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ASYMPTOTICALLY OPTIMAL EMPIRICAL
BAYES ESTIMATION FOR PARAMETERS
OF TWO-SIDED TRUNCATION
DISTRIBUTION FAMILIES**

Wer LasEENG (F R 4)*

Abstract

Consider the two-sided truncation distrbution families written in the form
F @, O)da=w(01, 0)h (%) Iy, o3(x)dz, where §= (01, 6).
I'(z) = (tl(w): t2(2)) = (min(a;l, * ":xm); max(%y, =, Tp))
is a sufficient statistic and its marginal density is denoted by f(#)du?. The prior distribution
>f @ belongs to the family

.?f={G: f flo12 a6 )< }.
-]

In this paper, the author constructs the empirical Bayes estimator (EBE) of 6, ¢,(t) , by
using the kernel estimation of f(¢). Under a quite general assmmption imposed upon f(#)
and h(x), it is shown that ¢,(t) is an asymptotically optimal EBE of 6.

§1. Introduction and Summary

Agymptotically optimal (a. o, ) empirical Bayes estimation (EBE) of parameter
wub uniform distribution families U (0, §) was considered by R. J. Fox in [1].
author studied the convergence rates of this EBE in [2]. Furthermore the
or algo discussed the EBE problem about general one-sided truncation
~ibution families in [3]. But the 'EBE problem for mulfi-parameter hag little
. dealt with. In thig paper the author exhibits the a. o. EBE for two—parameter,
ad @y, under two—dided truncation distribution families,
Congider the two-gided truncation distribution families wriften in the following |
1 .
f(=; 64, 82)do=w (61, 02) k() Ipe,, on(@)da,

8= (64, 05) €6, O={(04, 02): —c0<a<0;<0,<b< +o0}, @M

0 @ and b are fixed constants, & (z) >0, a. e. (for Lebesgue measure) on (g, b),
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and it is a Lebesgue integrable funclion on [fy, §,] for any § €6, But
03 -1 ’
w(@y, 62) =U r@ds |
-39
Let X=(Xy, -+, X,) (m=>2) be the iid sample drawing from above

digtribution families. It is obvious that,

. (1 (X) 12(X)) = (min(Xy, +-, Xp), max(Xy -, Xp))
ig a ufficient statistio for this families. Let

T(X) =1(X) = (t1(X), 8a(X))
and denote its valued spaceby.7 . In this paper we denote the actual observed val
random vector 7' (X) by £(s) or . The conditional distribution density of T (X
given § is writben in the folliwong form
ta m—2
g (@|8) dp”=m (m—1)w™ (@, 6,) [J' k(y) dy ] « h(E) R () Lioyctrtacon () A’
Let the loss funotion be
L@, @) = |0—d|*= (61— d0)*+ (2—da)?

where d= (dy, ds) €D, (D, #) is called an aokion space.

Let the prior digtribution families as follows

f={az [[10r 3@ <oo}.

Suppose that g (@4, 0s) 9148, is the density function of G'(f). Then the marg
dengity of T (X) for the pair (T'(X), 6) is -

1®= [ 961036©) ~{ men-D[[pa]" benc }

[, a0 0@ 02961 8330 [—u0®),

where _
u@® =mn—1) ([ h@ay|" hEhG),

(@) = j d()zj ™ @y, 05) g (0, 02) 1.

If we denote 32%(”5&”2) and o (y;. Y2) (6= 1, 2) by ¢l (ys, ya2) and ¢} (g1, ¥»)
1 2

1, 2) respectively,then under the prior distribution G the Bayes estimator of f

$ua() = [[ 62910) 46070 ~ 20 [* 10, [ 010701, 69 s, 65 a0y

@)
- ;Eg La s Ja 01[—0'1,2 (01, 02) ](191 }‘gg tav (t) I v (017 ts) d01]
Ltyi— }‘Eg r1(8) Ata— s ), ®

where
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(B flyt) . ' o
r1() —L ﬁjg- dy, and )]
_u@® :
P (8) = ;f O @®. - (10)
Similarly we gel ,
IO
pag () =tat 2t 10 a(?) | tat1n(?), | @11
where
rs(8) = j . ACE) gi 1’3 dy, and : (12)
' u(t)
WO=$En0. @)
The Bayes estimate of = (64, ) is defined by _ ,
be () = (P1e (@), Pac(®)). 19

Let Ry be theBayes risk versus @, i. e,,

Ro=R(¢e) @ =Hw,o) |ps(T) —0|*=Hiz, o (h1a(T) 91)2‘*"17(1', o) ($aa (T) ~02)%,
(18)
where E(.) denotes the expectation with regpect to the joint distribution of random
veotor (+), and we ghall always use this symbol in thig paper.

