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FUZZY STONE-CECH COMPACTIFICATIONS
AND THE LARGEST TYCHONOFF
COMPACTIFICATIONS™

Liv YiNeMING (%] £ 9)* Luo MAOKANG (? %&},ﬂi) »

Abstract

Using the imbedding theory™! and the N —compactness of I—fuzzy unit interval, the
authors establish the Stone-Cech compactification theory of Tychoﬁoff spaces. As well
known, the Stone-Cech oorﬁpa.ctiﬁca.tion in general topology is the largest compactification
of all the Tychonoff compactifications. But this important property is not true in fuzzy
topology. The process of the argument of: thisnegative result is very helpful for establishing
a more reasonable Stone—Cech compactification theory, Moreover, as relative results, the
metrization theorem of induced spaces and the structure of quasi-Boolean lattice seem to
have independent interest.

After proving that each L-fuzzy unit interval is N-compact™”, we can directly
iabligh the thebrem of Stone-Cech compactifications bf Tychonoff gpaces via the
thedding theory™. Bul as well known, the Stone~Cech compaoctification bas an
iportant property: it is the largest compactification in all the Tychonoff
mpactifications. In fact, this property is concerned with a kind of extensions of
appings on the Stone-Cech compacthification, so ils investigation is always
tractive. Now what is the situation in fuziy topology? In this paper we will point
% that for remarkably many value fields' I and a large kind of fuzzy Tychonoft
aces, the corresponding S’ﬁone—éeoh compactification is nob the largest one, The
ocess of the argument of this negative result is very helpful for establishing a
ore Teasonable new type Stone-Cech compactifioation theory. Moreover, both the
strization theorem of induced spaces and the quagi-Boolean latfice structures which
e involved in the investigation of this paper seem to possess independent interests.

In this paper, I denotes a fuzzy latbice, i. e. a completely distributive lattice
th an order reversing involution ‘“’”, its largest element and smallest. one are
noted by 1 and 0 regpectively. Let M (L) denote the set of all the union-irreducible
nzero elementes (p is irreducible if p<<aV b = p<<a or p<b) of L. (L%, ) denotes
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an‘f;—fuzzy topological space (fts for short), where nL* is closed for finite union
and arbitrary intersesction, that is to say, n is the family of all the closed sets, it ig
called a co-topology on L* (because it is nabural io define the concepts of N-
compactness and so on with closed sets, we adopt co-topology instead of topology). A
closed set F is called an R-neighborhood of a fuzzy point oy if 2, € F (i. e., ak F (@)).
The family of all the R—neighborhoods of fuzzy point =, is denoted by n(x,). When
the concepts of fuzzy points and fuzzy sets are involved, we offen call them points,
sets directly. Usually, we also identify erisp sets with their characteristic func
which take values on {0, 1} L. For A€ L%, supp A={zs € X: 4 (z) >0}.

§1. Preliminaries

At first, let us briefly recall some concepts and results relainve t0 N-com
ness and the 1mbedd1ng theory.

Definition 1. Let ¢ € L, D<L. D s called a minimal set relative to a, if
a and for each set AL satzsfymg V A>a and for each d€ D, there exdsts BE 4
that d<b.

‘As shown in [5], for each coﬁlpletely distributive lattice L and each elem
of L, ‘there exists a minimal get in L relative to a.

Definition 2. For éack a € L, let B(a) denote the union of all the minimal
a, let B*(a) =B(a) N M(L).

Obviously, B(a) is the largesf minimal set relative to @. As indicated t
following lemma, B*(a) is also a minimal seb relative to @.

Lemms 198, If a € L\{0}, then V B*(a) =a. Furthermore, ¢f a €M (L),
according to the order of L, B*(a) i3 a directed set.

