KAEHLER SUBMANIFOLDS IN A LOCALLY SYMMETRIC BOCHNER-KAEHLER MANIFOLD

Guo Xiaoying (郭孝英)* Shen Yibing (沈一兵)*

Abstract

This paper gives some sufficient conditions for a compact Kaehler submanifold M^n in locally symmetric Bochner-Kaehler manifold \widetilde{M}^{n+p} to be totally geodesic. The condition are given by inequalities which are established between, the sectional curvature (resp. hole morphic sectional curvature) of M^n and the Ricci curvature of \widetilde{M}^{n+p} . In particular, similar results in the case where \widetilde{M}^{n+p} is a complex projective space are contained.

§ 0. Introduction

A locally symmetric Bochner-Kaehler manifold means a Kaehler man with parallel Riemannian curvature tensor and vanishing Bochner curvatensor. Complex space forms are special locally symmetric Bochner-Kamanifolds. In this paper, we will prove the following results.

Theorem 1. Let M^n be a compact Kaehler submanifold of complex dimension 2 in a locally symmetric Bochner-Kaehler manifold \widetilde{M}^{n+p} of complex dimension 1. Let $Q_{\max} = \max_{x \in M^n} \{\widetilde{R}ic(\widetilde{M})_x\}$ and $Q_{\min} = \min_{x \in M^n} \{\widetilde{R}ic(\widetilde{M})_x\}$, where $\widetilde{R}ic(\widetilde{M})_x$ denotes the curvature of \widetilde{M}^{n+p} at the point x. If the sectional curvature K_M of M^n satisfies

$$K_{M} > \frac{1}{2(n+p+2)} \Big[Q_{\max} - \frac{n+p}{2(n+p+1)} Q_{\min} \Big],$$

then M^n must be totally geodesic in \widetilde{M}^{n+p} .

Theorem 2. Let M^n and \widetilde{M}^{n+p} be the same as in Theorem 1. If the holomoresectional curvature H_M of M^n satisfies

$$H_{M} > \frac{2}{n+p+2} \left[Q_{\max} - \frac{n+p}{2(n+p+1)} Q_{\min} \right],$$
 (

then M^* must be totally geodesic in \widetilde{M}^{n+p} .

As is well known, a complex projective space CP^{n+p} endowed with the St Fubini metric of constant holomorphic sectional curvature 1 is a locally symmetric

Manuscript received July 17, 1986.

^{*} Department of Mathematics, Hangzhou University, Hangzhou, Zhejiang, China.

chner-Kaehler manifold with constant Ricci curvature $\frac{1}{2}(n+p+1)^{(2)}$. Therefore, have from Theorems 1 and 2 the following corollaries immediately.

Corollary 1. [5] Let Mⁿ be a compact Kaehler submanifold of complex dimension >2 in CP^{n+p} with constant holomorphic sectional curvature 1. If the sectional curvature M^n is larger than 1/8, then M^n is totally geodesic in CP^{n+p} .

Corollary 2⁽⁴⁾. Let Mⁿ and CP^{n+p} be the same as in Corollary 1. If the holomore ic sectional curvature of M^n is larger than 1/2, then M^n is totally geodesic in $\mathbb{C}P^{n+p}$.

Note that the proof of the theorem in [5] is based on the result of [4]. Here we ll give an entirely self-contained proof of Theorem 1, which differs from that in]. By the way, we will use the moving frame method and the notation of [3] and

§ 1. Fundamental Formulas

Let M^n be a Kaehler submanifold of complex dimension n in a Bochner-Kaehler anifold \widetilde{M}^{n+p} of complex dimension n+p, and J (resp. \widetilde{J}) the complex structure $M^n(\text{resp. } \widetilde{M}^{n+p})$. We choose a local field of orthonormal frames $e_1, \dots, e_{n+p}, e_{1}$ $e_1, \dots, e_{(n+p)^*} = \tilde{J}e_{n+p}$ in \tilde{M}^{n+p} in such a way that, restricted to $M^n, e_1, \dots e_n, e_{1^*}, \dots, e_{n^*}$ e tangent to M^n . (*) With respect to the frame field of \widetilde{M}^{n+p} chosen above, let be the field of dualframes. Then, restricted to Mⁿ, we have (cf. [3])

