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ON THE GERM-MARKOV PROPERTY OF
THE GENERALIZED N-PARAMETER
ORNSTE IN-UHLENBECK PROCESS

Luo Smovsun (¥ H E)*

Abstract
A generalized N-parameter Ornsiein~Uhlenbeck process (GOUPy) is defined as
XW=U BT [ fen@s,

t€ RY, where a=(0,-++, 0) or (— o0, *++, — o), correspondently BY =R¥ or R, and 7(ds)
is the standard Geussian orthogonal random measure and f is an infinitely differentiable and
locally gquadratically integrable positive function. In this paper it is proved that the
GOUPy bas the so called germ--Markov property with respect to any bounded domain, and
two examples are given which say that for spherical and some pyramid-like domains, the
minimal splitting o-algebras for the “interior” and the “outer” information a—a.]gébras are
strictly “larger” than the boundary information o—algebras.

§1. Introduction

Prof. Wang ‘Zikun™ defined the 2-parameter Ornstein—-Uhlenbeck proces
and studied its Markov and strong Markov properties. According to [3] and [4
the OUP, has the germ-Markov property with respect to any open sets in R2. Th
paper is o study the germ~Markov property of the genéra,lized N-parameter OUP,

For t € R¥, we always think of its 4th component as ;, ¢=1,.--, N. Fors, 1 ER!
8<# means <t; =1, -, N, 8<¢ means §<#;, 4=1, «--, N; and [s, £]={ucR?
s<u<t}. Write BY ={i € R", t=b}. Suppose = (0, -, 0) ERY or=(—o0, -, -

]

o), and n(dt) is the standard Gaussian orthogenal random measure on R
(“standard” means E »(di) =0 and E|n(dt) |9='dt) . Let

1 .
X(t)?w)—jaf(s)n(ds), tERY, @.1

where f is a quadratically infegrable real-valued funotion on [a, £], € RY and ¢ i
a positive real-valued Borel meagurable funotion in R;. We call the randor
process X a generalized N-parameter Orngtein—-Uhlenbeck process (briefly GOUPy),
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When a=(0, ---, 0) and f(s) =f1(s0) - fw(sy), X is the extended OUPy in (5]
which proves that the extended OUP, has the germ-Markov property with respect
to any domaing with piecewise-smooth boundaries. If

F© =exp(as), as=Sas,

>0, and g(s) =f (s), X is the OUPy, in particular, if a= (=00, +¢, —o0), X i8
stationary, and if N =2, g= (0, 0), X is the OUP, in [2]. If f=9g=1 and a=(0, -+,
0), X is the N-parameter Wiener process. With the help of the Markovian theory
of generalized random functions in [6], we prove in this paper that the GOUPy X,
under some conditions on g and f, has the germ-Markov property with respect to
any open sets which are bounded or have bounded complements in Ry,

For the germ-Markov theofy of multiparameter stochasfio proocess, o make
clear the relationship between the minimal splitting o-algebra with respect to an
open set and the information o-algebra in its boundary arouses much interesh. As
concerns Brownian Sheet, [6] says that for the triangle domain surrounded by the
axes and a straight line with a negative slope, the later is strictly “less than” the
former. In section 4 of this paper it is shown that for any sphere in Ry and some
pyramid-like domaing, the GOUPy X also has this prorerty.

§ 2. Preliminaries

For convenience we will display several concepts (ref. [6]). Let (Q, #, P) be
our hasic probability space. o-Subalgebras «7;, &, /5 of F are called a Markovian
system if 2 is splitting for .o/; and ‘.2{2. The definitions of gplitting and minimal
gplitting algebras are refored to [6, § 2.1].

‘ Suppose D is an open set in R¥ and Y (f), ¢€D a quadra-tically integrable
real-valued random process. For 6pen ScD, let
HS) =Vies¥ &), Hi(I)=N{H(S), open §DI'}, I'<D.
H(S) is the closed linear subs_pace generated by ¥ (), t€S in Ls(Q, # ,P). Let
LB =o{n, n€H(S)}, (I = N{(S), open DI}, I'D, '
H(S), ScDand &/(8), S=D are all called random fields.

