1 22

THE AUTOMORPHISMS OF TWO-DIMENSIONAL LINEAR GROUPS OVER COMMUTATIVE RINGS*

LI FUAN (李福安) ** REN HONGSHUO (任宏碩) **

Abstract

The present paper determines the form of automorphisms of $E_2(R)$ and $GE_2(R)$ over commutative rings provided 2, 3 and 5 are units.

The automorphism problem of linear groups over commutative rings has been alved when $n \ge 3$. (Refer to [1, 2]). In case n=2 a particular difficulty occurs. From matrix—theoretic approach it does not provide sufficient off-diagonal positions, or sometrically, there is not a sufficient number of distinct lines. The present paper ill discuss and determine the automorphisms of $E_2(\mathbf{R})$ and $GE_3(\mathbf{R})$ under the ypothesis that 2, 3, and 5 are units.

Throughout this paper R will be a commutative ring. Denote by U the multilicative group of all units in R, by $\max(R)$ the set of all maximal ideals of R. Let $\binom{1}{2}(R)$ be the elementary group generated by all elementary matrices $\binom{1}{0} \binom{x}{1}$ and $\binom{1}{x} \binom{0}{1}$, and let $GE_2(R)$ be the subgroup of $GL_2(R)$ generated by $E_2(R)$ and all agonal matrices. The order of a matrix $\binom{a}{c} \binom{b}{d}$ is the ideal generated by k, k, and k-k.

Lemma 1. Suppose that there exists an element $u \in U$ with $u^4-1 \in U$. Then

- 1) for any $x \in U$ the normal subgroup H of $E_2(R)$ generated by $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ is the hole $E_2(R)$, and
 - 2) the normal subgroup of $E_2(R)$ generated by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is also $E_2(R)$.

Hence the images of these matrices under every automorphism of $E_2(R)$ have the me property. In particular, if 2, 3, and $5 \in U$, then 1) and 2) hold.

Manuscript received July 17, 1986.

^{*} Projects supported by the Science Fund of the Chinese Academy of Sciences.

^{**} Institute of Mathematics, Academia Sinica, Beijing, China.

Proof 1) Since

$$H \ni \begin{pmatrix} 1 & 0 \\ -x^{-1} & 1 \end{pmatrix} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ x^{-1} & 1 \end{pmatrix} = \begin{pmatrix} 2 & x \\ -x^{-1} & 0 \end{pmatrix}$$

$$H \ni \begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}, & \begin{pmatrix} 2 & x \\ -x^{-1} & 0 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} u^2 & 2x(u^2 - 1) \\ 0 & u^{-2} \end{pmatrix}.$$

we have

For any $a \in R$, take $b = a(1-u^4)^{-1}$. Then H contains

$$\begin{bmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, & \begin{pmatrix} u^2 & 2x(u^2-1) \\ 0 & u^{-2} \end{pmatrix} \end{bmatrix} = \begin{pmatrix} 1 & b(1-u^4) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}.$$

Furthermore, $H \ni \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -a & 1 \end{pmatrix}$. Thus, $H = E_2(R)$.

2) Use the fact $\begin{bmatrix} \begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} u^2 & 0 \\ 0 & u^{-2} \end{pmatrix}$, and then proceed as in the proof of part 1).

Lemma 2. Assume that 2, 3, and $5 \in U$. Let Λ be an automorphism of $E_2(R)$. Then for any $M \in \max(R)$ there is $g_M \in GL_2(R_M)$ such that

$$g_{\mathbf{M}}\left[\Lambda\begin{pmatrix}1&1\\0&1\end{pmatrix}\right]g_{\mathbf{M}}^{-1}=\begin{pmatrix}1&1\\0&1\end{pmatrix}\in E_{2}(R_{\mathbf{M}}),$$

where R_M is the localization of R with respect to M.

Proof Let $A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. For $M \in \max(R)$ we may always assume the $y \notin M$. Indeed, if $z \notin M$, then we may transform z into the (1, 2)-position k conjugation. If $y, z \in M$, then by Lemma 1, the order of $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ is R, hence $x - w \in M$. The (1, 2)-entry of the conjugate of $\begin{pmatrix} x & y \\ z & w \end{pmatrix}$ by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is $w - x + y - z \notin M$.

