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THE EXISTENCE OF CLOSE GEODESICS ON
A COMPLETE RIEM ANNIAN MANIFOLD

L1 JiaNeran (F i) *

Abstract

This paper studies the existence of closed geodesics in the homotopy elass of a. give
closed curve. Let M be a complete Riemannian manifold without boundary, f € C1(S%, M)
Look at S* as [0, 2]/{0, 2a}. The following results are proved:

A, The mltlal va.lue problem of heat equatlon d:fs=%(fs), fo=f always admits a gloha
" solution. o -

B. (Bxistence of closed geodesics). If there existsa eompa.ct set XcM such tha
FSHNE+ and

E(PH<I @R,
then there exists a closed geodesic homotopic to f. If
B(H)<Z i\EY,
then the closed geodesic is minimal.

C. Bome estimates about injective radius are obtained.
Some example is found showing that the inequalities in B are sharp,

§1. Introduction and Notations

In the study of closed geodesics great progress has been made since Hilh
pioneering works. In 1978 G. Thorbergsson®™ proved several exigtence theorem:s
1980 V. Bangeri™ supplemented Thorbergsson’s results. In this paper we study
existence of closed geodesics in a given homotopy clags of a olosed curve, The m

heorem is as follows:

particular, if

Let M be a compie’ae Riemannian manifold without boundary. f € 0* (S, M
there exists a compaot set kM such that kN f(SY) # < and

5(0k) =~/mE (f),

then there exists a closed geodesic‘homotopio to f.

Here L(f) is the length of f, ¢(9k) the injective radius of the houndary of %

$(M/K))=~=E(f),

Manuscript received September 9, 1986.
* Ipstitute of Muthematics, Fudan University, Shanghai, China.



86 CHIN. ANN. OF MATH. Vol. 10 Ser. B

o the olosed geodesio exists. Thig means that if M is very nice at infinity, then
closed geodesics will exist as if on a compact manifold. Note that we allow a closed
lesio to be a single point. In thig paper we also study injective radii and obtain
eral looal theorems. Now we define some notations. We regard §* as [0, 2x]/{0,
- with local coordinate @. Let f: ST —> (M, ¢). The energy density

o() @) = laf|2.
s enorgy
B() = o(5) O
> length
L) =, a.s]48.

s tengion tensor = (f) (§) =V,,0,f, B, denotes the open ball in R* centered ab the
gin with the radius r. For a subset § of a Riemannian manifold, the s~neighborhood
={z|d(z, 8) <s). The injective radius
' 4(S) =inf ¢(P).
Pe8
e Qaussian curvature '
Riem (§) = sup {all the seotional curvatures at P}.

§2. Injective Radii

In thisg seclion M ig assumed to be an arbitrary Riemannian manifold without
andary, but may not be completé. Henoe the exponanﬁal map exp,: Ty M— M may
t be well-defined on the whole tangent spaceI’;, M. We first esfablish a lemma
iich is the lecal version of Lemma 1. 32 in [7], p. 35. . ‘

Lemmal, ZLei M, M beRiemannian manifolds. pE€OD(M', M), S is a
wmected open subset of M’ . Assume that there is 8>>0 such that expp can be defined on
cTeM’ for any p € 8, and ¢(8,/8) Ne(S) =B. If the restricted map |8 is a
al isometry, then it s @ covering map. Hence |S is a & ffeomorphism if o(8) is
nply conmected. _

Proof Olearly ¢(S) is open in M. Fix q€o(8). Let 97*(¢) NS ={¢x}. Assume
(0<r<s) is so small that

U ~exp, B,Cp(5)
contained in a normal coordinate neighborhood of ¢. Let
: Us={s€8|d(z, ga) <r}.

Then (p{S)*(U) is the disjoint union EJ U, and the commutabilify of the following

diagram
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B.(CT M) 25 B.(cT M)

eXPq,,l lequ

U. ___"’I_U“__,U

implies that @|Us—> U is a diffeomorphism.

Theorem 1. Lei pE M. ri>r>0. exp, is deﬁned on B, cT,M. A=exp, B, is
simply connected. p has no conjugate poinit tn expy B,,. Assume that there s §>0 )
that xpy(B,y\B,) Nexp, B,=J. Then

4 (p)=>r.

