y_1, y_2, \dots, y_n)$ decided by the places of the N points.

We define the halfspace H_{ij} by

$$H_{ij} = \{x \mid ||x-y_i|| \le ||x-y_j||, \ i, \ j=1, \ 2, \ \cdots, \ N, \ i \ne j\},\$$

then

The property construction of the regardent of the construction
$$S_i = \bigcap_{i \neq i} H_{iji}$$
 .

Let L_{ij} denote the boundary of H_{ij} , then

$$L_{i,i} = \{x \mid ||x - y_i|| = ||x - y_i||, \ i \neq j\}_{\bullet}$$

t tegit plante de generaliste et tetrali, figure con entrant dest la vi

Manuscript received December 27, 1983. Revised March 27, 1986.

^{*} The Computing Centre, Academia Sinica, Beijing, China.

 $M_{n-1}(L_{i,i} \cap S_i) > 0,$

hen L_{ij} is called an effective boundary and y_i is called a neighbor point of y_i (or s_i). o, the number of neighbor points of a Voronoi Polytope is also the number of its oundary faces. Kleets gave the tightest possible upper bound K(n,N) (of the number t the boundary faces for any Voronoi partition with t centerpoints.

$$\begin{cases} K(2, N) = 2(3N-6), & N > 2, \\ K(n, N) = 2\binom{N}{2}, & n \ge 4. \end{cases}$$

Then $n \geqslant 4$, he proved that there exists a Voronoi partition such that each L_{ij} is an fective one.

For each Voronoi region S_i , the nearest neighbor points of y_i is called touching points of y_i , whose number is denoted by m_i , the distance of its touching points from is denoted by d_i . Studying the Voronoi partition for a lattice structure^[7] is juivalent to considering the packing with congruent spheres of radius $d_i/2$ about 1 centerpoints y_i . $m=m_i$ is defined as the touching number (or kissing number) of congruent spheres packing. To seek the upper bound of the number is a significant oblem in packing and covering theory^[1]. [6] studied the upper bound τ_n to the aximum number of spheres with nonoverlapping interiors that touch a given here in R^n . They give the known values on known bounds on τ_n , the n-dimensional ssing number for several values of n. Obviously, $m \leqslant \tau_n$. From Table 1 in [6] it easy to know that there are some lattices whose kissing numbers arrive at τ_n when =1, 2, 3, 8, 24.

§2. Statement of Main Result

This paper concerns an arbitrary Voronoi partition. In general, m_i and d_i may first from one centerpoint to another. It is simple to construct a partition in which ch point has only one touching point. For example, in R^1 let

$$y_1 = 0$$
 and $y_{k+1} = y_k + 1/k$ for $k = 2, 3, \dots, N-1$.

Let y_{k+1} is the unique touching point of y_k for $k=1, 2, \cdots, N-1$ and y_{N-1} is the ique touching point of y_N . It is also possible for a centerpoint to have N-1 tohing points. (Let Y_0 be the origion and let all remaining N-1 points lie on the face of a sphere in R^n). We denote the average touching number of all centerpoints a Voronoi partition by m and the tightest lower bound of d_i by d_0 . For N enough ge and for a fixed dimension n, it is not possible for all centerpoints to simultatually have N-1 touching points. We shall see that there is, in fact, an upper bound on the average touching number of a Voronoi partition that is independent of the size N of the partition.

A touching point y_i of a centerpoint y has separation c_i if c_i is the minimum distance between y_i and any other touching point y_i of y. Thus,

$$C_i = \min_{\substack{j \\ j \neq i}} \|y_i - y_j\|.$$

Evidently, $c_i > d_i$. The following theorem will be proved.

Theorem. The average touching number of any Voronoi partition in R^n is less than or equal to τ_n .

This bound appears to be the tightest possible upper bound, for example, where n=1, 2, 3, 8, 24, there exist optimal congruent sphere packings whose touch numbers are equal to τ_n .