$$\omega^{\lambda} = 0, \ \omega_{j}^{\lambda} = \sum_{j} h_{ij}^{\lambda} \omega^{j}, \ h_{ij}^{\lambda} = h_{ji}^{\lambda}, \tag{1.1}$$

$$d\omega^i = -\sum_i \omega^i_i \wedge \omega^i_i$$

$$d\omega^{i} = -\sum_{j} \omega_{j}^{i} \wedge \omega^{j},$$

$$d\omega_{j}^{i} = -\sum_{k} \omega_{k}^{i} \wedge \omega_{j}^{k} + \frac{1}{2} \sum_{k,l} R_{ijkl} \omega^{k} \wedge \omega^{l},$$

$$(1.2)$$

$$R_{ijkl} = \widetilde{R}_{ijkl} + \sum_{i} \left(h^{\lambda}_{iik} h^{\lambda}_{jl} - h^{\lambda}_{ii} h^{\lambda}_{jk} \right),$$
 (1.3)

$$R_{\lambda\mu ij} = \widetilde{R}_{\lambda\mu ij} + \sum_{k} (h^{\lambda}_{ik} h^{\mu}_{jk} - h^{\lambda}_{jk} p^{\mu}_{ik}), \qquad (1.4)$$

here

$$\tilde{R}_{ABOD} = \delta_{BD}L_{AC} - \delta_{BC}L_{AD} + \delta_{AC}L_{BD} - \delta_{AD}L_{BC} + \tilde{J}_{BD}M_{AC} - \tilde{J}_{BC}M_{AD}
+ \tilde{J}_{AC}M_{BD} - \tilde{J}_{AD}M_{BC} + 2\tilde{J}_{CD}M_{AB} - 2\tilde{J}_{AB}M_{CD},$$

$$L_{AB} = \frac{1}{2(n+p+2)} \left[\tilde{R}_{AB} - \delta_{AB}\tilde{\rho}/4(n+p+1) \right],$$
(1.6)

$$L_{AB} = \frac{1}{2(n+p+2)} [\tilde{R}_{AB} - \delta_{AB}\tilde{\rho}/4(n+p+1)], \qquad (1.6)$$

$$\widetilde{R}_{AB} = \sum_{c} \widetilde{R}_{CACB}, \ \widetilde{\rho} = \sum_{A} \widetilde{R}_{AA},$$

$$M_{AB} = -\sum_{c} \widetilde{J}_{BC} L_{AC}, \qquad (1.7)$$

^(*) We use the following convention on the range of indices unless otherwise stated:

 $A, B, C, \dots = 1, \dots, n+p, 1^*, \dots, (n+p)^*;$

 $a, b, c, \dots = 1, \dots n;$ $i, j, k, \dots = 1, \dots, n, 1^*, \dots, n^*;$

 $[\]alpha, \beta, \dots = n+1, \dots, n+p;$ $\lambda, \mu, \dots = n+1, \dots, n+p, (n+1)^*, \dots, (n+p)^*.$

$$(\tilde{J}_{AB}) = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \\ 0 & 0 \end{bmatrix} \underbrace{0}_{I_p & 0}$$
 (1.8)

Moreover, we have

$$L_{ab} = L_{a^*b^*}, \quad L_{a\beta} = L_{a^*\beta^*} \tag{1.9}$$

and

$$M_{ab} = L_{ab^*}, \quad M_{a^*b} = -M_{ab^*} = L_{ab}, \quad M_{a^*b^*} = -L_{a^*b}, \\ M_{a\beta} = I_{a\beta^*}, \quad M_{a^*\beta} = -M_{a\beta^*} = I_{a\beta}, \quad M_{a^*\beta^*} = -L_{a^*b}.$$

