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ON EULER CHARACTERISTIC OF MODULES“
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Abstract

Thig paper gives a chara.ctenstlc property of the Eulel chara.cterlstlc for IBN rings.
The following results: are proved. (1) If B is a commutative ring, M, N are two stable
free E-modules, then X(M@N) =x(M)%(V), where % denotes the Fuler characteristic. ()
If f: Ko(R)—>Z is a ring isomorphism, where Ko(R) denotes the Grothendieck group of R,
' Ko(R) is a ring when R is commutative, then f([M])=x(M) and %(M@N)=x(M)X(N)
when M, N are finitely generated projective B-modules, where the isomorphism class [M]

is a generator of K(R). In addition, some applications of the results above are also
obtained. ' ‘ ‘

§ 1. Introductlon

Lot M be a lefb module over a ring R. A ﬁmte free resolution of M is any exact
gequence : .

0>F ,—>F, 1—>—>Fe>M->0, G
where each F; is a finitely generated free B-module. If M hag a finite free resolution
(1), denote M € FFR, and if R bhag the invariant basis number property, denote R
€IBN, the Huler characterisiio of M ig defined to be the number

% (M) = 31 (1) rank P,

The Euler characteristic of M is independent of the choice of the finite free
resolution (gee[1]). If, R is a commutative ring, then RECIBN and y(M)>0 [1,
Theorem 192]. But y (M) >0 need not hold when R is a non-commutative IBN ring
(seel1], p. 145).

It is well known (see[2], p. 255) that assume R €IBN and

0->M'—>M—->M"—>0 ()]
is an exact sequence of left R—modules, two of which have an Euler oharaoteri.stio,
then the third module has also an Euler characteristic, and
2 (M) =3 (M) +x(M").
One of the main purpose in this paper is to give a obaracteristic property of
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the Fuler characteristio. By this result, we give some other properties of the Euler
characteristio, In addition, we give some relations between X (P@Q) and y (P), x (@
for certain classes of R—modules,

All ringg in the paper are supposed to be assoeiative with unit, and all modules
in the paper are supposed to be left unitary modules,

§2. Main Results

‘We shall begin with the following definition.
Definition. Let RCIBN, p: FF R—Zbe a mapping which satis fies the follov
condiigon:
In wny ezact sequence (2), of two of M, M, M" have FF R, then the third mo
has also FF R, and,
(M) = ¢(M') +«P(M”)
In this case, we denote ¢ € KO,
Now we prove the following result, :
. Theorem 1. If RCIBN, then ¢ is the Buler characteristicesp € EC and ¢
=1, ' TS
Proof “="” igclear, : .
&: If F ig a free R-module and rank F=j, then F=~R’ Congider the e:
sequence of R-modules
. 0>R->RI—-> R0,
then p(R) =p(B™) +o (R) =p(R™) +1,
By induction, we have
p(F)=pR) =j— 1+1—1 rank F,
Take any N € FFR, and let

0>F, 2 F, 2 —>Foﬁ’—>N—>0
be a finite free resolution of N, denote K ,-=kér 3, =0, 1, +--, n. Note tha
0—->K,—>F->N—->0
is an exaot sequence of lefi R—modules, and N, Fo € FFR, Thus
@ (Fo) =p(Ko)+o(N).
Similarly, by the following exact sequences
0->K ;11> F; 3 >K;i>0, j=0, 1, -, n—2

. noting that #,=Im 8,=kerd, 1=K, 4, we have

pFiud) =0 (Epy) +p(K), =0, 1, =, n—3,

¢(Fun) =@(Fn) +p(K.a). ‘
Henoe pN) =p(Fo) —p(Ko)

=pFo) —p(F2) +§0(_K1) =ee
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= 3 (~1%p(F)) = 3} (~1)! rank F,
=x(N), VN €FFR,

Chus ¢ is the Euler. characteristio.

Using Theorem 1, we can obtain the f0110w1ng corollaries.

Corollary 1. If REIBN, N és a submodule of R-module M, and two of M, N,
U/N have FFR, then the third module has also FF R, and

2 (M/N) =y (M) -y (N).

Tence x (N) <y (M) when R is commutative.

Proof Noting that ,

0->N—->M->M/N—->0
s an exact sequence, by Theorem 1, we have
2 (M/N) =5 (M) — 5 (N).

f B is also commutative, then x(M/N) 20, So x (V) <y (M),

Corollary 2. If Risa commutative ring, N is a submodule of R-module M, and
wo of M, N M/N have FFR, then

_ Anny; M#0eAnng N+#0 and Anng M/N#O

vhere Annp X s the annihilator of R-module X . 4

Proof By [8, p. 115, Theorem 12], if B is commutative and X CFFR, then
(X) >0, and ¥ (X) =0« Anng X +0, It follows from Corollary 1, that this corollary
wolds. ‘

It is well known that any submodule #5 of a free module F, over PID is fres,
xnd rank Fi<rank F,, Now we prove a weaker result for commutative rings.