§ 3. Proof of Main Result

Lemma 1. If a centerpoint y has touching distance d_0 (the minimum distance the Voronoi partition), then its touching number cannot exceed τ_n .

Proof Each touching point y_i of y cannot have touching distance greater than since $||y_i-y|| = d_0$. Place a sphere of radius $d_0/2$ about each touching point y_i of Then each sphere will touch the sphere centered at y of radius $d_0/2$; also, the sphe will not overlap since d_0 is the minimum distance of the Voronoi partition. Therefore the touching number of y cannot exceed τ_n or the kissing number bound would violated.

Corollary 1. If y has $d_y = d_0$, the minimum distance of the Voronoi partiti then each touching point y_i of y has at most τ_n touching points.

Proof Since $d_y = d_0$, we have $d_{y_i} = d_0$, so that Lemma 1 applies to the centerpo

Lemma 2. If a centerpoint y has touching number $m_y > \tau_n$, then it is necess that (a) $d_y > d_0$ and that (b) there exist touching points y_1 and y_2 of y with $||y_1 - y_2|| < \infty$ so that

$$d_{y_1} < d_y$$
 and $d_{y_2} < d_y$.

Proof If $d_y = d_0$, then $m_y \le \tau_n$ from Lemma1. If condition (b) does not be $m_y > \tau_n$ nonoverlapping spheres of radius $d_y/2$ could be placed about each touch point of y, violating the kissing number bound for the sphere centered at y radius $d_y/2$.

Lemma 3. Given a centerpoint y with touching distance d_y and with separat $c_i \ge d_y$ for all touching points y_i . If y is itself the touching point of some centerpoin with $d_z > d_y$, then $m_y \le \tau_n - 1$.

Proof From Lemma 2, $m_v \le \tau_n$. Suppose that $m_v = \tau_n$. Then it is possible to add a new centerpoint w to the partition given by

$$w = \frac{d_z - d_y}{d_z} y + \frac{d_y}{d_z} z,$$

so that $||w-y|| = d_y$. By the triangle inequality, for any touching point y_i of y_i

$$||w-y_i|| \ge ||y_i-z|| - ||w-z|| \ge d_z - (d_z-d_y) = d_y,$$

so that w is a touching point of y and the augmented set of touching points of y has separation at least equal to d_y . Then y has τ_n+1 touching points, violating Lemma 2. Therefore $m_y \leqslant \tau_n-1$.

Note that there was room to add an extra touching point for y because of the "forbidden zone" created by z having touching distance $d_z > d_y$.

Lemma 4. If a centerpoint y has $m_y > \tau_n$, then at least $m_y - \tau_n + 1$ of the touching points of y must have separation $c_i < d_y$.

Proof If $m_y > \tau_n + 1$, there exists a touching point y_i of y with $c_i < d_y$ by Lemma 2(b). Remove this touching point, and repeat until there remain exactly $\tau_n + 1$ touching points. Then by Lemma 2(b), there are at least two touching points with touching distance less than d_y . After removing these two points, we have $\tau_n - 1$ points remaining out of m_y . Thus we have removed $m_y - \tau_x + 1$ points with touching distance less than d_y .

Lemma 5. If a centerpoint y has k touching points y_1, y_2, \dots, y_k with $k > \tau_n$ and each y, has its touching points separated from one another by at least d, the touching listance of y_i , then the total touching number of y and its touching points satisfies

$$m_y + \sum_{i=1}^K m_i < (k+1) \tau_n - 1,$$

where m, is the touching number of y.

Proof Of the k touching points of y at least $k-\tau_n+1$ points have $d_i < d_y$ by semma 4. Since the touching points of y_i have a separation of at least d_i , $m_i < \tau_n-1$ by Lemma 3.