The second fundamental form $\sigma(X, Y)$ of M^n in \widetilde{M}^{n+p} is

$$\sigma(X, Y) = \sum_{i} h_{ij}^{\lambda} \omega^{i}(X) \omega^{j}(Y) e_{\lambda}, \qquad ($$

which satisfies (3)

$$\sigma(JX, Y) = \sigma(X, JY) = \tilde{J}\sigma(X, Y),$$

$$h_{a \cdot b^*}^{\lambda} = -h_{ab}^{\lambda}, \quad h_{a \cdot b}^{\lambda} = h_{ab^*}^{\lambda},$$

$$h_{ab^*}^{\alpha} = -h_{ab}^{\alpha}, \quad h_{a \cdot b}^{\alpha} = h_{ab}^{\alpha}.$$

$$($$

Let h_{ijk}^{λ} and h_{ijkl}^{λ} be the first and second covariant derivatives of Va Waerden-Bortolotti of h_{ij}^{λ} . Suppose that \widetilde{M}^{n+p} is locally symmetric. We have (1)

$$h_{ijk}^{\lambda} - h_{ikj}^{\lambda} = -\tilde{R}_{\lambda ijk}, \qquad ($$

$$\begin{split} h_{ijkl}^{\lambda} - h_{ikjl}^{\lambda} &= -\widetilde{R}_{\lambda ijkl} \\ &= -\sum_{\mu} \widetilde{R}_{\lambda \mu jk} h_{il}^{\mu} - \sum_{\mu} \widetilde{R}_{\lambda i\mu k} h_{jl}^{\mu} - \sum_{\mu} \widetilde{R}_{\lambda ij\mu} h_{kl}^{\mu} + \sum_{m} \widetilde{R}_{mjfk} h_{ml}^{\lambda}, \\ h_{ijkl}^{\lambda} - h_{ijlk}^{\lambda} &= \sum_{m} h_{im}^{\lambda} R_{mjkl} + \sum_{m} h_{mj}^{\lambda} R_{mikl} + \sum_{\mu} h_{ij}^{\mu} R_{\mu \lambda kl}. \end{split}$$

Let $H_{M}(X)$ denote the holomorphic sectional curvature of M^{n} determined unit vector X tangent to M. From (1.3) and (1.5) it follows that $^{(3)}$

$$H_{M}(X)=8L(X,~X)-2\|\sigma(X,~X)\|^{2},$$
 where $L(X,~X)=\sum_{i,j}L_{ij}\omega^{i}(X)\,\omega^{j}(X)$.

§ 2. Maximum Principles

Let M^n be a compact Kaehler submanifold in a locally symmetric Boc Kaehler manifold \widetilde{M}^{n+p} . Let $UM = \bigcup_{x \in M^n} U_x(M)$ and $U_x(M) = \{X \in T_x(M) \mid \|X\}$ so that $UM \to M$ is the unit tangent bundle over M^n . We define a function f: R by $f(X) = \|\sigma(X, X)\|^2$ for $X \in UM$. On putting $X = \sum_i \xi^i e_i$, we have

$$f(X) = \|\sigma(X, X)\|^2 = \sum_{\lambda} (\sum_{i,j} h_{ij}^{\lambda} \xi^i \xi^j)^2.$$

Since UM is compact, f attains the maximum at a unit vector in UM. Suppositive this vector is $X = \sum \xi^i e_i \in U_x(M)$ for a point $x \in M$. For any $Y = \sum_i \eta^i e_i \in U_x(M)$, let $\gamma_Y(t)$ be a geodesic in M determined by the initial conditions $\gamma_Y(0) = x$, $\gamma_Y'(0) = Y$.

By parallel translating X along $\gamma_Y(t)$, we obtain a vector field $\widetilde{X}_Y(t) = \sum \xi^i(t) e_i$ with $\widetilde{\zeta}_Y(0) = X$. Put $f_Y(t) = f(\widetilde{X}_Y(t))$. From the maximum condition we get

$$0 = \frac{d}{dt} f_{Y}(t) \Big|_{t=0} = 2 \sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \xi^{j} \right) \left(\sum_{i,j,k} h_{ijk}^{\lambda} \xi^{i} \xi^{j} \eta^{k} \right), \tag{2.2}$$

$$0 \geqslant \frac{d^3}{dt^3} f_Y(t) \Big|_{t=0} = 2 \sum_{\lambda} \left(\sum_{i,j,k} h_{ijk}^{\lambda} \xi^i \xi^j \eta^k \right)^2$$

$$+ 2 \sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^i \xi^j \right) \left(\sum_{i,j,k,l} h_{ijkl}^{\lambda} \xi^i \xi^j \eta^k \eta^l \right).$$

$$(2.3)$$

Hence, we have the following lemma.