Denote by Og (D) the space of infinitely differentiable functions u=u(f), tED,
with compact support Supp v D, which is endowed a suitable topology (ref. [6, p.
113). Let é=(u, &), u€C5(D) ke a generalized random function. For open ScD,
leb H(S) =V suppucs (¥, £). Also we define H,.(I"), /(S) and & . (I), I'cD as
before. H (), 8D and o7 (8), ScD are also called random fields generated by ¢£.

Suppose Y =Y (¢), ¢ €D is a quadratically integrabl real-valued random process
on D, Leb '
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£=1{u, £ j W@V @) db, ue 03 (D).

Lemma l. IfY is weakly continuous, i. 6., t — EY? () is conténuous, Y and f
generate the same random feld H(S), ScD.

The Proof of Lemma 1 is easy. We omit it. :

Let o7 (S), S D, corresponding to H (S), ScD, be a random field generated
By a random function ¥ (or a generalized random function £). ¥ (or §) is said to
have germ—Ma’rkov property with respect to an open set ScD if /(8), . (@
#(D\S) is a Markov system. If ¥ (or £) is Gaussian, for any closed subspace [
H (D) we have ‘ ' S
E{nlo(H)}=P(H)n, o(H)=c{y n€H},
where P (H) is the orthogonal projection operator on H, and for clesed subspaoe
and H, that o (H) splits o (H,) and o (H,) is equivalent to

711—P(H)771_an P(H)ﬂav "heﬂc 2

Hence if (2.1) is true, we also call H. y, H, Hya Markov system. Also we have
concepts of splitting and minimal splitbing spaces.

§3. Germ-Markov Pfoperty

Recall (1.1). Write H (S) =V :csX (t), open set SCR?,
Theorem 3. 1. Suppose f is an dnfinitely differentiable positive real-val
function on RY with ‘ » :
[ PodB<co

and f1=1/f bounded in [t, o0), t € RY, and suppose g=f. Then the QOUPy X has
germ~—Markov property with respect to any open sets which are bounded or have boun
complemenets im Ry . Furthermore, H, (8S) is the minimal splitting space of H(S)

H(RI\S) and consists of variables having the following form

n={,, ¥On@),

where u€ Ly (RY) =1,(RY, #Y, di). isa generalized solution of the di ﬁe'refntml equa;
. 5u (8) =0, £ € D\aS, @
where for w05 (RY),

W)= (DOl I Ou®. @

Remark. ILjis the adjoint operator of the continuous linear operator
05 (Bg) — La(RY) defined by

Lou(®) =f71(#) A—a;l%; [ (D)1, u€ 0 (BY). (3.3
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.Prroof Define a contfinuous lineai' operator Jo: OF (BY)—> Lz (RY) by
C Tw®=S O [ @ @, 1€ R,
Let ' :
Tu={ Jou(s)n(ds), u€ 05 EY).
Then . : :
=[5 & [[(u@r®at]n@
=[Ju@r® [[ r©ns|a
=j u@® X §dt. |

3o by Lemma, 1 the random ﬁeld generated by the genera,hzed random fanction J,
4 €05 (RY) is the same ag that by the’ GOUPy, X=X (#), ¢€R]. According %o the
bheory of Markov ’aransformatlons of whlte noise in[6, § 3. 5] to prove the theorem
wo need only #0 verlfy

(a) JoLju=L{Jou=u, uEO“‘*:(R&);'
(b) Lou, w0y (R“’) is dense in L, (RY ),

{c) For any we U5 (BY) there exists a constant O (w) depending only on w,
such that

L@ [<0@)Lal, s€5@D, 64
whore (w ) (1) =w(®) ~u(), tERY, '
(laim (a),

JoLiu® =£( | f‘1 L <s> ds

=ro [T [f‘l Ou =i,
3imilarly LgJ o () =u(%).
Claim (b). A% first we cheok that 5= {(fLo)u, u€O5(RY)} is dense in Ly(BY),
vhere

(FLu® =f O Lau() =52 (F Du®].
Because _f is 1nﬁn11;e1y differentiable and pogitive, we need only o check that
6 u = (RY ]r
s dense in Ly (RY). It'is not dlﬂ‘loult %0 see that this set containg
C5 (R E{ u: u=ug--Uy, %05 (RL,) andf 4 (8) dy =0, 1<®<N}. - (8.B)

Because the set of funetions in Ly (BY) with compact supports is dense in Ly(RY)
by the following act we fean affirm that O% (RY) is denge in Ly(RY), Therefore ¢
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is deﬁse in Ly (RY),

FACT. Suppose go € L. (RY) with support Supp ¢o<[S, T] 8, TeRY , S<T.