The remaining τ_n-1 or fewer touching points of y have $m_i \leqslant \tau_n$ by Lemma 2. 'hus $m_y = k$ and there are at least $k - \tau_n + 1$ points with $m_j \leqslant \tau_n - 1$ and at most $\tau_n - 1$ oints with $m_i \leqslant \tau_n$. Hence

$$m_{y} + \sum_{i=1}^{K} m_{i} \leq K + (K - \tau_{n} + 1) (\tau_{n} - 1) + (\tau_{n} - 1) \tau_{n}$$
$$= (K + 1) \tau_{n} - 1.$$

The next Lemma is a generalization of Lemma 3.

Lemma 6. Given a centerpoint y with touching distance d_y and with $||y_i-y_j|| \ge d_y$ or any pair y_i , y_j of its touching points, if y is a touching point of points z_1 , z_2 , ..., z_k , ith $k < \tau_n$ and $d_{zi} > d_y$ for each i, then

$$m_{y} \leqslant \tau_{n} - k$$
.

Proof From Lemma 2, $m_y \leq \tau_n$, suppose $m_y > \tau_n - k$. Then we show by construction that it is possible to add k additional points w_i , that are touching points of y^*

with the property that each w_i is a distance at least d_y from any other touching point of y. These new points lie in the forbidden zone created by the points z_i .

Let
$$w_i = \frac{d_{z_i} - d_y}{d_{z_i}} y + \frac{d_y}{d_{z_i}} z_i$$

It is easily seen that

$$||w_i-y|| = ||y_i-y|| = d_y,$$

showing that w_i is a touching point of y. From the triangle inequality, for any touching point y_k of y,

$$||w_i - y_k|| > ||y_k - z_i|| - ||w_i - z_i|| > d_{z_i} - (d_{z_i} - d_y) = d_y,$$

so that each of the augmented touching points w_i is a distance at least d_y from a of the original touching points y_i of y.

We now show that

$$||w_i-w_j|| > d_y$$
 for $i \neq j$.

Without loss of generality suppose that

$$\begin{aligned} \|z_{i} - y\| &\leq \|z_{j} - y\| \leq \|z_{j} - z_{i}\|. \\ 2(z_{i} - y) \cdot (z_{j} - y) &= \|z_{i} - y\|^{2} + \|z_{j} - y\|^{2} - \|z_{i} - z_{j}\|^{2} \leq d_{z_{i}}^{2} \leq d_{z_{i}} d_{z_{j}}. \\ 2(w_{i} - y) \cdot (w_{j} - y) &= \frac{2d_{y}^{2}}{d_{z_{i}} d_{z_{j}}} (z_{i} - y) \cdot (z_{j} - y) \end{aligned}$$

by definition of w_i , w_i .

Then

But

 $m_{y} \leqslant \tau_{n} - k$.

Thus
$$2(w_i - y) \cdot (w_j - y) \leqslant d_y^2$$

and
$$\|w_i - w_j\|^2 = \|w_i - y\|^2 + \|w_j - y\|^2 - 2(w_i - y) \cdot (w_j - y) \geqslant d_y^2 + d_y^2 - d_y^2 = d_y^2$$
. Hence by construction we now have a touching number for y that exceeds τ_n , wh contradicts Lemma 2. Therefore the original touching number, m_y , of y must sati

Note that the hypotheses of Lemma 6 cannot be satisfied for $k=\tau_n$, for otherw we would conclude that $m_y=0$ and hence the touching distance d_y of y would be d min d_{y_i} . This leads to the following:

Given a Voronoi partition, we define a directed graph associated with partition in the following manner. Let each vertex correspond to a particular centerpoint. A directed edge goes from vertex y to vertex z if z is a touching point y. (If y is also a touching point of z, then there is another directed edge from to y). Given the N by N distance matrix for the partition, a unique graph determined.

Proof of the Theorem Constructs subgraph of the graph of the Vorc partition as follows. Pick any vertex y which has more than τ_n outgoing ec (touching number greater than τ_n). Include in the subgraph those vertices y_i which are touching points of y with separation less than d_y . We call these points the descendants of y. By. Lemma 4, the number of descendants is at least $m_y - \tau_n + 1$,

where m_y is the touching number of y. We continue the construction by adding for each descendant y_i all touching points y_{ij} whose separation is less than d_{yi} . The graph then includes all edges from each y_i to the newly selected descendants y_{ij} . A vertex z fo the graph J is an endpoint if all touching points of z have separation greater than or equal to touching distance of z. In this case the touching number of z is at most τ_n-1 by Lemma 3.