Lemma 1. For arbitrary unit vector $Y = \sum_{i} \eta^{i} e_{i} \in U_{\epsilon}(M)$, (2.2) and (2.3) hold.

Now assume that $Y = \sum \eta' e_i \in U_x(M)$ and $\langle X, Y \rangle = 0$. Let $\beta(t)$ be a curve on the there $U_x(M)$ such that $\beta(0) = X$ and $\beta'(0) = Y$. Then, we have the following mma.

Lemma 2. At the maximum point $X \in U_{\mathfrak{s}}(M)$ of $f_{\mathfrak{s}}$

$$0 = \sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \xi^{j} \right) \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \eta^{j} \right), \tag{2.4}$$

$$0 \geqslant 2\sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \eta^{j}\right)^{2} + \sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \xi^{j}\right) \left(\sum_{i,j} h_{ij}^{\lambda} \eta^{i} \eta^{j}\right) - f(X)$$
(2.5)

r any $Y \in U_x(M)$ with $\langle Y, X \rangle = 0$.

Proof Suppose that $\beta(t) = \sum_{i} \beta^{i}(t) e_{i}$ with $\sum_{i} (\beta_{i}(t))^{2} = 1$.

As X is a critical point of f we have

$$0 = \frac{d}{dt} f(\beta(t)) \big|_{t=0} = 2 \sum_{\lambda} (\sum_{i,j} h_{i,j}^{\lambda} \beta^{i}(0) \beta^{j}(0)) (2 \sum_{i,j} h_{i,j}^{\lambda} \beta^{i}(0) \beta^{\prime j}(0)),$$

ich is just (2.4) by the initial condition of $\beta(t)$.

Moreover, we have at t=0

$$0 \geqslant \frac{d^{2}}{dt^{2}} f(\beta(t)) \Big|_{t=0} = 8 \sum_{\lambda} \left(\sum h_{ij}^{\lambda} \xi^{i} \eta^{j} \right)^{2}$$

$$+ 4 \sum_{\lambda} \left(\sum_{i,j} h_{ij}^{\lambda} \xi^{i} \xi^{j} \right) \left(\sum_{i,j} h_{ij}^{\lambda} \eta^{i} \eta^{j} + \sum_{i,j} h_{i,j}^{\lambda} \xi^{i} \beta^{iij} (0) \right).$$

$$(2.6)$$

ce $\sum_{i} (\beta^{i}(t))^{2} = 1$, we have $\sum_{i} \beta^{i}(t) \beta^{\prime i}(t) = 0$ and $\sum_{i} \beta^{i}(t) \beta^{\prime \prime i}(t) = -1$, which images that

$$\beta^{\prime\prime i}(0) = -\xi^i + \zeta^i \tag{2.7}$$

h $\sum \xi^i \zeta^i = 0$.

Substituting (2.7) into (2.6) and using (2.4), one obtains (2.5) immediately. is, Lemma 2 is proved.

§ 3. The Proof of Theorem 1

Let $X \in U_x(M)$ be a maximum point of the function f defined by (2.1). It follows from (1.12) and (2.1) that $JX \in U_x(M)$ is also one. So we can choose a local field of frames such that $e_1 = X$ and $e_{1*} = JX$ at x. With respect to such a frame field,

Let Y be e_2 and e_2 , respectively, in Lemma 1. Then we have from (2.3)

$$\sum_{\lambda} (h_{112}^{\lambda})^2 + \sum_{\lambda} h_{11}^{\lambda} h_{1122}^{\lambda} \leqslant 0 \quad \text{and} \quad \sum_{\lambda} (h_{112^{\bullet}}^{\lambda})^2 + \sum_{\lambda} h_{11}^{\lambda} h_{112^{\bullet}2^{\bullet}}^{\tau} \leqslant 0$$

which imply that

$$\sum_{1} h_{11}^{\lambda} (h_{1122}^{\lambda} + h_{11222}^{\lambda}) \leq 0.$$
 (3.1)