L
Then there exist 9. € 05 (RY), n>1, such that g, —> gy a8 n—> oo, (As for the proof

oné only needs to appraximate funcbions of the form

N
go:g I[-’l.fd'

with funotions in 05, (BY). So the problem can be turned into one dimensional oz *

Suppose g€ Ly(RY). Given >0, there exist S, T € RY, S<T such that

a
J‘Rms’m g (t) dt<s.

Let g1 (&) =f (t) g(t) Iis,m, I is the indicator function of [S, T']. Write

T M=max{f2(@), =87}

It follows from what we have obtained and the akove fact that there exish h,¢

Supp k,C[S, o), n=1, 2, «--, such that for sufficiently large n
| =f (P (®) éyi'(t>’]2dt+j_' R () di<s/(1+ M),
RE(E,T1 _
Hence from (8.6)—(3.7), we have
B EAICIRCRPO
& reme g rara{[ fom
®,1
MLS”')\ R2(fdi<ds.

,Thelefore = {Lou = ory (RN) is dense in Ly(RY)}.

Olaim (). Fix w05 (RBY). Suppose Supp wc[b, T1, b, TERY, b<T By

wehave T . E i
Lo(uew) () =F ) gt—affat—N[w CHOMIONE
By O M s P ACTICY

=/ ® 2 375:0 3#,, Oty -0ty ,

Write

Birig () = at,, 3 3 ——[f®u@)].

in-x

Then by (3.8),
Motw-a) 2= [ [Lo(u@®)w(®) 1

‘where . .. .

<X Oirii(w) Oy (w) Lb' T]h;a;-f,_k ® by, (B) dt,

(3.9)
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Y

Doy @) =max{| 12O 220", 1€ 3, T},

'we have proved that for any h;,..;,_, there exists constant O (w) such thab

J o rjhffz'r--fm ) dt <0 (w) | Low ||‘2, u €07 (R, : (3.10)

n by Oauchy-Schwarz inequality, so does every integral in (3.9), and thus (3.4)

justified. We are going to prove (8.10) for Ay.s.,n. Other cases can be treated
milarly. It follows from (3.3) that '

N[ fo 1 (b (ke 4 . '
o LUWul)] agiit)%g?] =L!“'Lk (fLow) (81, ***5 84, sz, ==+, tw) dS1e+-dsy.

) by Cauchy-Schwarz inequality we have

. L t1 - 23 » o
|, Hax®<0u@ | {j S (e 2R S
o, T3 . (7% ] [:%1 [
) ]2 dsge-ds, } byt
<0s() T =) | Lanl?,

here 01 (’Ll)) =TNax {J"."jt* f2 (81, **e, S, tk+1. ey tjv) de_"'d-S‘kt (7511 sy t.N) E [b' T]}.

§ 4. Discussion for Minimal’S'plitti'rig,Spaces "

Suppose open set SCRY ig-bounded or has a bound complement in Rj. Theorem

1 says that for thé GOUPy X, the minimal splitting space of H,(S).and H, (R}\
is H,(d8). Naturally one would ask what is the rela,ﬁionship between .H, (25)
'd the boundary space H (8S) =V ie2sX (£), and whether H(3S) is the m_mlma,l‘
httmg space of H (S) and H (BY \S). Generally spea,kmg the angwer is’ No We

i1 give two examples in this seotion.

Hazample 1 Suppose N =2, Let f be a function on R} satisfying the condition
ven in Theorem 3.1 and having the form f (s1, s3) =f1(s1):fa(ss), (81, 89) ERY. Let
ZRY be the oircular domain with center Z= (z4, #,) and radius r, Then there
isls u € Ly(R?) satisfying (8.1), such that for variable