Proof Let M'=B, cT,M, g the Riemaenian metric on M. ¢'=exp,g. Si
has no conjugate point in exp, B,, (M’, ¢') becomes a Riemannian manifold
p=0Xpy: M ’—> M is a local isometry. Let § =B,. Then Lemma 1 shows that @|{
diffeomorphism and therefore ¢(p) >r.

Theorem 2. Lot pEM. r1>r>0. exp, is deﬁnad on B,,cl’,,M A=exp,

stmyply conmected.
R AN
Rime(A) < <7> .
‘Assume that there is 8>>0 such that exp, (Bri.\B,) Nexp,B,= . Then
i(p) =>r.
Proof Pick r1>r so ocloge to r that
Riem (4) <(-—”L)2.
T4 :
Compare exp, B,, with the sphere of dimension n(n=dim M) of radius JL 3
) o
Rauch’s comparison theorem p has no conjugate point in exp,B,,. Then Theor
implies Theorem 2. '
Remark. If exp,(Brs.\B,) Nexp, B,# J, for all >0, then there are at

two geodesios in exp, By, from p to o for « €exp, (B,..\B,) exp, B,. Hence 4(1
in thig case.

§3. Close»d Geodesics

In this gection we always assume that M ig a complete O Riemannian man
without boundary. Given f&O'(8', M), we shall study the existence of ¢
geodesics in the homofopy class of f.'We regard S* as [0, 24]/{0, 2x}. Congide:
initial value problem of heat equation

{aft =7 ()
Fils=o=F

1)
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which the solutionf; exists at least locally. From now on f; will always denote the
lution of problem (1).

Lemma 2, Let M’ be o compact subset o M, ¢ a constani. Then there exists
=3, (M’, ¢), such that, for any fFEO(SY, M), if F(SY) CM’ and e(f) <¢, then the
utbon of problem (1) ewists for € [0, $1).

Lemma 8%, Tet fcO?(8*x [0, ¢1)). If (85—, t) =0, then sup {f (8, ©) |

8%} 4s decreasing for € [0, #1) . :

Theorem 3. ¢(f,) <sup {e(fo) (8) |0€S*}, for all 0.

Proof Since -
0:05f+ @ =0, O:f1=20pv (f ) =V 2,V2,00 fer
have : :

(33—3t)6(f ) (9)
= (33’ —31;) <aof i 3of t>
—39<V9.,39f P 3af t> <ataaf & aof t> ]
=<{V3,V20f1) Do feo+ l V2408 ft l 2—(B8:0of+ Oufry
=V939ft!2>0 v '
en Lemma 3 implies Theorem 3. _ :

Lemma™ 4, 2,E(f) = —j |%( f,) [*do (t>0) Honco E( £ s a decreasvmg
wtion of t.

Lemma 5. Let f:, g. be solutions of problem (1). Then fi=g: (for i=0).

Theorem 4. Lot M be any complete Riemammian manifold. Given any initial
dition f € O*(S*, M), the solution of problem (1) ewists uniquely for € [0, +o0).

Proof  Let [0, b) be the largest existence interval of the solution of problem
. By Lemma 2, 5>0. we now show that b=+ co. Notice that every p €C* (8%, M)

igfies
diam p () < L) <VEEGT

ppose b< + oo, Then for each § €8* we have
é(f:(0), ) <d(f:(0), f:(00)) +d(f:(Bo), f(00)) +d(f (Bo), £(0))

<diam £, (5% +diamf (%) +j: 8.7+ (8o) | di

<~=EF) +~/asE(f)+K|atft(00) | s
<2aB (T + j ‘; |87 (80) | .

Chose 8, such that
t t
J ERACH |dt=mmj EXROIE
0 eest 0

Then we obtain
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sup 4 (£:0), F0) <2 VTE D+ [ a0 [ |0.5.(6) |a
<oaED +-21-\/§ar—b (f“ J " 10,7:(6) |ﬁd0dt)m
<2\/m:l7(f)—|—< j( a,E(fg)dt) (Lomma 4) -

<2\/WEU)+( 'E(f)) < too.

From Theorem 4 and Lemma 2 we see Lhat fi. can be extended to tE [O b+s
some &>>0. Thig contradiets our definition of b. Henee b=+ oo, that is, i exisl
all t>0. The uniquenesy of the solution is from Lemma, 5.