Moreover, by Lemma 2, we have

$$\sum_{\lambda} h_{11}^{\lambda} h_{1j}^{\lambda} = 0 \quad (j \neq 1),$$

$$\sum_{\lambda} h_{1*1*}^{\lambda} h_{1*j}^{\lambda} = 0 \quad (j \neq 1*)$$

and

$$\begin{split} & 2\sum_{\lambda}(h_{1j}^{\lambda})^{2} + \sum_{\lambda}h_{11}^{\lambda}h_{ij}^{\lambda} \leqslant f(X) \quad (j \neq 1), \\ & 2\sum_{\lambda}(h_{1*j}^{\lambda})^{2} + \sum_{\lambda}h_{1*1*}^{\lambda}h_{jj}^{\lambda} \leqslant f(X) \quad (j \neq 1*), \end{split}$$

where

$$f(X) = \|\sigma(e_1, e_1)\|^2 = \sum_{i} (h_{i1}^{\lambda})^2.$$

From (1.13), (1.14) and (1.15) we have

$$\begin{split} h_{112^{\circ}2^{\circ}}^{\lambda} &= -h_{1122}^{\lambda} + \sum_{i} h_{1^{\circ}i}^{\lambda} R_{i122^{\circ}} + \sum_{i} h_{i}^{\lambda} R_{i1^{\circ}22^{\circ}} + \sum_{\mu} h_{1^{\circ}1}^{\mu} R_{\mu\lambda22^{\circ}} \\ &+ \widetilde{R}_{\lambda1212} - \widetilde{R}_{\lambda1^{\circ}12^{\circ}2} - \widetilde{R}_{\lambda1^{\circ}212^{\circ}} - \widetilde{R}_{\lambda11112^{\circ}2^{\circ}}. \end{split}$$

which together with (3.1) yields

$$0 \geqslant \sum_{\lambda,i} h_{11}^{\lambda} \left(h_{1^*i}^{\lambda} R_{i122^*} + h_{i1}^{\lambda} R_{i1^*22^*} \right) + \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11^*}^{\mu} R_{\mu\lambda 22^*} + \sum_{\lambda} h_{11}^{\lambda} \widetilde{R}_{\lambda 1212}$$

$$(II) \qquad (III)$$

$$- \sum_{\lambda} h_{11}^{\lambda} \widetilde{R}_{\lambda 1^*12^*2} - \sum_{\lambda} h_{11}^{\lambda} \widetilde{R}_{\lambda 1^*212^*} - \sum_{\lambda} h_{11}^{\lambda} \widetilde{R}_{\lambda 112^*2^*}.$$

$$(IV) \qquad (VI)$$

Since $R = {}_{11^{\circ}22^{\circ}} = -R_{122^{\circ}1^{\circ}} - R_{12^{\circ}1^{\circ}2} = R_{1212} + R_{1^{\circ}21^{\circ}2} = K_{12} + K_{1^{\circ}2}$

where K_{ij} denotes the sectional curvature of M^n at x for the plane spanned by e_{ij} , it follows from (1.13), (3.2) and (3.4) that

$$(I) = 2f(X) (K_{12} + K_{102}).$$

By means of (3.4), (1.4) and (1.5)-(1.13), a direct computation shows

(II) =
$$-2\sum_{\lambda,\mu}h_{11}^{\lambda}h_{11}^{\mu}L_{\lambda\mu}-2L_{22}f(X)-2\left(\sum_{\lambda,i}h_{11}^{\lambda}h_{2i}^{\lambda}\right)^{2}$$
.

Using (1.14) and (1.5)—(1.13), we can derive that

$$\begin{split} (\text{III}) &= \sum_{\lambda,\mu} h_{11}^{\lambda} h_{22}^{\mu} L_{\lambda\mu} - \sum_{\lambda,i} h_{11}^{\lambda} h_{2i}^{\lambda} L_{i3}, \\ (\text{IV}) &= \sum_{\lambda,i} h_{11}^{\lambda} h_{2i}^{\lambda} L_{i2}, \\ (\text{V}) &= \sum_{\lambda,i} h_{11}^{\lambda} h_{2i}^{\lambda} L_{i2i}, \\ (\text{VI}) &= -\sum_{\lambda,i} h_{11}^{\lambda} h_{22}^{\mu} L_{\lambda\mu} - \sum_{\lambda} h_{11}^{\lambda} h_{2i}^{\lambda} L_{i2i}. \end{split}$$

Substituting (3.6), (3.7) and (3.8) into (3.5), we obtain

$$0 \ge 2f(X)(K_{12} + K_{1*2}) - 2\sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - 2f(X) L_{22} - 2(\sum_{\lambda,i} h_{11}^{\lambda} h_{2i}^{\lambda})^{\frac{1}{2}}$$
(8.9)

the point x.

