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Abstract.

This paper gives some sufficient conditions for a compact Kaehler submanifold M* in
locally symmetric Bochner-Kaehler manifold M"”‘P to be totally geodesic. The conditior
are given by mequa.htles which are established Vetween. the sectiohal curvature (zesp. hol
morphic sectional curvature) of X" and the Ricci curvature of Hrtp, In particular, simila

results in the case where M*? is a eompIex pro;ech ve spaee are contamed

§ 0. ‘Intrb'ducﬁtit)n

A locally symmetrioc Bochnér-Kaehler ‘manifold means a Kaehler man
with parallel Riemannian ourvature tensor and vanishing Bochner curv:
fensor. Complex space forms are - spema,l locally symmetric Bochner—Ka
manifolds. In this paper, we will prove the following results.

Theorem 1. Let M" be a compact Kaehler submanifold of complex dimensio
2 in a locally symmetric Bochner—Kaehler manifold JI**® of comples dimension 1
Let Quax =rzneall’.‘x” {Riec (M)} and Qmi“=?éi£n{1§w (ﬂ) o}, where Ric (M), denotesihe .
ourvature of M™? at the point ©. If the sectional curvature Ky of M" satisfies

;_ e (n‘+'1p+' 3y [ PTerTmY Qun . ._ (
thm M" must be totally geodesic in Mrts, B ‘ ‘
" Theorem 2. Let M" and M™* be the same as in Theoram 1. If the holomos
sectional curvature Hy of M" satisfies ' -

____.'P_
Hy >n+p+2 [me 2(n+p+1) Qm] (

then M" must be totally geodesic in M"*‘”
Ag ig well known, a complex propctlve space OP™*? endowed with the St

—_—

Fubini metric of constant holomorphio seotional ourvature 1 ig a loca]ly gymmetrio
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ohner—Kaehler manifold with constant Ricei curvature —:2[- (n+p+1)", Therefore,

have from Theorems 1 and 2 the following corollaries immediately.
Corollaryl.”™ Let M" be a compact Kaehler submansfold of complex dimension
*2 in OP™? with-constant holomorphic sectional mm)af/wre 1. If the sectional curvature
M s lwrger than 1/8 then M" 4s totally geodes'bc in OP 2, o
Corollary 24, Let M" and CP™*? bo the same as in Oo/rolla/ry 1. If the holomors
b0 sectional curvature of M is larger than 1/2, then M™ is totally geodesic in OP™*?,
Note that the proof of the theorem in [5] is based on the result of [4]. Here we
i give an entlrely Self-contained proof of Theorem 1, which differs from that in
]. By the way, we will use the moving frame method andthe notation of [3] and

IR

§1 Fundamental Formulas

Let M be a Kaehler submamfold of oomplex chmensmn nin a Boohner-KaehJer
anifold M"** of complex dimension n+p, and J (resp. J) the complex structure
M~ (vesp. M%), We choose a local field of orthonormal frames e, ---, €nig, f1r =
M, *%, Onigye =" Onsp ID M"‘”’ in such a way that, restricted to M y 81, "6y, O1a, **?) B
e.fangent to M". (s) With respect to the frame field of Jr*3, chosen above, leb
»A} be the field of dualframes. Then, restricted to M", we have (of. [31)

' @0, of= e, K=, @

dw,——zwk/\w, ,_.zR,,mw /\wf @)

o R\ﬂcl'—' ukl+2(hk 51 il J‘k):' o S (1-3)
R;.utJ—Rzuz,+2<h hﬂc Jkpiuk); T N e (1 .4)

here :
RABGD 5BJJLA0 - 5BGLAD + SAC'LBD - aADLBG+ 7 BDM A0 7 soMan

T oM T oMo+ 2T oM a2 ssMon, o)
L.w —————2(n+p+2> [7: 7 5,439/4(n+p+1)], S e W)

A AB—ERGAOB, p= Zﬁu, ‘
MAB——EJBGLAC; S R . ..@an

(*)° Wé nse the following convention on the range ‘of indices unless otherwise stated:
oetnan s Ay B, Cj.c00=1, ey mebp, 1%, ooy (mebp)*; )
8, b, ¢, o, omy gy Ky =y ey my 1%, e, 0% .
a, B, - -=7a+1 B e L n+p (n+1)* . (n+p)' ’
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0 -—I, 'l
_ I, 0} 0 I -
(J a8) = g . (1.8)
0 % J |
i, o0 |
Moreover, we have ' _
. Lab Luubi I’ag = &‘B’ X (1 . 9)
and
M¢b=,quO, Mu"b'—‘ —AIM~= Lab- ) Ma'b‘= fLa"bv (
’ o MGB = I"G'i“r Ma‘ﬂ = '—Mcﬁ' = I'a(h ‘ -Zwu‘ﬁ“; = Lw'ﬁo ‘
The second-fandamental form o (X, ¥) of M" in M"** ig o
e o(X, V)= Zhe! (D)o De, (
whioh satisfies™® : .
c(JX, Y)'=G(Xr JY) ='70(Xi n, (
hige= *h:b} " haw=hlys, (

hgpe= “haby R =h3. .
' Let kY. and hl,, be the first and second covarmn’o denvatlves of Va:
Wa.erden—Bortolottl of hi‘, Suppose that M is looa.lly symmetrm ‘We have™
T -Emk, IR v B

h‘l"lkl _hiz‘kjl - —RA.{M

== 2 Ewﬂohﬂ 2 Rmnkhn 2 Rwﬂ»hkl + 2 -ﬁmaikhmb
hqu hijlk Ehim milcl+2h lRmﬂc1+ 2 huRm.m R {