¢ Ju@na@s),

3 have
(1) {€H.(@8); ‘
(ii) B{*+0 and {¢ H (88), and so the minimal splitting space of H N (S) and
+(RY/S) is strioctly “larger than” the boundary space H (a5);
» (iii) H(S) is not even a splitting space ofH (8) and H (RI\S).
Proof We only have to prove (i)—(iii) for the ocage a= (0, 0). The other ocase
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2on—~11 J ga—B(1)

follows from (4.10) and (4.6) that
z.+/9(t1)' o z3+B(4h)
ug[2a— B (1) ] j f 3 (52) dsa= I S3(sa) ua (92) dsn-

—B(Hh)

j t f erkb(t) F2(s)F3(s9) [ (s;) —u5(sa) Jdsidsa=0. ‘(4 .10)

ab ta=A8(%) and dlﬁ'erentlate Wlth Tespect 170 s t0 obtain
ChGamt) [ 36 dsa= ot ia) [uaGa—ia) —vaCeat 1) 1. (4.11)

he equatlons (4.11), (4 4) and (4. 8) are just the condrblons whlch u; (%) should
tisfy. The existence of solutions of these equatlons ig clear For instance, we can
1008e 15 (#y) as a golution of the fo]lowmg system of equations: '

{wa R S I (OO

uy (22 —ta) =f3(2a-+-12),
1d then determine w3 by (4.4) and (4.8). ' :
Choose u;, t=1, 2, satisfying equations (4.4), (4 8) and (4.11). Reversing the
rocedure from (a)—(c), we can see that defined by (4.1) satisfies the equation
£.2). 80 ¢ is independent of H (@) . But clearly .

ol Ju”(t)dt#o

ence { & H . (25), and (if) is verified. To check (iii), let S4 be the circular domain
ith center Z= (2, zs) and radivs'«, For chosen u; () le¥
ta(t) = {f(t) {walzr+a(ty—2) ] —valrata(ta—22)], €Sy, -
0, tER} \S

| :.,_=Le’ va(®)n (ah).

t can be seen as in the heginning of this proof that La€ H + (36’.) So when ¢>1 and
lCRY, GH(R+\S) when a<<1, [, ZH(S). Bus :
E(Za——Z)”=‘{['u, @) —u@®Pdt—>0a5a—>1.

o {=lim L€ H (8) NEH(B\S). It H () splits H(S) and H(R3\S), then
~BL|HO)}BLIEGS)}). @4.12)
3ut we have proqu that { is ind_ependenj of H(aS), so E{{|H@S)}=0. Hence by
4.12), B?=E{{*| H(28)}=0. This is a contradiction and we are done.

Remark. The results in Example 1 can be extended to the case N >2 withoub

:ubstanhal dlfﬁeulty
Suppose bE PN Denote by [[b h]] any 91mply—eonnected cloged domain surrounded
"by all hyperplanes whlch pass b and are parallel > coordinabe blanes and by a
hypersurface » which is a continuous function over a domain
GCRI*={(ty +, tw-1), t:=b;, 4=1, »-o; N -1},

0<t,<1,
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. Emample 2 Let f be a function on RY which satisfies the condition in Theorem
8.1 and hag the form f (%3, +*+, tx) =f1(t1, -+, ty_1) fa(éx). Lot S be the interior of a
bounded domain of the form [[b, A] contained in R}. Suppose A has continuous

. N—1 . L. . . .
partial derivatives az——gtﬂ, t€Q, and for any ¢€8, [b, $]cS(e. g. it N=2, his
1°°°ObN-1
a noninoreasing differentiable curve with finite length).Let us(fy), tx=ax bea
. " real-valued function whioch is differentiable and not a constant, Put

(t t ) 1 aN -1 J‘ 7Y tw-1 J‘ h
Uy vty Ty —f? (#1, =*= ty_1) Ot1~--Oby_1 h' I b

bya

f? (sy, -+ sw)ua(sy)dss “~dsy / ﬂ S3(sw) dsw,

u() ={f(t) (w1 (81, -, byon) f“s(tw)],_ = (t;, e, ) €S
7 Lo, teR\S, ’

(=], u®n @,

Then we have the same results ag (i)—(ii) in Example 1. Furthermore if for
fixed (tg, oo

y tw), h(s, %2, -+, tn) i8 a striotly deoreaging function, we also hav
result (iii). ' '

Thh proof can be finished similarly as we have done in Example 1, and
much easier.

The author thanks Prof, Wang Zikun and Wu Roxig ‘for their gu.idanée,
also thankg Yang Zhenming for his kind help. '
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