Definition 8%&4, In (L%, n), let AC L%, a €M (L), Dn. D is called a ;
of a—R-neighborhoods of A, &f for each 7o € A, there ewists a pE D N7 (rs) . D dsc
family of a~—R-neighborhoods of A, ¢f there exists a 3 € B* () such that D is a fa
d-R-neighborhoods of A. A is called N~compact, if for each a« € M (L)) and each ;
@ of a-R-neighborhoods of A, there exists a finste subfamily @, of @ whichisa
of a~—R-neighborhoods of A. (L*, ) is called N-compact, if the set X is N-com;

Note. The above-mentioned N-compactness preserves the nice properties
.N-compaoctness defined in [17] (i;vhere the value field L is I=[0, 1]); for ex:
it is closed-hereditary, preserved under continuous mappings; a productof N—o¢ i
subsets (es)ecially N-compach spaces) is also N--compact, etec.™™, ‘

"Whon ths value field is 7, it is already shown in [7] that each Tychon |
(9 Definition 6 bélow) (I%, ) has a compactification contained in the fuzzy unit
cube I (I)7; this result can be extended to the general case that the value field is L.
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Definition 4. (LY, / ) is called @ compactification of (L%, n), ¢f there exists an
sedding mapping ¢: (L%, n)—> (I¥, w) such that o(X ) is N-compact and supp ¢(X)
7+ In the sequel we let ¢X, cn denote ¥, w respectively. Moreover, 4f ¢(X) =cX, we ,

(L%, on) a space-compactification.
definition 5. For each family /= {fe:t €T} of erisp mappings, where f;: X—
deﬁne a cfrq,sp mappmg

A = NfeX > T Y,

follows: Vo € X, (47) (z) ={f: () }teT; as usual, Ao/ also danotes the fuzzy mappmg
s m L to
H LY' _L;"elr s

teT
uced by the orisp mapping Asf (about fuzzy product spaces frefefr to [16]) Ast is
&d an evaluation mapping. :

For mtroducmg the deﬁmhon of L-fuzzy Tyohonoﬂ' space, let us briefly reca.]l
1e faots about fuzzy unit intervals™: consider all the monotone decreasing
ppings from the real line R to L whioh takes value 0 € L at the po_inté larger than
R, takes value 1€ L at the points smaller than 0CR. Let I denote all these

ppings. For A, u €T, we say that A is equivalent to u, if Vi€R, the equations
—)=w@—), A@E+) =u(¢+) hold, where

A@E=)= A M, ME+) = V?»(S), .

. equivalence class of A in T is also denoted by A. Let I (L)) denote all the mappings
m the family T (L) of all the equivalenoce clagses in I o the value field I, and
up it with the fuzzy topology generated by the subbase {L:, Ry: $E€R} ag follows:
L) =A (=)', B () =AG-+), VAEI(D).

cording to our agreement, I (L) also denotes the largest (orlsp) seb in T(L).
noe we often use 1 (L) to denote I directly. The I'th power space (I is an
lex set)'qf I (L) is denoted by I(IL)T, we call it a fuzzy unit cube. The family
311 the Fuzzy continuous ndappings from (I*, o) to I (L) is denoted by # (X).

Definition 6%, (L%, 7) is calleda sub-T space, if for each pair of yoinis x,y €
w+ Y, there evists a € L\{0} such that B4 Y OT Yo E g (LX, m) 45 called a completely
nlar space, if for each open set U, there exists a family {Wa} of fuzzy sets such that
=L&J Wa and for each Wy there exisis a Suzzy contimuous mapping fa: (L~ n)—I(L) '
h that

Wee f3* (L) Cf.;‘l(Ro) cU.
A, m) s called a fuzzy Tychonof space, of 4t és both completely regular and sub—To
As well known, we have the following definition. _ )
Definition 752, (LX, ) és called a Ty space, if each fuzzy point is a closedsat.
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(17, . x) s called @ normal space, if for each closed set F and each open set U such that
FCU, there exists an open set V such that FV <V cU.

From Theorem 1(Urysohn Lemma) of [2], we know that for a oclosed set F
and an open set U in a normal space (L%, ) with FcU, there exists a fuzzy
continuous mapping f: (L%, n) - I(L) such that Fcf* (Ly) < f* (R <U.
Therefore, from the relevant definitions we have the following Lemma.

Lemma 2. If (L%, x) 4s both Ty and normal, then 4t is also a Tychonoff spa~-

By the results of the imbedding theory™, we know that each fuzzy Tyoh
space (L%, n) can be imbedded into I (L)" with the evaluation mapping 4(F (.
Letting BX =suppd(F (X)) (X), we get a compactification (L%, Bn) of (L*
where By is the relative co-topology of the subspace LAY of I(L)T. The imbed
theory above-mentioned takes I (L) as the standard space, and the compactific:
(IA%, Bn) is gob with this imbedding theory. We give the following definition.

