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A: GENERAL PROPERTY OF THE QUADRATIC
DIFFERENTIAL SYSTEMS |

7Zuu DEMING (ﬁwf o)

Abstract

In this paper, it is proved that the quadratic differential systems with a weak saddle of
o1der 3or 3 haye 1o closed or smgular closed orbit. Then by the 1esults of [3], ‘it follows
that the gleatest order of the homoclinic loop bifurcation of a qua.dratw differential system
is between 2 and 3 It means a homoclinic loop can be split into at most three limit cycles. '

Professor. Ye Yanqian conjectures that no quadratio differential system has a
10moclinie loop (simply denoted by HLB) through a weak saddle of order 8. Joyal’s
‘esult (see Theorem 1) makes us confirm this conjecture even more.

In this paper, we prove that a quadratic differential system with a weak saddle
f order 2 or 3 has not any closed or singular closed orbits. This conclusion is stronger
han what has been expected.

Consider the real quadratio differential systerns with a weak saddle

&= 2+ @107+ aswy -+ azy?,
Y= —y -+ byy®+ bazy -+ bear®,
Through a polyhomial transformation
s=u+ > aui,

2<itjar
y=v+_ 2 by,

2<idigr

@

&)

ystem (1) can become
. L3
u=u-+ > eut o'+ h.0.t.,

=1

= ~fv+2d/v’+1u’+h o.t..

=1
Denote R,=0, R,=k,(c;+d;), =1, 2,---, k, where k; ’s are suitable positive
mstants, .
Definition. If Ri=Ra=---=R;_3=0, R;+0, then the origin O is called @ weak
ddle of order j of the system (1), and B; the jih saddle walue. An HLB through a
eak saddle of order jisof order j if Ro=-- «=R; 1=0, R;#0, where ng,,i Ry,
o (see[1]).

For convenience; we first formulate some main results obtained in (1, 2, 3].
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Theorem 1. If system (1) has an HLB of order k, then any perturbation of
(1) has at most b limit cycles and, for any i<k, there ewists a perturbation with ea;actlg
¢ limdt cycles.
Theorem 2%,
B1="b1ba— a1a,,
Ry =aab; (2a3— by) (@a+2b1) —aghy (2bs—ay) (ba+2ay),
= (@1b1+ G3ba —Baghs) (@abs (40 —a3) —asha (dai—b3)).
When Ry=R;=R;=0, the system (1) is intograble. Moreover, when the variab
and the cofficients in system (1) are complex, 4Ry, iRg, 4R, are three the first fo
values of the singular point O,

* In the paper [3], we easily apply the Treorem 2 to prove that the quadra
differential system with a weak saddle of order no less than 2 cannot possess we
fbci, or other weak saddles, or degenerate singular points with two zero eigenvalu

In this paper, we apply the Theorem 2 to prove ancther general property of 1
quadratio differential systems,
Theorem 8. The quadratic differential systems with a weak saddle of order 2
8 have not any closed or simgular closed orbits.
Then by the results of [3] about the emstence of the HLB of order 2, we hs
the following corollary.’'
Corollary. The greatest order of the HLB of [the ‘quadratic dfbﬁerentwal syste
s between 2 and 3.
- By Theorem 1, we see that an HLB possessed by a quadratic differential syst
can be split into at most three limit cyecles,
Before proving Theorem 3, we show four propositions. As we will see, the rest
oonta.iped in these pi:opositions are more than those in Theorem 3,
Proposition 1. Supposea+b, d+2. Then the system
& =a+ -+ day +by?,
y=—y—1y? —day —as®.
has no closed or singular closed orbit.
Proof Under the transformation

u=g+y, v=z—49, {
system (4) becomes

'd='v+—4]l (b—a)u’+—§-(2—a-—-b)wv+—1—(b—a)fu’=P,

\vs

'13=u+% (2—Fa+b+2d)u”+%-(a—-b) u'v+%- (2+a+_b—2d) v¥=Q,

Then we consider the comparison system .
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U=v+= (2 —ag—b)uv= Po,
. 1 @
v=u+E (2+w+b+2d)u2+z(2+w+b—2d)f02=Qo.

It i easy to see that the orbits of system (7) are symmetric with respect to the
U-axis, and system (7) can. be obfained if we substitute (a+5)1/2 for ¢ and b in
(4) and then use the transfor mation (5). Thus we seé thai, for system (7), Bi=Ry=
R;=0. By Theorem 2, the system is integrable. . N

" The divergence of the system (6).is div (P, Q) =(2—d)v, so the closed or
singular closed orbit of (6), if it exighs, must iﬁtersect the U-axis,

If a-+b+2d+2=0, then the U-axis (cut out the origin) is transversal to the
vector field, and the separatrices through saddle 0O are tangent to thé Vlines .u‘= +v.
So the systems (6) and (7) have not any closed or singular olosed orblts

Now we prove the proposition in cage a—i— b+ 2d+2<0, The proof in ocase g+ b+
2d+2>0 is gimilar , .