In the EBE framework, we make the following assumptions: Let (X©, D), ...,
(X™ g™), +.. be a sequence of iﬁdependen‘h random vectors and let (X,d) = (X,
§*+V), then the §V, «-» , #™ and § have a ecommon prior distribution G'(§), where
XD = (X, vy Xia), 0<> - Oy Bi), =1, 2, -+, m, and X=(Xy, =, Xu), 0=
(81, 6s). Usually X®, ... | X™ denote the higtorical samples and X is the present
gample, Let . A

To=T(X®) = (2(XP) £(X9)), 6=1, 2, -, n
T(X)=(#1(X), ta(X)) =¢(X) as above.
Therefore Ty, «++ , T, are also called the hisforical samples of random veotor T (X,
and ¢ is the present sample. Obviously 7'y, -+, T,, and T' are mutually independent
and each T'; possesses the same distribution as T, given by (5).

In order to establish the EBE off, we use the class of kernel function defined as

follows:

Let &y (z) (w € Ry) be a borel measurable bounded function vanighing off (—1, 1)
and satisfying the condition

(—=1)¢ r ; . [1,if =0,
~ k dy=4 "’
,7' 1 0 (?/) Y {O ifj=1 2 .o,
It is no# difficult 4o find @ ko (@) that satisfies above condition™d,

Lot 2 (w) =k (14, ua) =ko(ur) ko (ua), (w1, 1) ER,
It ig eagy o find
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‘ 1,if by=la=0,
@ li'lz)! J. 7”<“>“5‘“5"1“={ P ety

0, otherwise,
® | 1kG) <y
In order to egtablish the kernel estimation of f (), we define
1 &, =T ' ~
fn (t) - nh;‘: ‘=21 L( hn )y - (1

- where k,>>0 and lim A,=0.

- Leb : :
- Fa(®) if |£a (@) | >3
Fuy = { | €
3n if| fu(®) | <3n
be a ornel estifmate of f (t) , where {6,.} isa sequenoe of positive numbeas surh ’ul
hm 8,=0, ’

Let ~ ' . .
v = [ L8 0y [ L) g @
The EBE of §; and ¢, are deﬁned by . ‘ o
4u® -t S0 o a
and Co .
Gan()) = b+ f () ) ra@) e
respectively. Therefore we define the EBE of § by
Pu(®) = (1 (8), (D). ' @

LetH, and E be the expectation withfrespeot to the joint distribution of (T,
T, (T, 6)) and (T4, -+, T.) respectively in this paper. Then the “over-all” Bajy
risk of ¢,(¢) is given by ' o
Bu=Ru(bw ) =Eu| (D) —0|* =By (¢p1.(T) —00)*+Eu (pan(T) —02)* . (2
By definition, ¢,(#) is said to be an a. 0. EBE of § with respect tothe prior fam
F+if - v
lim BR,=Ryg, for any GEF *, : @

The main result in this paper can be formulated in the folIowing theorem,

Let Deq bo a probability density on R,. Every density function in Dg, satisf
ons-order Lipschitz condition and its absolute value is bounded by .

Theorem 1, Let a and b be fized finite constants, a<<b. If

(1) h(z) <M and [1()]™* 4z a Lobesque integrable function on [a, b],

() f¢) €EDea -
then the ¢, (8),defined by (21) with h, —-0(8) and h,=n"*, 0<p<<1/4, is an a. o. EBu
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of 8 under the loss function (3) and the prior family (4).

8§ 2. Several Lemmas

In this paper, ¢ and M denote positive congtanty that do not depend on n.They

can be taken different values in their each appearance even within the same

expression.
Lemmal Lo 5>1. IfH 16112 3G @) <oo, then
]

By |¢ia (T) |°<o0, 6=1, 2,

and
E (T |2<oo, =1, 2,

Proof By Jensen inequality of convex function we get

Eul o @ 1P= | 110 °F ) au*<[ | B (10217 @ ds®

=;, ﬂ 161]°f (:16) a6 (6) dps®

=_lf Ak (Lf(tW) 'W) d@ ()

~{[18:1°ae @ <{[161°46: 6) <co.

® o

Similarly we obtain
B pae(T) |2 <00,

Since @ and b are finite constants,
B.|4]°<|b|?<co,

From (8) and»‘(ll_) we have A
B | (T) |2 <o,

Lemma 2, Iff(#) € Dqa then for the f.(t), defined by (16) with
ho=n"", 0<v<<1/4,
E|fu(®) ~f ) |*<chi.
Proof Since -

B|fa® —F @) |?<2[Var (£, ) + (Bf. @) —f 1)) 1 22(Ps+Py),

from (16) we have

Py=Vax(£,) =1 Var[(L52 )| < B[ (1372)]

e[ (E) s

4
- mhy

Let u= t;"" . Since f () is bounded, we geb

n

24

(25)
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Pi< | 1) f (6—ha) duo (kd) = <h 26)
if h,=n"" 0<v<<1/4. Also
' _ 1 t—T;l —h=2, t—2
ALfs 7z E[k( o )] i JR. k( e )f(z)d"
Let u= t;z . Similarly
BUA®1=[ b G—hw)du.
Sinoce f(#) satisfies one-order Lipschitz condition, by the properties of &(u)
have
|B£,@ -1 ® | =], £ (F G—ha) ~f ©)) du
<[ 1B |- M- huldu<cdn, ¢

Therefore
Py=|Efa(® —F &) |*<cha.
From (26) and (27) we obtain
E(fa(#) =5 ()2 <cha.