Let Hy(X) denote the holomorphic sectional curvature of M" debermmed
unit vector X tangent to M. From (1.8) and (1.5) it follows that“"’
Hy(X) = SL(X X)— 2||0'(X X)u C (
where L(X X) 2L¢,co (X)w’(X) ‘ -

§2. Maximum Principles
Let M" be a compact Kaehler submaﬁifold in a locally symmetrie Bo
Kaehler manifold M™*?, Let- UM= LLJI U (M) and U, (M)={X€T,(M)||X
N . reMn’

so that UM—>M is the unit tangent bundle over M". We define a function Vi ,
R by f(X) =|o (X, X||’ for XG UM On puttmg X—-Z&‘e‘, we have

F@-le@ D= Z(Eh 2. '

Since UM is compact, f attains the maximum at a unib vector fn UM Suppo b

this vector is X =3¢, €U, (M) for a point s € M. For any ¥ =3 n'e, € U, (M), let
' L3

Y5 (8) be a goodesic in M determined by the initial conditions 7 (0) =o, 7 (0) =Y.
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By parallel translating X along 7y (%), we obtain a vector field Xy (@) =3¢ (@) 6, with
Ly(O) =X. Put fy(t) =f(Xy(®)). From the maximum condition we get

0——— Fr(®) |s= o—QZ(Eh L£E7) (=23 At 6™ "), @.2)

tz Lo 0=23( 3 Ak’ : ‘
+22RAEED (2 4 '), ‘ @.3)

Hence, we have the followmg Jemma, . : <
Lemma 1. For aq'bfotmfry unit vector ¥ = 2‘0 e € U (M) (2 2) and (2.8) hold.

Now asgume that ¥ =Sr's,€ U, (M) and <X, ¥>=0. Let B(#) be a ‘ourve on’ the

hete U, (M) such that B(0)=X and B'(0) =7, “Then, we have the following
mma., Ce

‘Lemma 2. At the magimum goint X € Uo(M) of f,.

O=SFREE) Tk, @.4
0> M) + S, »gfy@h,-mf) -f(X) . @5

rany YEU (M) 'wq,th (Y X) -0, . S e
Pfroo f Suppose that B(t) 2 ,6 (t) e,, Wlth E(B. (t))’
As X is a ormeal pomt of f we have .. e
0—-—@—)”(3(#))]1: o~22(2h B (0)/3’(0)) (22h 8'(0)87(0)),

ioh'ig just (2.4) by the initial’ eondltlon of ,B(t)
- Moreover, we have at 1=0"

052 FBO) =T SHE

+4=2(2h ) (2 hi‘m‘n’-i-Eh"Jé‘B”’(O)) . (2.8
oe ? (B (®))*=1, we have.‘z B () ,8” (#) =0 and 2‘,8‘-(#) B () = —1, which im-
® that -
h &=

Substituting (2.7) into (2. 6) and using (2. 4), one obtains €2 ) 1mmed1ately.
13, Lemma 2 is proved; »

. Bm-(o)=._;§i+§; . ) (27)

§3. The _‘Proof of Theorem 1

Let X €U, (M) be a maximum point of the function f defined By' e.n. o
follows from (1.12)-and (2.1) that JX € U,(M) is also one. So weoan chooge a local
field of frames such that ;=X and ey.—J.X at o, With respect to such a frame field,
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-Let". Y be ¢, and ey, respectively, in Lemma 1. Then we have from (2. 3)
PHC: )”+2h 11200 and 3} (heae)? +z‘,h T e
which 1mply thatb , _ -
St <0 @D
Moreover, by Lemma 2, we have
gh’ﬁ =0 (j+1),
' Sy =0 (j#1%)
" and
221y "+ AT (X)) (G#1),
22 (A + DAy <f(X)  (§AL,
where
F(X) = lo(on o) P=S b0 | (
From (1.13), (1.14) and (1.15) we have ..
h§12-§~= —hi1aa +2 hiuRuag + 2‘] R} Risgnnt ? k‘l"iRnMI"
o+ Boia1a— B vrgen— Bosoarzs— Rosriwams
which together with (3.1) yields e
0>g:h 1 (RiwRigag+ huR.i.w)+2h BBy +§;hﬁmm,

v

@ am am
—2 huﬁu*jm—zhh umz«-"zhli Aligeas. - (

(IV) (V) (VI)
Since B=1jege= — ‘Ryageis— Riorysg = Rmu + Rysatra= Kig+ Krm
where K;; denotes the sectional curvature of M* at & for the plane spa.nned by e
#;, it follows from (1.13), (3. 2) and (3.4) that '