‘Without loss of generahty, we ma.y assume b>w In fact, 1f b<a; ‘we only need
o uge a transformation
’ - (u, v, t)l—>(u —u, —t) _

If we notice that: i) toth line § u= :!:lb are transverses (eut out the or1g1n)
when ¢b+0; ii) one of the lines ¥ — £ is an integral line and the other congists of
bwo half lines Wlthout contact when ab—9; l‘Ll) the negative U—ams is a trangverse,
bhen we see that we only need to prove the pro*oosﬂ;mn in the seetor >0, —1<
o<1, '

Suppose the system (6) has a cloged or smgular elosed orblt T. Then we show
bhat thig will lead to a,_eontradlotlon

Denclio P*=P—Py=

% @+, Q=Q-Q=1 (a-Buo,

Lot T4 (Ts) be the part of T which is situated abeve (below) the U-axig, &4 (Sa)
be the region bounded by 7T (T,) and the U-axis, 4 and B (the abseissa u,<uz) be
jwo interseotion points of T with the U-axis, M (N) be the lefbest (rightest) point
f T, 81 (T7) be the symmetrio image of Sy (7) Wlth respect to the U-axis, If T is'a
singular olosed orbit, then we have M= A4, :

Now we prove

_ SicSs. (8)

Suppose the inclusion relation (8) is not true.

Then, i) if A ig not the oi'igin, by the relations

P[A,B=—i'-(b—a)u2>0, Q|A>0 a.nd Q|B<0,

wo gee that T and 7', must have at least two intersection points 0 and D which are
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different from A and B;
ii) if A is the origin, by the relations
9P,>0, Qo> |Q*|, | Po|>P*>0 when u>0 small
and ' [v] <w, 9)
P*>0, 2Q*<0, »
we see, when v is small and ﬁxed the following inequality keeps true
| Py >l g "
So T, is situated below T when % ig small enough. Thus T: and T, also hav
Jeast two intersection points 0 and D which are different from A4 and B,
It is easy 1o see that O, D can only be situated on the orbit segment N.M,
‘We use E; F to denote the lowest and the highest points of T' respectively,
Consider the symmetrie vector field of system (6) with respoot to the U-axi
=P |
o=@’
where P’=—fv+-i—(b—a)u”—%(2—a-—b)uv+%—(b—a)v’,‘

Q=—u-— %— 2+a+b+2d) u’+%(a—b) ufv—il @+a+b—-24d) 42

Since T, and 7', have at least four intersection points A, B, O and D, and ¢
are situated on NM, we see that the systems (6) and an have at least two tang
points Ty, I, on the orbit segment BM. |

At the point I;, we must have

Qo+ Q" _ Q _ —Qut+@Q

Pot-P* P TP =P+ P
By the properties of the fraction, we get '
Q] e ' ‘ {
Pl P iy S
From (P*)-*@Q*>0 on Ty, it follows that P7Q>0 at I; Thus I; can only
situated on the segmental orbit N H. :
Let 5=wv/u. Then .

Q@ _ 2uw '= _ 2k
R 1+k2°
It is easy to see thab k(1+4%%) ! is a strictly increaging function of £ when
<1. From the convexity of T, it follows that Q/P strictly decreases (from -+ oo-
along the segmental orbit NE, and NE has at most one inferseotion point 1
the line v=~/%wu. Hence @*/P* striotly increagses along N E, Thus there exactly e
one point on N H such that the equality (12) holds. :
Now we see T'; and 7'y cannot have trangversal intersection pomts besides A.and
B, It means (8) is valid, '
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Then by 0= LPd@—chu= ” div (P, Q) dudv
8iu8y -
@Q—-d)vdudv+0, .
B,U8,s )

the propoigiton follows immediately. .

Remark 1. When g=b, or d=0, or d=2, we bhave Ri=Ry=R;=0, hence the
system (4) is integrable, When d=—1/2, ab=1/4, we also have By;=Ry=R;=0, i.
e., the gystem (4) is integrable. It is easy to prove thatl, in the last cage, there exists
a quadratio curve solution not through the origin ‘

_ 4+ b+ by -+ avP+ 20y + b2 =0,
and a cubio ourve solution
16+24 (w+1) +6((a+D) 2+ @+a+b)ay+ (b+1)¢") +ala+Da®
+3(a+1)a:’y+3(b+1)wy’+b(b+1)y3 =0,
Proposition 2. Ifb+#2, then the system
T=p+2?+y?=P,
. y=—y—as—bay=Q
has not any closed or sfmgular closed orb'z,ts