In [1], Ottarsson proyed a global existence theg-r,em of f;, but in his pro
assumed that M satisfies some boundedness condition which is removed here.

Lemma 6%, I f fi is @ bounded solution of problem (1), then there exists @
geodesic homotopic to Fo. e

If Riem (M) <O, then the boundedness of f, is eqmva.lent to the ex1stence
closed geodesio in its homotopy class™, Bui in general this is not true. Here .
example, o - ,

Example 1. Consider the surface of revolution in R

2?2+ =r ()2
It can be expressed by the local coordinates (p, 2):
z=r(z)cosp, y=r(z)sing, z=2.

The heat equa.tlon Q) is -

dp _ &9 4 27" 80) Bz
ot e0" ' r 9 09’
_?_z____ﬁzf__ 'I"T" (_32_2 'I""I"" _a—z)a
o o'  1+r"\00 1+77\30
If we sesk the solution of (2) with the initial condition of the parallel
@6, 0) =0, 2(6, 0) =2
then the solution is ' ,
90, t; ) =8, 26, 1; 20) =2 (8; 20),
where z (#; z) satisfies
& r@r'@®
dt 1474 (2)?’
» 2(0) =zo.
Hence one can see that every isochrone {=1, of the solution ig the parallel z=2z
And when # increases, the isochrone goes in the direotion along which the ra
r(2(t)) is decreasing and it will never stop moving unless a gecdesio parallel strikes.
him, '
Now take
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r(g) =",
Zo=1.
en as we indicated above, the solution (3) hag the property:
2(3) =1, for all £>0,

8 equation (4) is _ A

dz e *ghy e~ gh1 :

@ 1te’™ghly - 1te 2%ghip " ®)
w we show that the solutlon (8) is unbounded. If nob then from (5), we see that
To ex1s’ﬁs a congtant ¢>0, such that ’

dz
—_
Frd for all {=>0,

en z(f) >#y4ct is unbounded. On the other hand, the parallel z=0 is a olosed
degic. This shows that the inverse of Lemma 6 does not hold.

‘Theorem:5. For any f€O* (8%, M), if there is @ compact set K, such thai
'1) Nk+ D and

E(f) <— (k)

n there eatsts a closed geodesw homotopic to f.

Proof By Lemma 6, we only need to prove that if f is not null homotopis, then
s bounded. Suppose this is not true. Firgt there is #,=>0 such that f;, (§*) Nok+ .
k pE S, (81) Nok. There exists g &f,(S?) such thst d(p, ¢) ~max {d(p, ) |2E
S }. d(p, g) >¢(p) sinoce f is not null homotopic. Then

(k) <é(p)<d(p, ) < L (fu(8) SVFE(Fo) <V@E(F) <6 (@h).

ig forces
a(p, ) =5 L(Fu (5.

nce f;, (8 \{p, ¢} are two minima] geodesics. Then f;, must be a closed geodesio
ce it is a O* curve, Thus fy=f;, (for all {>1%,) is again bounded.
Denote B, (p) ={¢|d(p, ¢ <r}. From Theorem 5 we know that if 4 (M\ B,(p)) >
(r—»>c0), then every homotopy class of a closed curve containg a closed geodesio.
is tells us that if a manifold behaves elegantly when in remote places, then cloged
»desies will come into life, -
Theorem 6. For anyf €C*(8',M),if there is a compact set K such that f (SY) N
# & and L(f) <24 (8K), then there exisis a closed geodesic homotopic to f.l
Proof Take
2
f= T s

as the new parametrization of f, where s is the arc-length. Then
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B =20 <L i0m),

Hence Theorem 5 implies Theorem 6.
Now we prove a nonexistence proposition, »
Proposition. Assume f €0*(R), f>0. The first.derivative f* has no zero point.
Then there do not ewist any nonconstant dosed geodesics on the surface M: #*+a*=f(z)
Remark, This is algo true for the gurface

(&) 43 s
in RS,

Proof Assume f'>0 everywhere. Note that each parallel is not a ge
Suppose 7 (s) = (#(s), y(s), #(s)) is a nonconstant closed geodesic on M. Let
2 (so0) =max z(s).