Now, consider the symmetric matrix $S = (S_{ij})$ where $S_{ij} = \sum_{\lambda} h_{11}^{\lambda} h_{ij}^{\lambda}$. (3.2) together th (1.13) shows that e_1 as well as $e_{1*} = Je_1$ is an eigenvector of S. Since $n \ge 2$, we n always choose $\{e_a, e_{a^*} = Je_a\}$ $(a \ne 1)$ in such a way that S is diagonal at x. With spect to the frame field chosen above, (3.9) becomes

$$0 \geqslant 2f(X) \left(K_{12} + K_{1\cdot 2} \right) - 2 \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda,\mu} - 2f(X) L_{22} - 2 \left(\sum_{\lambda} h_{11}^{\lambda} h_{22}^{\lambda} \right)^{2}. \tag{3.10}$$

Noting that $\widetilde{R}_{1212} = \widetilde{R}_{1^*21^*2} = L_{11} + L_{22}$, by (1.5), it follows from (1.3) and (1.13) at

$$2\sum_{\lambda}h_{11}^{\lambda}h_{22}^{\lambda} = \sum_{\lambda}(h_{11}^{\lambda}h_{22}^{\lambda} - h_{1-1}^{\lambda}h_{22}^{\lambda}) = R_{1212} - R_{1-21-2} = K_{12} - K_{1-2}.$$
 (3.11)

Substituting (3.11) into (3.10), we get

$$0 \geqslant AK_{12} + BK_{12} - 2\sum_{\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - 2f(X) L_{22}, \tag{3.12}$$

ere

$$A = 2f(X) - (K_{12} - K_{12})/2,$$

$$B = 2f(X) - (K_{12} - K_{12})/2.$$
(3.13)

On the other hand, from (3.11) and (3.3) we have

$$(K_{12} - K_{12})/2 = \sum_{\lambda} h_{11}^{\lambda} h_{22}^{\lambda} \leqslant 2 \sum_{\lambda} (h_{12}^{\lambda})^2 + \sum_{\lambda} h_{11}^{\lambda} h_{22}^{\lambda} \leqslant f(X).$$
 (3.14)

By similar arguments we also have

$$\frac{1}{2}\left(K_{1*2}-K_{12}\right)=\sum_{1}h_{1*1*}^{\lambda}h_{22}^{\lambda}\leqslant f(X). \tag{3.15}$$

nce, one sees from (3.13)—(3.15) that $A \ge 0$ and $B \ge 0$. Then, it follows from 12) and (3.13) that

$$0 \geqslant (A+B) K_{\min} - 2 \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - 2f(X) L_{22},$$

$$0 \geqslant 2f(X)K_{\min} - \sum_{\lambda,\mu} h_{11}^{\lambda} h_{21}^{\mu} L_{\lambda,\mu} - f(X) L_{22}, \tag{3.16}$$

ere K_{\min} is the minimum of the sectional curvature of M^n at x.

Under the assumption of Theorem 1, we have from (1.6) and (3.4)

$$\sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} + f(X) L_{22} \leq 2f(X) \frac{1}{2(n+p+2)} \left[Q_{\text{max}} - \frac{n+p}{2(n+p+1)} Q_{\text{min}} \right], \quad (3.17)$$

ch together with (3.16) yields

$$0 \gg f(X) \left\{ K_{\min} - \frac{1}{2(n+p+2)} \left[Q_{\max} - \frac{n+p}{2(n+p+1)} Q_{\min} \right] \right\}. \tag{3.18}$$

ollows from (0.1) and (3.18) that f(X) = 0, which implies, by (2.1), that $\sigma = 0$. i.e., M is totally geodesic, and Theorem 1 is proved.