Proof: . : =

. Since the divergence div(P, Q)= (2 b)m neither closed nor smg'ular closed
orbit can be entirely situated in the leff ha,lf—plane L

Then 1f we notice that we always have P>0 on the Y—a.xls (exeept the or1g1n)

@3

and the coordinate axes are the ta,ngent lines of the separatrices through saddle 0,
the proposition follows,

Remark 2. We se6 Ry= ib(b 2) (2b+1) and Rs—O when =0 or b=2; Ry=
—'75a/8 when b= —1/2. So if b= ~1/2 and =0, the gystem (13) is integrable, and
has a straight line solution y=0 and only two singular points (0, 0), (—1, 0).

Propoeutlon 3. If a+b, then the system

s=a-+oy+by?,

14
y=~y—oy—as* 9
has not any closed or singular closed orbits.
Proof Through the transformation (5), the system (14) becomes
=0+ 711_ G- a)ut—L (a+B)uw+L (b—a)e?=P,
: ] 2 4 @5

fz;=u+i— (2+a—l—b)u”—l——21—(a—b)u®+741:~(a+b—2)'v2=Q.

Tts divergence is div (P, Q) = —o.

_ Now it is eagy to see that the proof of the proposition can be carried on in the
game manner as that of the Proposition 1. |

Proposition 4. If b0, then the sysiem
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s=o-+by?=P,
y=—y—ay—as’=Q.
has not any closed or simgular closed orbits.

Proof If we notice that: i) div(P, @) = —u, ii) the Y—axis congists of two half
lines without contact, then we can prove the proposmon sumlary to the proof of
Proposition 2.

Proof of Theorem 3 Through a soale transformatlon s=hu, y Iw, the sys
(1) beoomes

(16)

=1+ asht® + askun+ ash 122,
0= =0+ biov?+ bahuv+ bsh k" u? , : (
i) If @15, %0, ‘we take h=a7?, k= —b;l. Then aih'—-'= —bilc=1, and a2k= -b;h
Bi=bibs—a1a9=0. -
So we may as well assume @y = —b; =1, as= —‘bg——d a3=b and. b3= —a, Now-
gystem (1) hag the form of (4), and R2=d(d—2) (2d-+1) (b—a).
When R,+0, we have a+b, d+0, 2 and — 1/2 :
Since R;~0 when a=b, or =0, or d= -2, and B;=T5(b—a) (4asbs+1) /32 w.
d= —1/2 we see that we should ha,ve cl= —1/2 aa&b and aghs %= — 1/4 if R1 R,
Ry#0, - i
1i) if by=0, ay#0, then gy=0 by R;=0, and we may agsume g;=1 by an.
In thig case, the system (1) becomes
&=+ o+ agf®,
y= —y+ bazy -+ baa?. (
a) When a;=0, we get By=R;=0, and the gystem (18) is 1ntegrable
b) When g;+0, we may assume a;=1(or—1) when g,8,>0(or<0),
Now Ry=TFba(ba+2) (26,—1),
If ba=0 or by= —2, then Ry=R;=0, the system (18) is integrable,
If by=1/2, then Ry=0, B;="T75b3/8. _
Thus, when b;=0, @, %0, Ry=0, Ry#0 (or Ry=R,=0, R3+0), the system
oan always be ritten in the following form
a.; =z+a?ty?
= —y—boy— aa;
where b+0, 2, —1/2(or b=—1/2, a+0).
iii) If @;=0, b;%0, we only need to change (v, y, §) info (y, , —&). Then
will return to the case ii).
iv) If @4="01=0, then Ra=2 (albs—asb3).
a) When asby# 0, we may assume agy= —by=1,
Now E,=0 is equivalent to ag= —bs. Thug Rg—-O infers B3=0 and the integra-
bility of the system (1).
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b) When ay=0, ba#0, we take by= —1,

Then R3;=0 means a3=0, and it follows that R,=0.

0) When 430, 62=0, similar to the case b), Ry=0 implies R3=0,

d) When ay=105,3=0, we easily see Ry=R;=0,

Thus, when a;=b; =0, the system (1) cannot have a weak saddle of order 3 (by
3], the sum of the orders of two weak gaddles is 2). And when 0 is a weak saddle
f order 2, we must have the case a) or b) (case.c)). In the case a), the system @
1ay be transformed into (14), where a+b. In the case b) the system (1) may be
swritten into (16), where b+0.

From the discussion above, we see, the quadratio differentfial systems with a
eak saddle of order 2 or 3 can always be transformed into system (4) (where d=0,
. @%b, moreover, a-b#1/4 when d=—1/2), (19), (14) or (16). Then Theorem 3
Nlows immediately form Propositions 1—4,
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