Since $y \notin M$, y is invertible in R_M . Take $y = \begin{pmatrix} y^{-1} & 0 \\ y^{-1}x & 1 \end{pmatrix}$. Then

$$g\left[\Lambda\begin{pmatrix}1&1\\0&1\end{pmatrix}\right]g^{-1}=\begin{pmatrix}0&1\\-1&v\end{pmatrix}\in E_2(R_{\mathbf{M}}).$$

Any conjugate of $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ which commutes with $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ is of the form $a + \begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ with determinant $a^2 + abv + b^2 = 1$ and trace 2a + bv = v. It follows that

$$2a = (1-b)v$$
, $(1-b^2)(v^2-4) = 0$.

Claim that $v^2-4 \in MR_M$. Otherwise, v^2-4 is invertible in R_M , hence $1-b^2=$ Thus, $b=\pm 1$ since R_M is a local ring and 2 is a unit. Moreover, a=0 if b=1, and a=v if b=-1. Therefore, $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ and $\begin{pmatrix} v & -1 \\ 1 & 0 \end{pmatrix}$ are the only conjugates of $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$

which commute with $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$. On the other hand, $g\left[A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$, $g\left[A \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$ and $g\left[A \begin{pmatrix} 1 & 16 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$ are conjugates of $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ which commute with $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$. By Lemma 1, the normal subgroup of $E_2(R)$ generated by $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ is $E_2(R)$, so the order of $A \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}$ is R. It follows that the order of $G \left[A \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$ is R_M . Hence $G \left[A \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \right] g^{-1} \neq G \left[A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$. Similarly, $G \left[A \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} \right] g^{-1} \neq G \left[A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right] g^{-1} \neq G \left[A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right] g^{-1}$.

This shows that there are at least three conjugates of $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$ which commute with $\begin{pmatrix} 0 & 1 \\ -1 & v \end{pmatrix}$. This is a contradiction. Therefore, we must have $v^2 - 4 \in MR_M$, hence $v \equiv \pm 2 \mod MR_M$. Now

$$g\left[\Lambda\begin{pmatrix}1&4\\0&1\end{pmatrix}\right]g^{-1}=\begin{pmatrix}0&1\\-1&v\end{pmatrix}^4=a+b\begin{pmatrix}0&1\\-1&v\end{pmatrix},$$

where $a=1-v^2$, $b=v(v^2-2)$. Thus, $b^2-1\equiv 15 \mod MR_M$, i. e., b^2-1 is invertible. It follows from $(1-b^2)(v^2-4)=0$ that $v^2=4$. Further, we derive that v=2 from the equality 2a=(1-b)v.

Set
$$g_{\mathtt{M}} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} g$$
. Then $g_{\mathtt{M}} \begin{bmatrix} A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{bmatrix} g_{\mathtt{M}}^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Lemma 3. Assume that 2, 3, and $5 \in U$. Let Λ be an automorphism of $E_2(R)$. Then for any $M \in \max(R)$ there is $g_M \in GL_2(R_M)$ such that

$$g_{\mathbf{M}}\left[\Lambda\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}\right]g_{\mathbf{M}}^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

$$g_{\mathbf{M}}\left[\Lambda\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right]g_{\mathbf{M}}^{1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Proof Let $A \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. By Lemma 1, the order of $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is R. We see that $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}^2 = -1$ belongs to the center of $E_2(R)$, so does $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^2$. Hence, b(a+d) = c(a+d) = (a-d)(a+d) = 0. But (b, c, a-d) = R, so a+d=0, i. e., d=-a. Obviously, this property is invariant under conjugation.