By means of (3.4), (1.4) and (1.5)-(1.18), a direc} oomputa,tion shows
an = — 22 huhisDnu—2 Do (X) — 2 (D hluha) ™ -

Using (1.14) and (1.5)—(1.13), we can derive that
| (ITI) = S ALy~ S hdshd L
Iv) = 2 hishiLia,
V)= E-hi‘ih%-;L,-,.,
{ VD) = "2 hi1hsa L, —Ehuhml};,.

Bubstituting (3. 6) (8.7) and (3.8) into (3.5), we obtain
032f (X) (Kast Fs) ~2 Shliitsln—2f (X I~ 2(THM)*  (8.9)
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the point . _ .

Now, consider the symmetric matrix §= (8,) where 'S, ='2hi“1 %.(8.2)together
th (1.13) shows that ¢4 as well as oye=Jey is an elgenvector of §. Since rn>2 we
n always choose {e;, esx=J6,} (a#1) in such a way that § is diagonal at ». With
spect to the frame field chosen above, (3 9) becomes. : :

0327 () (Kus+Kus) —2 S hlshtn L —2f (X) Lu—z(zk M (3.10)

Notmg that Emz—ﬁmm-—Ln+L2,, by (1.5), it follows from (1.3) and (1 13)
b

227&%173&2 = 2 (Plika — hisshzs) = Risia — Rysapea= Kya — Kiea. . (3.11)
Substltutmg (8.11) into (3.10), we get . ‘ :
0>AK12+BK1,2—22}» 44 Ly — 2 (X) Liga, 3.12)
ore .
: A=2f(X) ~ (K 12— Kies 2,
f (X) = (Kia—Kia) .13
. | B=2f(X) — (Kwa—Ku) /2. A
On the other hand, from (3.11) and (3.3) we have
(K12~ Kya) /2= Zhishla <23 (hm)” + skt <f(X). (3.14)
By smnlar arguments we also have
% (Kusa— Kis) = Shhashla<f (X). (BB

nee, one gees from 3. 13) (3 15) that A>O and B>0, Then it follows from
12) and (8.13) that : : ’ :

O> (A"l" B) Kmin - 22 h%ihniL).u - 2f (-X) L227

OO Kau-SMMLp—f (D)L, (8.16)

are Kmin ig the minimum of the sectional curvature of M* at @.
Under the assumption of Theorem 1, we have from (1.6) and (3.4)

E huh:'fiLm +F(X) Lsr< 2f (X )
'oh together with (3 16) ylelds

2

m[me | %TZ—M Qmin]y 3.1

0=>71(X) {Kmin m [Qmax m Qmm]} ‘ (3.18)

ollows from (0.1) and (3.18)that f(X) =0, which implies, by (2.1), that ¢=0,
100, M ig totally geodesic, and Theorem 1 ig pi'oved.

§4. The Proo.f ~of Theorem 2

By gimilar. arguments as 1n § 3 we take Y & and 81+, 1espect1vely, m Lemma
1, Thus, we geob
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s (s + haees) <O. 4 4.1)

Since h111-1- = —hlua+ 2 A Rig1s + 2 hliRite1ge
+ 2 h11*RM11» — Rosgor—Bipgann,

(4.1) becomes : ,
0> 2 P (WieiRigags+BhiRiegas) + D btk Ryt ; B BaggnetBozoae) . (4.2)
Foo ke . )

—

. @ .. am
It is seen easﬂy flom (1 13) tha’ﬁ - ’
F(X) =X = Z (ki + 2 (i)
: =2 (hn«-)2+2 (hu* Z(hn') . ) N
Using (1 5) (1 14) and (4 3), a similar computation as in (3 6) (3 8) gwes
to

—d

(1) = 16§ (X) Tu—42(X), .
() =-23 11Lw*2f(X)L11—2f2(X);

(D=-83% WLt 8 (X) L.
Subshtutmg these 1nto (4 2), we obtain

0>~ 103 L —f (X) (67 () ~22La). " (
By virtue of (1.16) and X =e; we have . » ) -} _ P
F(X) = 4L11—HM<X>/2 B

' Subshtutmg (4 5) into (4 4) and usmg (1.6), we can get
0>— 102h il ~f(X) [2L1 —8Hy (X)]

~3f(X >[ A+ Hy(X) ]

2 (n+p+ 1 (ntp+ 2)
[52 B 1h‘1‘1§“2 +£(X) Ba

‘ n+ +2 o
e gl <——>—Qn e

From the hypothesus (0.2) and (4.6) it follows that f(X) O g0 ’nhat 2
tota,lly geodesm and we have proved Theorem 2.
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