Lemma 8. Let (h(z)) ™ be Lebesgue integrable and h(z) <M on [a, b). If f

€ Doq, then for the () (6=1, 2.), defined by (18) with h,=n"*, 0<r<\1/4,
W2 Q) Elrn@) —ri@1*<es ki, 4=1, 2.
Proof- We prove Lemma 3 only for ¢=1. It is similar for =2,

Elrw() "’l':l(t)]2=EU f..(y ta) I f(”/ 1a) dy:l

o uly, By -], ‘u(y, ta)
b 2 9
sl wé, (! "(”Ju’@ aall

(

L oy |1 s BUG 0~ (4 8919400 Qs

From (6) we have

i 1

| mm-1)[["p@az]" r@ha
| M

m (m—1) h(és) U‘ h(zydz |

Q=

dy

<

G

h(ts) U: h(ydz |"

By Lemma 2 we get ‘
E[fn(yy tz) —f(.% t2)]2<0h3-

Therefore

(30)
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=, o5 Blfaly, ) ~F v, 91%y

) d’l/ . 0172,; T : o
<¢ :I.h" .[a u(y’ 772) [ﬁ:h(’h")dz]»’"—zh(ta) . (31)
nce ' ’ ) : :

@ (&) Blru () —ri(t) 12<cih® () -hi<chl.
milarly we have ' ' '

2 () B [ran (€) — s (t)]5<chz. |
-.§38. The Proof of Theorem 1

From trigometrio inequality we have

0SVE|u(T) —01* —~ Bilde(T) Bll"<~/E 16.T) =@
e., 0S~R,—~Re <~E, 1|¢,,(T) e (T) P 1f we can prove

hm B,|$u(T) — e (T) |2=0,

an

g 1113~/F,. —~~/Rg=0,

'@ know Rg<<co by (4), therefore i
’ Lim R R,,

‘o proof of lim H.lu(T) —ha (T} =0 is as folows - |
B pa(T) — ¢G(T> 12 = B, (¢ (T) ¢1G(T))2+E (¢3,.(T) gbw(T))’AJ1+J,

(32)
r definition, ¢, (t) is sald o be an a.o. EBE of § with respect to the prior family.
if : ‘
lim J;=O, i=1,2. 33)
e prove (33)first for 4=1.
By (32) and the dominant convergence theorem, one sees that in order to
iablish the a.o0. property of ¢,(¢) one must verify thab
(a) for any G‘E.?" there emshs a fanofion M (T, @) not dependmg on n gach
R
B¢ (T s Toy T) —1a(T)) 2] <M (T, 8),for n=1, 2, =,
B, oy (M(T, 6)) =B,(M (T, 8)) <oo;
(b) for fixed T€.7 and €86,
}igl Elpin(Ty, +++, T, T) — 16 (T))*] =0

First we prove (a). Since
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: _ a_gle riL(8) _ ri@)7]?
B@u® ~$®)*=5 { w0 [ 0 - 2]
P 71,8 —r1(®) \?
§2E[ “ (t)( [XO) ) ]
S AOENIONY
+2 [0 (255 ]
<25;%’(t) - Blrs,(8) —r1(1)1?
oo g [ Fu® —F @) 12
+2pi(t) - B [W] A2(Ju+J1),
by Lemma 3 we have
| J 11 <08, 7Rz, 6
We consider J1a. Sinoce
[f ROERAO) ]
X o
RO AON S o [(Fo® —F @ \?
{<—_f__(t)_) Tipitrsem }+17 KW) Ty g }
ATE+IE,
where
fO-56 {f(t) ~8,<F ) ~fa(®) it |2 () | <Bu
by Lemma 2 we get '
JE<E (fu(8) —F (1) *<c-37°h;.
Since !—J];% l <1 if f () <3,, we have | '
J@=E {( f"( ()) Listy<s,y }\4P (f @ <d,).
It is obvious that J& <4 for all n.
Since ]lIIgl 372h2=0, there exists an N, such that if n> N,
JP<1 and Tu<l. '
Hence .
B[LOSOT ~rw+7<s, it n>1.
Fa(®
Therfeore we get
E(¢1,,(t) “¢1g(t))2<2+10 ll}% (t) éM(t, 0) if n>N, (:
By Lemma 1 we have
B, o @1(@) =E.@i(T)) <oo.
Thus p