By Lemma 2, there is $g_{\mathtt{M}} \in GL_2(R_{\mathtt{M}})$ such that

$$g_{\mathbf{M}}\left[\Lambda\begin{pmatrix}1&1\\0&1\end{pmatrix}\right]g_{\mathbf{M}}^{-1}=\begin{pmatrix}1&1\\0&1\end{pmatrix}.$$

Write

$$g_{\mathtt{M}}\left[A\begin{pmatrix}0&1\\-1&0\end{pmatrix}\right]g_{\mathtt{M}}^{-1}=\begin{pmatrix}x&y\\z&-x\end{pmatrix}.$$

Claim that z is invertible in R_M . Otherwise, $z \in MR_M$. Since R_M/MR_M is naturally isomorphic to R/M, if we identify R_M/MR_M with R/M, then the following diagram is commutative:

$$E_{2}(R) \xrightarrow{\wedge} E_{2}(R) \xrightarrow{} E_{2}(R_{M}) \xrightarrow{\operatorname{Int}g_{M}} E_{2}(R_{M})$$

$$E_{2}(R_{M}/MR_{M})$$

$$E_{2}(R/M) \xrightarrow{\operatorname{Int}g_{M}} E_{2}(R/M)$$

where g'_{M} is induced by g_{M} under the natural homomorphism $R_{M} \rightarrow R_{M}/MR_{M} = R/l$ and the unmarked arrows in the above diagram are natural group homomorphism Denote $\varphi = \operatorname{Int} g'_{M} \circ \Lambda$. Then φ is surjective. Since the above diagram is commutative $\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 1 & r \end{pmatrix}$..., $\begin{pmatrix} 1 & 1 \end{pmatrix}$

$$\varphi\begin{pmatrix}1&1\\0&1\end{pmatrix} = \begin{pmatrix}1&1\\0&1\end{pmatrix}, \ \varphi\begin{pmatrix}0&1\\-1&0\end{pmatrix} = \begin{pmatrix}x&y\\0&-x\end{pmatrix}. \text{ Since } \begin{pmatrix}1&r\\0&1\end{pmatrix} \text{ commutes with } \begin{pmatrix}1&1\\0&1\end{pmatrix}$$

assume $\varphi\begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix} = \alpha\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$. Every matrix in $E_2(R)$ can be expressed as a produ

$$\prod_{i} \begin{bmatrix} \begin{pmatrix} 1 & r_{i} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}, \text{ and its image under } \varphi \text{ is } \prod_{i} \begin{bmatrix} \alpha_{i} \begin{pmatrix} 1 & \beta_{i} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & -x \end{pmatrix} \end{bmatrix}, \text{ whose } (2, 2)$$

-entry is always zero. This is contrary to the surjectivity of φ . Therefore, z must invertible in $R_{\mathbb{M}}$. We now have

$$\begin{pmatrix} -z_1 & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x & y \\ z & -x \end{pmatrix} \begin{pmatrix} -z & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} -z & x \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -z & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -z \\ 0 & 1 \end{pmatrix}.$$

Using the equality $\begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \end{bmatrix}^3 = 1$, we obtain $\begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -z \\ 0 & 1 \end{bmatrix} \end{bmatrix}^3 = 1$, whi

implies that z = -1. Replacing $\binom{-z}{0} \binom{x}{1} g_{M}$ by g_{M} , we complete the proof of t lemma.

Set $\widetilde{R} = \prod_{M \in \max(R)} R_M$. Then we have the natural embedding $R \hookrightarrow \widetilde{R}$.

Let $g = (g_M)_{M \in \max(R)} \in GL_2(\widetilde{R})$. Since the following diagram is commutative:

$$E_{1}(R) \xrightarrow{\wedge} E_{2}(R) \hookrightarrow E_{2}(\widetilde{R}) \xrightarrow{\operatorname{Int} g} E_{2}(\widetilde{R})$$

$$E_{2}(R_{M}) \xrightarrow{\operatorname{Int} g_{M}} E_{2}(R_{M})$$

where the unmarked arrows are natural group homomorphisms, by Lemma 3, we have

$$g\left[\Lambda\begin{pmatrix}1&1\\0&1\end{pmatrix}\right]g^{-1} = \begin{pmatrix}1&1\\0&1\end{pmatrix},$$
$$g\left[\Lambda\begin{pmatrix}0&1\\-1&0\end{pmatrix}\right]g^{-1} = \begin{pmatrix}0&1\\-1&0\end{pmatrix}.$$