Definition 8. The compacts ficatéon (L°%, Bn) above-meniioned és callec
Stons-Cech compactification of (L%, vy relative to the standard space I(L).

Beoause we always take I (I1) as the standard space in this paper, we call
Bn) the Stone-Cech compactification of (L%, n) for short.

'§2. Preorder Relation in Compactifications

As well known, in general topology, the Stone-Cech compactification ofa
ig the largest element of the family of Tychonoff compactifications of the space
‘ ig this property still preserved in fuzzy situation? Clearly, we need to introc
preorder relation into the family of compactifications of a fuziy topological
at first. Henoe a kind of new type subspaces and the definitions of relevant map
should be investigatbed.
Definition 9%9, In (L%, ), let A €L, define
P(4) ={BEL*: BC A}, nu={F NA: FEn}.
Then n. s still closed for finte union and arbitrary intersection, P-(4) fo
completely distr butive lattice with a co- topology struciure ns. We cail (QB(A),
quasi—subspace of (I*, ). -
Let (#(4), na) and (P(B), ws) be quasi-subspaces of L-fis (Lx 7) and
w) respectively. Let f: .@(A)—>9"(B) bea mapplng, and define its “inverse”
(B) - P(4) as follows
FY (D) =U{0cP(4): £(0O)cD}.
We eagily verify that the mapping fY is just f™*: 2(B)—> .@(A) if #(4) and
are subspaces™® of L% and I¥ respectively.
- For each ¢g: #(4)—> P(B), if there exists a Fuzzy mapping f: L¥— L such that -

Y
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‘s the restriction of fon £(4), then let 7 denote g. In the sequel, if a sign such ag
P(A)—>P(B) appears, it always mens that there is a Fuzzy mapping f: L*—L*
ch that f is the restriction of f on H(4).
F: (P(A), 1)~ (P(B), u) is said o be x-continuous, if F'(G) En, for each.
€ wp. Similarly we have the definition of *~homeomorphism.
Lemma 8. Let f: #(A)—>P(B). Then f¥(DNB) =f2(D) N4 for each DE LY.
 particular, for DEP(B), ¥ (D) =f(D) N A.: o

Proof For each O satisfying f(C) =D, we have O f~ 1f (O) (= f 1(D) So.

F(DNB) =U{0EP(): f(0)=DNBIcU{CEP(A): f(O) =D}cf(D).

On the other hand,

- F@DnHcH D) NF(A<DNB.
ence f*(D) N AcFY(DNB). Thus f~1(D) N 4=F'(DNB).

Furthermore we have the following proposition.

Proposition 1%, Let F: P(A)>P(B), g: P(B)—> P(0). i denotes cowesPOndfih g
entity mappings. Then we have the following results

(1) Fg=f9. G ¥=9'F%

() FF=i FFY<i; -

(iii) F s a one—one correspondence fl,ﬁ' f f"—q, 77 =4. Quasi-subspaces and -
mmbinuous mappings possess various properties analogous to that of usual subspaces
1d continuous mappings. For example, after we define the closure and the R-
sighborhood in a quasi-subspace (2 (4), m.) (the closure of O € (4) in it is
snoted by cl4(0)) as usual, the following results can be verified without difficulty.

Proposition 2. F: #(A)— P(B). 45 »—continuous iff f(cls(0)) Celp(f(0)) for
w0h CEF(4). , -

Proposition 8. 7 preseives arbitiary union, f¥ preserves arbitrary union and
rbélrary intersection.

Definition 10. TLet € (X) denote the family of all the compacti fcatwns of. (Lx
). Define a preorder (i. e., a relation which is self-reflexive and transitive, but it neced
ot to be anti-symmetric) “‘<<” on € (X) as follows:

‘ (LX) om) < (L%, oam) iff there exists a *—continuous
mapping F:  P(ca(X))—>P(61(X)) such that Sfea=cv
there the meanings of ¢y and ca are as in Defingtion 4. We say that (L%, cm) s

guivalent to (L%, eam) of the mapping f is a *—homeomorphism m the above relation.
 In [11] we prove that the family % (X)of compactifications of an L-fts (L%, )
3 always nonemptby and each nonempty subfamily of %(X) has a supremum in
§(X), therefore there exists a largest compactification. In ths paper we also prove
that there exists a kind of L—fts such that the largest compactifications of them are

nob unique (i. e., the preorder does not sabisfy the anti-symmetric law); but'if we
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' hmlt the olass of the compactifications with a certain separation property so called

" weak Ta, then the largest compactification is unique.