There exist @, b, such that
' a<sp<b, :
z(a) =2(b) <z(s) for all s€ [g, b],
and 7| [a, b] is a minimal geodesio. :
Now consider the orthogonal projection onto the plane z=¢(a).
L(7|[a, b]) > L(its projection)

=1L (5' (@)7 (b) on the parallel)
>du (7 (a), Y()).
This contradiots our choice that 7|[a, b] is a minimal geodesio. _
Now we present an example to explain that the inetlua,lities in Theorem 1
Theorem 6 are sharp.
Example 2. Let M be the gurface of revolution in R? 2?+a?=r(s)?
r(z) =0+ p=(a, z, 2z) €M. Then ¢(p) >w since M encloges the o r
o*+¢?=1. On the other hand
4(p) <half-perimeter of the parallel through p=am1(2). We therefore ob
- w<i(w, ¥, 2) <mr().
Hence for any compact subset K we have
4(0K) =4 (M\K) =m.
QOlaim: For any s>0, there exist f €0~ (8*, M) and a compaoct seb &, suc

F@EHNKE+ ijE(f)<(—i7+s)q}(6K)”, and
L{f) <(2+8)#(2K),

but there do not exist any oclosed geodesics in the homotopy class of f.
Proof Let f be the parallel: z=¢. - '
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F(@) = (r(®)cosb, r(t)sinb, t),
9f (6) = (—r (1) sind, r (1) cos 6, 0)
L) =2ar@®,
E(f) am'(t)’—au(1+e")
anyglven s>0 we ohose t> lnsf Then for any compaot set K containing f(§?),
have " -
FE K-, -
B(f) <(l+ ¢) fz}(M\K)”<(—al;+s) 4 (0K)?,
t L(f) <(2+8)%(M\K) @+8)4(0K). _
the other hand f i not null homotopm The nonexistence propos1t10n 1mphes
t there’is no closed geodegic in the homotopy olags of f.
Here is another éxample which shows that’ the olosed geodesics in Theorem 5 and
jorem 6 may not be the shortest.
Example 3. Let M be the surface of revolution in ‘B® o’+y= fr(z)’ where
yEeo” (R) ‘We choose the »(z) such that
7(2) >0 for all 2, -
r(z) =¢* for z<0, = .
r(z) =1 for z>>1.
:n : .
6(w, ¢, 2) = for z>1+mw,
. f be the parallel z=2%. K =f(S). Then
FEYNE+B, B <%¢' (@K)3, and L(f)<2i(2K),
5 there do riot exist any minimal clogsed geodsgics homotopic to f.
Theorem 7. Let fE€O* (8", M). If there s a compact set K <M, such that
| - L(H<2(U\K),
n the homotopy class [ f] contwins a minimal closed geodesic.
P/roof Let
Lo=inf{L( 9) |9 € [f1}.
ka 0'1 minimal sequence {7,} in [f]. If {7,} is unbounded, then for any N there
sts n>N suoh that 7,(8") N (M\K) + . If L(f) = Lo, then f ig a minimal closed
desio, If L(f) > Lo, then for some sufficiently big n
' L) <L(f)<2(M/K) <2i(p),
are p€E€ 7,(8Y) N (M/K). This implies that 7, lies entirely in a normal coordmate
ghborhood of p. Hence 7, is null homotopio, and so is f as well. In this case, {1
-...baing the congtant cloged geodesie,
Now we assume that {7,} is bounded, namely, 7.(8%) all falls in a compact
subset of M which ig independent of n, Let M” be the universal Riemannian covei'ing



"No. 1 Li, J. F. EXISTENCE OF CLOSED GEODESICS 93

of M. Let o, be the lift of 7, such that every «,(S*) falls in a compast subset of A’
which is independent of n. Pick aminimal geodssio B, in M’ connecting the endpoints
of a,. The projeotion of 8, in M compose a minimal sequence for L in [ f]. Sinee the
initial tangent vector £,(0) falls in a compact subset of TM’, it must havea
gubsequence converging o some s €T,M’'. Then the geodesic starting from the
. projection of p wifh the initial tangent vector——the projection of s——must be a
minimal closed geodesio in [ f]. ‘
The inequality in Theorem 7 is sharp as we indicated in Example 2.
thoersm also can be stated as follows. ’
Theorem 8, Let f €O (S, M). If there is a compact set K =M, such tha

B(f) << é@\K)*

then the homosopy class [ f] contains @ minimal closed geodesic.
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