§ 4. The Proof of Theorem 2

By similar arguments as in § 3, we take $Y = e_1$ and e_1 , respectively, in Lemma 1. Thus, we get

$$\sum_{i} h_{i1}^{\lambda} (h_{1111}^{\lambda} + h_{111*1*}^{\lambda}) \leq 0.$$
 (4.1)

Since

$$\begin{split} h_{111*1*}^{\lambda} &= -h_{1111}^{\lambda} + \sum_{i} h_{1*i}^{\lambda} R_{i111*} + \sum_{i} h_{1i}^{\lambda} R_{i1*11*} \\ &+ \sum_{\mu} h_{11*}^{\mu} R_{\mu\lambda 11*} - \widetilde{R}_{\lambda 1111*1*} - \widetilde{R}_{\lambda 1*11*1}, \end{split}$$

(4.1) becomes

$$0 \geqslant \sum_{\lambda,i} h_{11}^{\lambda} (h_{1•i}^{\lambda} R_{i111•} + h_{1i}^{\lambda} R_{i1•11•}) + \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11•}^{\mu} R_{\mu\lambda 11•} + \sum_{\lambda} h_{11}^{\lambda} (\tilde{R}_{\lambda 111•1•} + \tilde{R}_{\lambda 1•11•1}). \tag{4.2}$$
It is seen easily from (1.13) that

$$f(X) = \sum_{\lambda} (h_{11}^{\lambda})^{2} = \sum_{\alpha} (h_{11}^{\alpha})^{2} + \sum_{\alpha^{*}} (h_{11}^{\alpha^{*}})^{2}$$
$$= \sum_{\alpha^{*}} (h_{11^{*}}^{\alpha^{*}})^{2} + \sum_{\alpha} (h_{11^{*}}^{\alpha})^{2} = \sum_{\lambda} (h_{11^{*}}^{\lambda})^{2}.$$
 (4)

Using (1.5)—(1.14) and (4.3), a similar computation as in (3.6)—(3.8) gives to

$$(I) = 16f(X)L_{11} - 4f^{2}(X),$$

$$(II) = -2\sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - 2f(X)L_{11} - 2f^{2}(X),$$

$$(III) = -8\sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} + 8f(X)L_{11}.$$

Substituting these into (4.2), we obtain

$$0 > -10 \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - f(X) \left[6f(X) - 22L_{11} \right]. \tag{}$$

By virtue of (1.16) and $X = e_1$ we have

$$e_1$$
 we have $f(X) = 4L_{11} - H_M(X)/2$.

Substituting (4.5) into (4.4) and using (1.6), we can get

$$0 \geqslant -10 \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} L_{\lambda\mu} - f(X) \left[2L_{11} - 3H_{M}(X) \right]$$

$$= 3f(X) \left[\frac{\tilde{\rho}}{2(n+p+1)(n+p+2)} + H_{M}(X) \right]$$

$$- \frac{1}{n+p+2} \left[5 \sum_{\lambda,\mu} h_{11}^{\lambda} h_{11}^{\mu} \widetilde{R}_{\lambda\mu} + f(X) \widetilde{R}_{11} \right]$$

$$\geq 3f(X) \left\{ H_{L}(X) - \frac{2}{n+p-2} \left[0 - \frac{n+p-2}{n+p-2} \right] \right\}$$

$$\geqslant 3f(X)\left\{H_{M}(X) - \frac{2}{n+p+2}\left[Q_{\max} - \frac{n+p}{2(n+p+1)}Q_{\min}\right]\right\}.$$
The hypothesis (0, 2) and (4, 6) it follows that $f(X) = 0$, so that A

From the hypothesis (0.2) and (4.6) it follows that f(X) = 0, so that A totally geodesic and we have proved Theorem 2.

References

- [1] Chern, S. S., Do Carmo, M. & Kobayashi, S., Minimal submanifolds of a sphere with second if mental form of constant length, Func. Anal. Rel. Fig., (1970), 59-75.
- [2] Houh, C. S., Totally real submanifolds in a Bochner-Kaehler manifold, Tensor (N. S.), 32 (1978
- [3] Ogiue, K., Differential geometry of Kaehler submanifolds, Adv. in Math., 13 (1974), 73-114.
- Ros, A., Positively curved Kaehler submanifolds, Proc. A. M. S., 93 (1985), 329-331.
- Ros, A., & Verstraelen, L., On a conjecture of K. Ogiue, J. Diff. Geom., 19 (1984), 561-566.
- Shen Yibing, Totally real minimal submanifolds in a locally symmetric Bochner-Kaehler manifold J. Hangzhou Univ., 12 (1985), 432-440.