§ 3. Continuous Mappings on I(I)T

In this seotion, we will investigate the value field L and prove that for

‘remarkably many cases, the confinuous mappings on I (L) are not enough.

Definition 11. For a fuzzy lattice L, let N(L)={aAa": aEL\{0, 1}}
called @ quasi—Boolean lattice, 4f | N (L) |<1. :

It is not difficult to prove that quagi-Boolean lattices include two kinds
N (L) =¢ and N (L) = {0}, at this time, L is a Boolean laitios; (2) N (L) ={b
b+#0, at this time, Ly=1IL\{0, 1} is a Boolean lattioce, that is to say, L consists
Boolean lattice Iy plus another largest element and another smallest element.

Proposition 4. For each fuzzy lattice L, the following conditions are equiv

(i) L is a quasi—Boolean lattice;

(ii) aAa'=bAb for each pair of a, bGL\{O 1};

@il if a, bEL and a+0, then a=b \b’,

The proof is obvious. C

Definition 12. For each a € L, let a X denote the fuzzy set which takes co
‘walue @ on X; (L%, n) és called o fully stratified space, if aX € for edoch ¢ € L.

Theorem 1. In (L%, 1), of there evist a, bEL, a+0 such that ab Al
aX €m, moreover, suppose that for the closed set A of I (L)Twe havea(I(L)T) |
b, then there is no fuzzy mapping f: I(L)T —>(LX, n) such that the restricts
P(A)—> (LX, ) of it s »—continuous. Especially when L is not quasi—Boolean and

" m) s fully stratified, there is no continuous mapging f: I (I)T— (L%, 7).

Proof Suppose that there exists a fuzzy mapping f: I(L)T - (L%, 1) suect
F: #(4)—> (L%, ) is »—continuous. Let u denote the co—topology of I (L)’
Lemma 3 we have A
G=a(I(DT) N4=f"@X)NA=F"(@X) €pa

and G+ ¢J. Since A ig a cloged set of I(L)T, so is G. Take a crisp point AE I (.
follows: |

1, <0,

h(@) =4 b, 0<i<],

0, ¢=1.
Let 2 be the crisp point in T (L)T such that each coordinate of it is A. Then fro:
structure of the bage of the co—topology of I (I)T we know that for each none
closed set P in T (I)T, the relation P () b Ad’ always holds. But G (3) <a, aFbADb".

t Henoe we haveandtherrélation G(z) 32b A b’ too, thig is a contradioa tion.
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§4. Non-Largestness of the Stone-Cech
Compactification

The investigations in the preceding seotion show that the s—confinuous
ppings on I (I)' and the closed quasi-spaces of it are always insufficient except.
 case that I ig quasi-Boolean, Therefore, it can be guessed that ths property will
troy the largestness (see the defintition of <) of the fuzzy Stone-Cech
npactifications which reflects the extensibihty of mappings. We have the following
ults: T . o ' o :
Theorem 2. For each Tychonoff compactification (L%, en) of (IX, ), &f there
st @, b€ L such that a+0, ab b’ and a(6X) Een, then (LFZ, Bn)(Ie%, on),
refore the Stone-Cech compactification of (I, m) is not the largest element of the
nily of oll the Tychonoff compacti fioations of (L*, x). .

Proof Since a subspace of a Tychonoﬁ' space is siull a Tychonoff spa.ce, (Lx m
1 T'ychonotf space and the Stone—Ceoh compactification of it exists. Since ﬁ(X )o
X), B(X) isacrigsp seb in T (L)"‘(X) ‘the relation a (I (L)# (1)) NB(X) + J always
ds. By Theorem 1, there is no s-continuous mapping f: P(B(X) (X)) = (L%, en).
moe (LA%, Bn) (L%, en) - :

Theorem 3. If L is not quam—Boolean thon for each fully stmt'z,ﬁad Tychonoff
wpacts fication (L%, en) of (I*, m), (L%, Bn) 2 (L%, on) .