Ea, oM T, 0)) <2+10E,i(T)) <co.
This proves (a). S B
It is obvious tha
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lim B ($1a () ~ 1 (9) *<Lim [275+2¢* () (TR +TE)]
| <Lim [03,%2+24 (3) (o37°2+4P (F (1) <8,))] =0

for any fixed ¢€.7 and § €6. 3D
‘berefore (b) follows, and we get lim J4=0.

n—o0

Similarly we can get lim J,=0, The'proof of Theorem 1 is concluded,

n—roo

§4. An Especial Examplé

Let h(z) =1 on (g, b) in (1), Then we get the special case, uniform distrbution
amilies U (f4, 6a). It is an especial example of two-gsided truncation distribution
milies, In this case the expresgions in § 1 are changed correspondingly. For example,
ormulas (1), (2), (6) and (7) are changed as follows:

1
— i 0 f2<b
f(m,0)={92—91’ if 6<0,<5<0,<b, @
: 0, otherwise,
there —oo<a<b<+ o0,
m{m—1) (ba—t) ™2 i 9 ,
< <ta<b,.
g(tla):{ (02_01)1" s L 1 1 2 2 (2’)
0 , otherwise,
% () =m(m—1) (f3—)™ 2. ©)
(] h 1

Q (t) = Jt: deg Ja W g (91, 02) dﬂi. (7,)
In thig case the conclusion of Theorem 1 follows obviously. If we change the fixed
inite constants @ and b of Theorem 1 into arbitrary constants, i.e., —oco<a<bd<

oo, then we obtain the following theorem.

Theorem 2. Let a and b in (1) be arbitrary constants, 4. 6., —co<a<b<-+oco.
f £ (%) € Dus. then the ¢, (), defined by (21) with h,=o0 (3,) and h,=n"", 0<y<<1/4,
s am a. 0. EBE of 8 under loss function (3) and prior family (4).

In order o prove Theorem 2, Lemmas 1 and 3 need t0 be changed lightly as
olloms. _

Lemmal'. Letaand b in (1) be arbitrary constanis, 5. 6. , —co<a<b<-+oo,
wnd let 3=1. If

IEREIORES
o
then : B, |¢ia(T) [P<o0, §=1,2, (24)

B\t <co and B, | (T) |t <co, 5=1, 2. - (25")
Proof The proof of (24') is the same as (24). Since §;<t:1<t,<fs |t|<
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max (|01, | |0a]) <|0| and E.[#|°<E.|0|°<cc. From (8) and (11) we have
' , B i(T) [2<es( B | pia(T) |2+ B[ :]%) <oo.
Thus (25") ig proved.
Lemma 8. If f(t) € Dos, then for the ri(t), defined by (18) with h,=n"", 0L
y<1/4,
(@) Blra() —ri(6)12<e(ta—1t1)%h, 4=1, 2, (28"
Proof In order to prove Lemma 3’, we change the Q; and Q, in Lemma 3 into

1 _f" dy
Qi*L u(y,ta) dy—L m(m—1) (fa—y)™?

_ 1 [t L]
B m(m—l) (m—3) (tz—'t]_) m-3 (ta—a)”'_a
1
<'m,(fm,—l) (m—3) (}a—t)™ 3’ @
Q= o Blfutd) —F i1y < & @
" Ja u(ydds) e i m(m—1) (m—3) Ga—t)™"

Hence
u? () B [r1.(¢) —r1(8)) 2 <2 (3) Q1 Qa<xc(ta—1t1) k2.
Similarly we obtain :
(@) Bra. (@) —ra(0)1°<c(ta—231) ki
The proof of Theorem 2 ig gimilar to that of Theorem 1. We only need to mak
few changes as follows. |
By Lemma 3’ we have

J1u<e(ta—%1)23; ha. 3
Change (35) into

E($ua(8) —p1a(#))2<e (b2~ )+ 1043 () AM (3, §), if n>N. 6]
From Lemma 1/, we get

B, o(i(T)) =E.{i(T)) <oo,

B, o(ta—)% =B, (ts—0) *<2 (B, | 82| *+ By | 12]?) <oo.
Hence by changing (36) into '

Eq) o(M (T, 0)) =E.(c(ta—t1)*) +10 B, ($1(T)) <oo, (3
the (a) is proved.

In this case (37) ig changed as follows
Lm B ($un(8) —p1e ()

<lim [2J33+2¢45() (JE+JTE)]

<Slim (e (ta—10) %07 %ha+2¢7 () (32 ks +4 P (f (8) <3,))] =0. (3"
The proof of Theorem 2 ig finighed.
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