First we focus our attention on a special case denoted by case A in brief. That s, each centerpoint in the subgraph of the case A is a descendant of the only enterpoint. Since each descendant must have touching distance less than its parent, t follows that descendant cannot be a centerpoint that already exists in the subgraph. Thus the subgraph is a tree all of whose edges are directed toward descendants.

If y is the touching point of some point z and y has separation less than d_z , then he graph can be extended "upwards". In other words there exists a larger tree ontaining y as an internal vertex. A tree is complete if it cannot be extended upwards or downwards (all of its roots are endpoints).

We now show that the average touching number of a tree in the case A is less han τ_n . Let M denote the number of vertices and E denote the number of endpoints n the tree. Consider a point P_i of the tree that is not an endpoint. The number of escending edges of P_i , l_i , is at least $m_{pi}-\tau_n+1$.

Hence
$$m_{p_i} \leqslant l_i + \tau_n - 1$$
.

Summing up all M-E points P_i , except the E endpoints, the total touching umber of these points is

$$M_1 \leq (M-E) \tau_n + M - 1 - (M-E)$$

nce the total number of descending edges in a graph is equal to M-1. Since each adjoint has touching number at most τ_n-1 , the total touching number of the E adjoints is

$$M_2 \leqslant E \tau_n - E$$
.
$$M_1 \pm M_2 \leqslant M \tau_n - 1$$
.

hus.

) the average touching number of a tree is less than τ_n .

Next we note that any centerpoint q in the graph which is not a member of any ee that can be constructed in the above procedure must have touching number so than τ_n since its touching points have separation greater than d_q by Lemma 2.

Besides the case A to complete the proof, it remains to consider the possibility at a given centerpoint is a member of more than one tree or one subtree.

If z is an internal point or an endpoint of k distinct subtrees of the partition, en z is the touching point of k centerpoints y_1, y_2, \dots, y_k and z hasseparation less than the minimum of the touching distances of each y_i . The k subtrees are contained in one tree or more. If z is an endpoint, its touching number is at most $\tau_n - k$ by

Lemma 6. If z is an internal point, the number of edges descending from z is at least $m_s - \tau_n + k$. If the number of vertices in the subtree of z and its descendants is l, the sum of the touching numbers of these l points is $l\tau_n - k$ by the same reasoning used above. Hence we can consider z equivalent to k separate subtrees starting from z, each subtree having l points. The total touching number of each subtree is $l\tau_n - 1$ so that the average touching number for the trees including the k subtrees is less than τ_n .

References

- [1] Rogers, C. A., Packing and Covering, Cambridge: The University Press, 1964.
- [2] Green, P. J. & Sibron, R., Computing Dirichlet Tessellations in the Plane, *The Computer Journal*, 21, pp. 168-173.
- [3] Brostow, W. & Dussault, J. P., Construction of Voronoi Polyhedra, J. of Comput. Phys, 29(1978), 8
- [4] Shamos, M. I. & Hoey, D., Closestpoint Problem, Proc. 16th Ann. IEEE Symp. Foundations Comp. (1975), 151-162.
- [5] Klee, V., On the Complexity of d-dimensional Voronoi Diagrams, Arch. Math., 34 (1980), 75-80.
- [6] Odlyzko, A. M. & Sloane, N. J., A., New Bounds on the Number of Unit Sphere That Can Touch a Spheres in n Dimensions, J. Combin. Theory, 26 (1979), 210-214.
- [7] Cassels, J. W. S., An Introduction to the Geometry of Numbers, in Grundleheren. Math. Wissenschai Vol. 99. New York: Springer-Verlag, 1959.