Theorem 3 indicates that -for giving oub a counterexample .tol show that the
ine-Coch compactification is not the largest one we need only to show the exigtence
fully stratified ‘N-compact spaces. We will use the induced space theory to
wstruct a large kind of space of this type, '

‘§5. Induced Spaces of Pseudo-Metric Spaces

In this section, some properties of induced spaces will be investigated. Chiefly,
will prove that the induced space of a pseudo-metric space is also pseudo-
trizable.

Defirition 13. For each family SA<L*, let [/] denote the family of all the
sp sets in o, lot of 'denote {A': A€ A}, Va€E L, VAELT, lot

Aoy ={0EX: A@)>a}, Apy={oE€X: A()*a}.
ir.each erisp set A X and each 6 €L, lob ad = U {w,: € A},
“(I%, m) is called weakly induced or a weakly induced space of (X, [%']), if
Ay €m for each AEn and each a € L. (L%, n) is called induced or the induced space
of (X, [%']), if (L%, ) is both weakly induced and fully gtratified.
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Obviously (X, [#']) is a usual topological space. On the other hand, if (X, J)
is a usual topological space, then (X, .7 ) determines uniquely an induced space as
follows:

Proposition 572, (L%, 1) ds induced ifj one of the following conditions ds
satisfied: '

(i) AeneVael, 4, € [n];

(11) A€y’ eVaCl, AmE '].

Lemma 4. In (L%, 7)), let Z<[n'] be a base of the erisp topological spac
(1), Z=4{aU: a€L,UERZ}. Then ‘

(i) % oonstitutes a base of a fuzzy (open) topology v on L%, and [v]=[7];

(ii) (L%, ) s an dnduced space;

(i) (L%, n)is an induced space iff n=1'.

Proof Clearly [+]=[7n"]. Since (aU) N BV) = (aAD) (UNV) for each p
aU, bV €2, (i) holds. For (ii), clearly aX €+ for each 6€ L, so aX €+ for
aC€ L, (L* ) is fully stratified. Furthermore, we nesd o prove that it is w
induced: let U €7, we can assume

U=]as U

where each aUsE ,?7, then
U(a) = U ((I a Ua) @

-3

for each a € L. But obviously we have (@,Ua) ) € [v]. Hence Uy € [7]. Nobing
7' is a fuzzy co-topology on L%, from Uj,;= (Uy)’ we know that (L%, ) is w
induneced, hence it is induced. For (iii), by (ii) proved above, the sufficie:
obvious. Let (I, n) be an induced space, then by [%] = {%'] (in(Q)) and Propo:
5 we know n=1'. :

Obviously the following proposition is true, ’

Proposition 8. An induced space (L, n) is a T space off (X, ['])ds
space. .

Using Lemma 4 we can prove the following proposition.

Proposition 7. A weakly induced space (L%, 1) is N-compact iff (X, [+
compact.

Definition 1454, A family {D,: r>0} of mappings, where v 45 a po
real number, D,: I*— L%, s called a pseudo—mstric on L%, if it satisfies the follc
conditions {A1>—{A6):

<A1y D.(&) =,

{A2> AcD,(4),

<43> D, (U 40) =U D, (4a),

C44) Dr°Ds<Dr+s;

~
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45y D,=V\ D,
s<r

'AG) D;2=D,, where D;* is defined as D;*(4) = N {0: D, (0") =4’}
r>0} satisfies the following condition AT) or {A8> besides <A1)«<A6>

.A.7> Va & X, Vwé \{0}» wa—mD (a’a))

(A8> the furzy topology on L* generated by
{D, (z,) wE€ X, a € L\{0}} is sub-T,
it ¢s called a I-type metric or Il-type metric respectively.
(L%, 1) is said to be pseudo-metrizable, if there exists a pseudo-metric {D,:
} on L% called that the fuzzy (open) topology %’ takes {D,(4): A€ L%, r>0}asa
. Uorrespondently we can give the deﬁnitioh of (L%, 1) being T —type metrizable

~type metrizable.
Lemma 5. Eaoch fuzy pseudo-metric space is noamal The/refoq'e T1 pseudo-