Theorem 1. Suppose that 2, 3, and $5 \in U$. Let Λ be an arbitrary automorphism of $\mathbb{E}_2(R)$. Then there exist $g \in GL_2(\widetilde{R})$ and a bijection $\beta \colon R \to R$ satisfying

$$\beta(1) = 1$$
, $\beta(x+y) = \beta(x) + \beta(y)$ for all $x, y \in R$,

such that

$$g\left[\Lambda\begin{pmatrix}1 & x\\ 0 & 1\end{pmatrix}\right]g^{-1} = \begin{pmatrix}1 & \beta(x)\\ 0 & 1\end{pmatrix} \quad \text{for all } x \in R,$$

$$g\left[\Lambda\begin{pmatrix}-0 & 1\\ -1 & 0\end{pmatrix}\right]g^{-1} = \begin{pmatrix}0 & 1\\ -1 & 0\end{pmatrix}.$$

Proof The matrix $g = (g_M)_{M \in \max(R)} \in GL_2(\widetilde{R})$ has been given by Lemma 3. Write $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Since $g^{-1} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} g = A \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $g^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} g = A \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ belong to $E_2(R)$, it is easy to see that $\frac{a^2}{A}$, $\frac{b^2}{A}$, $\frac{c^2}{A}$, $\frac{d^2}{A}$, $\frac{ab}{A}$, and $\frac{cd}{A}$ are elements in R, where A = ad - bc. It follows that, for any $\begin{pmatrix} x & y \\ z & w \end{pmatrix} \in E_2(R)$, the (1, 2) and (2, 1)-entries of $g \begin{pmatrix} x & y \\ z & w \end{pmatrix} g^{-1}$ are elements in R.

Since $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ commutes with $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, we may assume that $g \left[A \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right] g^{-1} = \begin{pmatrix} \alpha(x) & \beta(x) \\ 0 & \alpha(x) \end{pmatrix}$ where $\alpha(x) \in \widetilde{R}$, $\beta(x) \in R$. Clearly, $\alpha(x+y) = \alpha(x)\alpha(y)$ and $\alpha(x)^2 = 1$. Hence $\alpha(x) = \alpha\left(\frac{x}{2} + \frac{x}{2}\right) = \alpha\left(\frac{x}{2}\right)^2 = 1$ for any $x \in R$, i. e.,

$$g\bigg[A \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \bigg] g^{-1} = \begin{pmatrix} 1 & \beta(x) \\ 0 & 1 \end{pmatrix}.$$

This shows that Int g induces an automorphism of $E_2(R)$. Evidently, $\beta: R \to R$ is a nijection, and $\beta(1) = 1$, $\beta(x+y) = \beta(x) + \beta(y)$.

Remark 1. In fact, β satisfies a stronger condition. For $x_1, \dots, x_n \in R$ define

$$P_{-1}=0,$$

$$P_{0}=1,$$

$$P_{1}(x_{1})=x_{1},$$

$$P_{3}(x_{1}, x_{2})=P_{1}(x_{1})x_{2}-P_{0},$$

$$P_{n}(x_{1}, \dots, x_{n})=P_{n-1}(x_{1}, \dots, x_{n-1})x_{n}-P_{n-2}(x_{1}, \dots, x_{n-2}).$$

; can be proved by induction that

$$\begin{pmatrix} x_1 & 1 \\ -1 & 0 \end{pmatrix} \cdots \begin{pmatrix} x_n & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} P_n(x_1, \dots, x_n) & P_{n-1}(x_1, \dots, x_{n-1}) \\ -P_{n-1}(x_2, \dots, x_n) & -P_{n-2}(x_2, \dots, x_{n-1}) \end{pmatrix}.$$

(See [3].) Note that
$$\binom{x}{-1} = \binom{1}{0} = \binom{1}{0} = \binom{0}{1} \binom{0}{-1} = \binom{1}{0}$$
, and
$$g \left[A \binom{x}{-1} \right] g^{-1} = \binom{1}{0} = \binom{\beta(-x)}{0} \binom{0}{-1} = \binom{\beta(x)}{-1} \binom{0}{0} = \binom{\beta(x)}{-1} \binom{1}{0}.$$