'Gorollary 3. If R és @ commuiative rimg, Fo és a free R—module and F1 is o

‘ree submodule of Fo, then
rank F1<ra.nk Fo,

md rank Fy<rank F(,<=>AnnR Fo/Fy=

Proof If rank Fo=oo, it ig clear that rank Fi<rank Fo. If rank Fo=n<oo,
onsider the exact sequence '

' 0> Fy1—>Fo>Fo/F1->0,
ihen - x(Fo) =1 (FD) +x(Fo/Fy).
3ut Ris commutatlve 80 3 (Fo/ Fv) >0, Thus
rank Fy=y(F1) <y (Fo) =rank F,,

nd rank Fy<rank Foy (Fo/F1) >0, i. e,, Anng Fo/F;=0, by[3, p. 115, Theorem
2]. | |

Corollary 4. If R€IBN, M;CFFR, j=1, .-, n, then

2@ ) =31,

Proof Congider the exact sequence
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O'->M1—>.M1®M3-—>M2—>O,
then we have

1 (MyD M) =x (My) +x (M),
By induoction, we can obtain

{§m,)~Znany.
Now we give some results on tensor pioducts of R-modules.
Theorem 2. If R is a commutative ring, M, N are stable fres R-modules, der
M, NCcSFI, then
x(M®N) =1 (M) x(N).
Proof Note that SFRIMCFFR, so x (M), x(N) exigh, Since M NeSF;M
e., there exist r, s, p, ¢ such that (see[4])
' MR ~R,
NOR'=Rq,
we have ' 4
(MQN) ® (MRR?) D (R'QN) DR"= (MQN) DM *®N" DR ~ R,
and 0->MRPDN—>R*—> M PN DR"—>0
is an exact sequence of R-modules. By Corollary 4, x(M*@N'@PR™) and x(
oxist, Hence 3 (M®N) algo exists, by Theorem 1. I} follows from Corollary 4 tt
2(M@N) = (B*) —px (M) —rz(N) — 2 (B").
But y (M) =s—»r, x(N) =¢g—p, by (3) and (4). Thus \
2 (MQN) =gs—pr—p(s—r) —r(g—p)
o = (s—r) (g—p) =x (M) 2 (N).
This completes the proof of the theorem,
Now we give a relation between the Grothendieck group Ko(R) (see[4]) an
Euler characteristio, Note that for the commutative local rings, the Bezout ri
the PID rings. the polyncmial rings over PID rings in n indeterminates, the fo:
power series rings over fields, their the Grothendieok groups K, (R) are rings,
Ko(R) =Z (see[4], [5]). In addition, in[6], we gave the following result:
- Lemma™. If R isa commutative ring, f. Ko(RB)—Z is a ring ssomorp}
then the finitely generated projective R-modules are stable free R-modules.
Using the result above, we can obtain the following result.
Theorem 3. I f R is a commutative ring, f: Ko(R)—>Z is a ring isomorpl
and M, N are finitely generated projective R-modules, then
% (MRN) = x (M) x (V)
and . F(LMD) = ().
where [M] denotes the generator in Ko(R) for the isomorphism class of M (see[4]) .
Proof Sinoe f: Ko(R)—>Z is a ring isomorphism, we see that finitely generated
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projective R-modules M, N € SFIt, by Lemma. I follows from Theorem 2 tha.t,
x(MN) = (M) 1 (N).
In addition, by the proof of Theorem 2, if
M®PR =R,
then £(M) =s—r. But f ([M]) =s—r. Hence
- F(IMD) =x(2D).

By Theorem 3, we can prove the following resulf, -

Theorem 4, If R 45 a commutative ring, f: Ko(B)—~Z is @ ring isomorphism, then

@) For any finitely gexnea‘ated pfrogectwe R—module M, f ([M]) >0, tmd F(MD
=0&Anng, M0,

o If - 0—>M,,~—>M,.;1——>---——>M 1=>My—0 _
is an exact sequence of R—modules, and n modules of M,, M,_y, -+, M1, M, are finitely
generated projective R-modules, then
> X(M}> = 3 % (M,

214, 0<j<n 2{§,0<j<n

and hence. U MDD =, i, .
21,§0<ji<n

Proof (1) By [1, Theorem 192], x(M) >O By [3, p. 115, Theorem 12], x(M)
=0eAnng M+0. Henoce (1) holds, by Theorem 3.

@) Let = 0M.-2d, e, s M50
and K;=ker d; j=1, -+, n. Note that SFsIt C FFR, and each finitely generated
projective R-module is a stable free :R-module, by Lemma, Henoe has FFR.

It My, <+, M, are ﬁmtaly generated prOJectlve R—modules then M;CFFR, j=
1, <, m, Thus by Theorem 1 o

» Q—>M w—>M,_1+—>K,_ >0 is exact=>K 2 FFR,
05K, oM, 45K, 40 is exsct=>K, ; €FFR,
o . . 0—>K M 2——>K 1+—>0 ig exact=>K4 € FFR
. v .0—->K 1—->M 1—>My,—0 is exact=>M,E FFR,
Similarly, if M,, -, M,._1 are finitely generated prOJeO‘blVG R—modules. then M.
FFR, .- . - o .
Now we assume. that M; j=0, -, 4—1, ¢-+1, -, m, are finitely generated
projective R—moduies. Similarly, we see that K, K, 1€ FFR. Hence
R -O—>K' —>M—~K; 10 i3 exact=>M; C FFR, '
From the proof a,bové, by Theorem 1A, we have
Cx(My) =2 (Ky) +x (Mo),
2(My) =x (K +x(Kir), j=2, +-, ""2
2 (M,_y) =x(M,) +2(K.9),
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hence 3= S ().

214, 0<j<n ,0<f
Thus, by Theorem 3, we have
LS MDD =S FM),
217,0<i<n 227,0<i<n

which completes the proof.

By the proof above, we obtain immediately the following corollary,
Corollary 5. If R€IBN and

0—>M”'—)M"_1ﬁ‘ . '—)_MIQMO—)O

48 an exact sequence of R-modules, n modules of M,, +--, My have FFR, then M,GFF
§=0,1, -, n, and ' ‘

X(Mj) = WOZIMX(M;) .

244,0<j<n ,0<
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