'4¢ space s a Tychonoff space.
Theorem 4. If a orisp wpologrwal space (X, T) - is pseudo—meto Gzabls
brizable) , then the induced space of (X, ) is also pseudo—meta izable (_bothI—type
rjzable and I1-type metrizable) .
Proof Suppose p is the pseudo-metric of (X, Z7), r ig an arbitrary positive
number. Let
B,: P(X)—> T, B,(A)>{sEX: p(a, 4)<r}. .
n obviously {B,: r>0} also satisfies {(41>—< 4B} of Definition 14. By the Remark
lection B of [1], {486 is also satisfied. Now for each >0, let D,: L* — L* be ag
ows: : : e ' s ) :
VAE€L*, D, (4) =U{A(2) B, (2): €supp 4}. ()
an since {B,: r>0} gatigfies {A1>—{45), so does {D,: r>0}. Now verify {46>.
[3] pointed out, for each fuzzy lattics L, if mapping f: L—> L preserves union
1 i$ ig increasing (i. e., a<< f(a)), f™: L— L defined as
Fr@=ABEL: fFB)<a}
0 preserves union and is increagsing. In particular, D;'also preserves union.
meoe we need only to verify {46) for each fuzzy point w,. Now for each fuzzy
int @, we have ,
‘ D (w,) = N{O€L*: D, (0 (w,)'}, bub
D,(0) c(ws)" & (U{0'(y) B, (y): yEsuppl}) (o) <d’
© (suppd’) N B, (w) c{y € X: O'(y) <a’} .
e0'c (B,(@)'Ua'B, (x) = (aB,(2))’
©D,(z,) =aB,(z) <O,

hence D, (z,) € D;* (v,), D.<<D;*. On the other hand, let D,(z,) =C. Then from ‘the
definition of D, we have D, (0") C (z,)’, hence D7*(w,) U, i. e, D,=>D;*. Thus we
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hé,xfe D,=D;*, {D,: r>0} is a fuzzy pssudo-metrio.

" ¥rom [1, Th. 4.8] we know that for the pseudo-metric {D,: >0} constructed
above {D,(4): ACLX, r>0} constitutes a base of an L-fuzzy topology on LX. Let =
denote thig fopology. Olearly [+] =.7. Now we need o prover=n’,where n is the L-
fuzzy co—-topology generated by Proposition 5 with (X, ), i.e., (L%, n) is the
induced space of (X,7"). Clearly #={B,(s): #€ X,r>0}is a base of 7. Moreover,
" by the preceding definition (+), obviously B={aU: aCL, UEH } constitutes a
base of 7. Thusfrom Lemma 4 we get v=v', that is to say, (L%%) is ps
metrizable,

If p is a metrio, then {D,: #>0} satisfies both {AT) and {A48> obvioudly, sc
>0} ig both a I-bype metric and a II-type metric. By the proof above we |
(L%, n) is both I-type meirizable and II-type metrizakble.

§6. Main Results

After making the preparations above, we can give ou’ the main results now
Proposition 7, Propogition 6 and Theorem 4, the induced space (L%, n) of a
metrizable campaoct space (X, .7 ) is T'y N—-compaot pseudo-metrizable, so it is
- stratified Tychonoff N~compact by Lemma 5. Hence it can be looked upon as a
stratified T'ychonoff compactification of itself. Thus from Theorem 3 we ge
ollowing theorem. '

Theorem 5. If L is not quasi—Boolean, (X, J ) és a erisp metrizable co
space, (L*, m) is the induced space of (X, 7 ), then (L%, m) ds a compactificati
stself, and its Stone-Oech compactification (IA%X, Bn) (L%, n). Therefore the {
Cech compactification of (L%, 1) d4s not the largest Tychonoff compactificati
L= n).

Beoauge the great majority of fuzzy lattices are not quasi-Boolean and cor
metrio spaces widely exist, there exists a large kind of fuzzy Tychonoff (N-com
spaces such that their Stonoce-Cech compactifications are not the I
compaotifications of them.

In the process of constructing the counterexample above, we can see that i
regearch of the Stone-Cech compactifications, induced spaces should be espe
regarded. In [12] we especially investigate the induced space I*(IL) on the real
interval 7 and take it as the new standard space, Therefore some neat resulis re.
o the imbedding theory and compactifications are given out. About I*(L) we
the following theorem.

Theorem 6. The Stone-Cech compactificatton of I*(L) 4s not the largest
Tychonoff compactification of 3.
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