Therefore, β satisfies the following condition (*):

$$\begin{pmatrix} P_n(x_1, \dots, x_n) & P_{n-1}(x_1, \dots, x_{n-1}) \\ -P_{n-1}(x_2, \dots, x_n) & -P_{n-2}(x_2, \dots, x_{n-1}) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

iJ and only if

$$\begin{pmatrix} P_{n}(\beta(x_{1}), \dots, \beta(x_{n})) & P_{n-1}(\beta(x_{1}), \dots, \beta(x_{n-1})) \\ -P_{n-1}(\beta(x_{2}), \dots, \beta(x_{n})) & -P_{n-2}(\beta(x_{2}), \dots, \beta(x_{n-1})) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Since every relation in $E_2(R)$ can be expressed as $\prod_{i=1}^n \binom{x_i}{-1} = \binom{1}{0} = \binom{1}{0}$ some $x_1, \dots, x_n \in R$, by Theorem 1 and the above remark, we derive the follow corollary.

Corollary. Suppose that 2, 3, and $5 \in U$. Let Λ be an automorphism of E_2 . Then there exist $g \in GL_2(\widetilde{R})$ and a bijection $\beta: R \to R$ satisfying the condition (*) s that

$$A \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = g^{-1} \begin{pmatrix} 1 & \beta(x) \\ 0 & 1 \end{pmatrix} g \quad \text{for all } x \in R,$$

$$A \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = g^{-1} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} g.$$

Conversely, if there is a bijection β : $R \rightarrow R$ satisfying (*), then we may define automorphism $\tilde{\beta}$ of $E_2(R)$ such that

$$\widetilde{\beta} \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \beta(x) \\ 0 & 1 \end{pmatrix} \quad \text{for all } x \in \mathbb{R},$$

$$\widetilde{\beta} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Hence, every automorphism Λ of $E_2(R)$ can be expressed as $\Lambda = \operatorname{Int} g^{-1} \circ \widetilde{\beta}$.

Lemma 4. If there is $u \in U$ with $u^2 - 1 \in U$, then

$$[GE_2(R), GE_2(R)] = E_2(R)$$
].

Proof Since $[E_2(R), E_2(R)] \subseteq [GE_2(R), GE_2(R)] \subseteq GE_2(R) \cap SL_2(R)$ $E_2(R)$, it suffices to show that $E_2(R) \subseteq [E_2(R), E_2(R)]$.

For any $x \in R$, take $a = x(u^2 - 1)^{-1}$. Then

$$[E_3(R), E_2(R)] \ni \begin{bmatrix} u & 0 \\ 0 & u^{-1} \end{bmatrix}, \begin{pmatrix} 1 & a \\ 0 & 1 \end{bmatrix} = \begin{pmatrix} 1 & a(u^2-1) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Similarly, $[E_2(R), E_2(R)]$ contains $\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$ for any $x \in R$. This proves the lemma.

Theorem 2. Suppose that 2, 3, and $5 \in U$. Let Λ be an arbitrary automorphism of $GE_2(R)$. Then there exist $g \in GL_2(\overline{R})$, a bijection $\beta: R \to R$ satisfying the condition (*), and a homomorphism $\gamma: U \to U$, such that

$$\begin{split} g\bigg[A\begin{pmatrix}1&x\\0&1\end{pmatrix}\bigg]g^{-1} &= \begin{pmatrix}1&\beta(x)\\0&1\end{pmatrix} & \text{for all } x \in R, \\ g\bigg[A\begin{pmatrix}0&1\\-1&0\end{pmatrix}\bigg]g^{-1} &= \begin{pmatrix}0&1\\-1&0\end{pmatrix}, \\ g\bigg[A\begin{pmatrix}v&0\\0&1\end{pmatrix}\bigg]g^{-1} &= \gamma(v)\begin{pmatrix}\beta(v)&0\\0&1\end{pmatrix} & \text{for all } v \in U. \end{split}$$

Proof By Lemma 4, $[GE_2(R), GE_2(R)] = E_2(R)$, Λ induces an automorphism of $E_2(R)$. By Theorem 1 and its corollary, there exist $g \in GL_2(\widetilde{R})$ and a bijection $\beta: R \rightarrow R$ satisfying (*) such that

$$g\left[\Lambda\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}\right]g^{-1} = \begin{pmatrix} 1 & \beta(x) \\ 0 & 1 \end{pmatrix},$$
$$g\left[\Lambda\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right]g^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Let
$$g\begin{bmatrix} A \begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}\end{bmatrix}g^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Using the relations $\begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix}$ $\begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ v & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\begin{pmatrix} v & 0 \\ 0 & 1 \end{pmatrix}$, we obtain $b = c = 0$, $a = d\beta(v)$. Thus,
$$g\begin{bmatrix} A \begin{pmatrix} v & 0 \\ 0 & 1 \end{bmatrix}\end{bmatrix}g^{-1} = \gamma(v)\begin{pmatrix} \beta(v) & 0 \\ 0 & 1 \end{pmatrix}.$$

It is easily seen that $\gamma \colon U \rightarrow U$ is a group homomorphism.

Remark 2. For a bijection β : $R \rightarrow R$ satisfying (*), the automorphism $\widetilde{\beta}$ of $E_2(R)$ can be extended to an automorphism of $GE_2(R)$ if we define

$$\widetilde{\beta}\begin{pmatrix}v&0\\0&1\end{pmatrix} = \begin{pmatrix}\beta(v)&0\\0&1\end{pmatrix}.$$

Therefore, when 2, 3, and $5 \in U$, every automorphism Λ of $GE_2(R)$ can be expressed as $\Lambda = \Gamma \circ \text{Int } g^{-1} \circ \widetilde{\beta}$, where Γ is a radial automorphism of $GE_2(R)$.

Remark 3. If R is an integral domain, by using continued fractions, the condition (*) may be simplified (*).

Remark 4. If R is universal for GE_2 , i. e., the following relations

$$\begin{pmatrix} x & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} y & 1 \\ -1 & 0 \end{pmatrix} = -\begin{pmatrix} x+y & 1 \\ -1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} u & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} u^{-1} & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} u & 1 \\ -1 & 0 \end{pmatrix} = -\begin{pmatrix} u & 0 \\ 0 & u^{-1} \end{pmatrix},$$

$$\begin{pmatrix} x & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} = \begin{pmatrix} v & 0 \\ 0 & u \end{pmatrix} \begin{pmatrix} v^{-1}xu & 1 \\ -1 & 0 \end{pmatrix},$$

$$\begin{pmatrix} u & 0 \\ 0 & v \end{pmatrix} \begin{pmatrix} u' & 0 \\ 0 & v' \end{pmatrix} = \begin{pmatrix} uu' & 0 \\ 0 & vv' \end{pmatrix}$$

form a complete set of defining relations of $GE_2(R)$ (refer to [3] or [5]), then the condition (*) can be simply expressed as

$$\beta(x+y) = \beta(x) + \beta(y)$$
 for all $x, y \in R$,
 $\beta(ux) = \beta(u)\beta(x)$ for all $u \in U$, $x \in R$.

The Reiner's automorphism (61) is just induced by such a bijection β .

References

- [1] Petechuk, V. M., Automorphisms of matrix groups over commutative rings, Math. USSR Sb., 45 (1985) 527—542.
- [2] Li Fuan & Li Zunxian, The isomorphisms of GL₃ over commutative rings, Scientia Sinica, 31A: 1(1988 7-14).
- [3] Cohn, P. M., On the structure of the GL₂ of a ring, I. H. E. S. Publ. Math., 30 (1966), 5-53.
- [4] Dull, M. H., Automorphisms of the two-dimensional linear groups over integral domains, Amer. Math., 96 (1974), 1-40.
- [5] Silvester, J. R., On the GL, of a semi-local ring, Lecture Notes in Math., vol. 966, Springer-Verl. Berlin, 1982, 244—260.
- [6] Reiner, I., A new type of automorphisms of the general linear group over a ring, Ann. Math., 66(19) 461-466.