TORSION THEORIES OVER N-RINGS

Luo Jiangang (罗建刚)*

Abstract

In this paper the author studies some properties concerned with torsion theories over an N-ring. Among other things, it is proved that N-rings are stable.

§ 0. Introduction

All rings in this paper are assumed to be commutative with identity, while all modules unitary.

In [1], [2] and [3], N-rings have been studied extensively by Gilmer. Heinzer and Lantz. An N-rnig, by definition, is aring R with the following property: for every ideal I of R, there exists a unitary extension T of R (i. e. $R \subseteq T$ and T has the same identity as R) such that T is noetherian and $IT \cap R = I$. Such rings can be viewed as ageneralization of noetherian rings. Many examples of nonnoetherian N-rings are offered in the papers mentioned above.

The purpose of the present paper is to study torsion theories over N-rings and consider some related questions. In § 1, we first extend to N-rings the well-known characterization of idempotent filters of commutative noetherian rings (see[4]) and then extend the result in Gabriel's paper [5] (also see [6]) that commutative noetherian rings are stable. In § 2, we discuss some miscellaneous questions. In § 3, we show that the fixed subring of an N-ring R under a finite automorphism group of R is itself an N-ring. In a more general setting, we probe into the localization rings of fixed subrings.

Throughout this paper, all terminologies and notations concerning torsion theories (resp. commutative algebra) are kept in accordance with [7] (resp. [8]). We use $E_R(M)$, or E(M) when R is clear from the context, to denote the injective rull of an R-module M. As usual, Spec R stands for the prime spectrum of R.

§1.

We start by recalling that a nonempty set A of ideals of a (commutative) ring

Manuscript received November 11, 1986. Revised March 9, 1987.

^{*} Department of Mathematics, Beijing Normal University, Beijing, China.

R is an idempotent filter if

A1. If $I \in A$ and $a \in R$, then $(I:a) \in A$,

A2. If I is an ideal of R for which there is an $H \in A$ such that $(I:h) \in A$ for all $h \in H$, then $I \in A$.

Proposition 1.1. Let $S = \{I_i\}_{i \in A}$ be a nonempty set of ideals of an N-ring R. Then the following set is an idempotent filter of R

$$\mathcal{L} = \{ I \triangleleft R | I \supseteq I_1 I_2 \cdots I_n, I_i \in S \},$$

where for $i \neq j$, I, and I, are not necessarily different.

Proof Suppose that $I \in \mathcal{L}$, $I \supseteq I_1 I_2 \cdots I_n$, $I_i \in S$. Given any $x \in R$, we 1 $(I:x) \supseteq I \supseteq I_1 I_2 \cdots I_n$. Therefore, $(I:x) \in \mathcal{L}$. So A1 holds for \mathcal{L} .

To check A2 for \mathcal{L} , let $H \in \mathcal{L}$, or $H \supseteq I_1I_2 \cdots I_n$ for some $I_i \in S$ and I be an i of R such that for all $h \in H$, $(I:h) \in \mathcal{L}$. We shall show that $I \in \mathcal{L}$. Take a noether unitary extension T of R such that $IT \cap R = I$. Since T is noetherian, we have

$$I_1I_2\cdots I_nT=x_1T+\cdots+x_tT$$

with x_i in $I_1I_2\cdots I_n$. Then we know from the hypothesis that for each x_i there ϵ $J_1^{(i)}, \dots, J_{n_i}^{(i)} \in S$ such that $J_1^{(i)}J_2^{(i)}\cdots J_{n_i}^{(i)} \subseteq (I:x_i)$. Let J be the product of all t $J_k^{(i)}$ s. Then it follows that $J \supseteq (I:x_1) \cap (I:x_2) \cap \cdots \cap (I:x_t)$. Thus, $JI_1I_2\cdots I_n \sqsubseteq JI_1$. $I_nT \cap R = \left(\sum_{i=1}^t Jx_iT\right) \cap R \sqsubseteq IT \cap R = I$, i. e. $I \in \mathscr{L}$.

We refer to the torsion theory determined by S as the S-adic torsion theory denote it by τ_s .

Definition. A primary ideal I of a ring R is said to be strongly primary some power of the radical is containd in I. A ring R is said to be strongly Laske if every proper ideal of R can be represented as the intersection of a finite number strongly primary ideals.

Proposition [GH] (Proposition 2.14 in [1]). N-rings are strongly Lasker
This result, which plays a fundamental role in this paper, indicates that prin
decomposition are practicable in N-rings. The following results reveal to us the
bring all the idempotent filters of R under control we have only to know all the
me ideals of R and their behavior under product.

Proposition 1.2. Let R be an N-ring and τ a nontrivial torsion theory over Then we have $\tau = \tau_{\sigma}$ where $\mathscr{P} = \mathscr{L}_{\tau} \cap \operatorname{Spec} R$.

Proof We are going to show that $\mathscr{L}_{\tau} = \mathscr{L}_{\tau_{\mathscr{P}}}$. It is obvious that \mathscr{P} is nonem According to Proposition 1.1, \mathscr{P} determines a torsion theory $\tau_{\mathscr{P}}$. Since $\mathscr{P} \subseteq \mathscr{L}_{\tau}$ have $\mathscr{L}_{\tau_{\mathscr{P}}} \subseteq \mathscr{L}_{\tau}$. For the other direction, let $I \in \mathscr{L}_{\tau}$ and $I \neq R$. Then

$$I = \bigcap_{i=1}^{n} I_i$$

by Proposition [GH], where I_i is P_i -primary for some $P_i \in \text{Spec } R$ and $P_i = I_i$ for

ome m_i . From $P_i \supseteq I_i \supseteq I$, we deduce that $P_i \in \mathcal{L}_{\tau} \cap \text{Spec } R$. Noting that $P_1^{m_1} P_2^{m_2} \cdots P_n^{m_n} \sqsubseteq I_1 \cap I_2 \cap \cdots \cap I_n = I$, we have $I \in \mathcal{L}_{\tau_{\infty}}$, i. e., $\mathcal{L}_{\tau} \sqsubseteq \mathcal{L}_{\tau_{\infty}}$.

Now we start to prove that N-rings are seminoethrian. We begin with the ollowing useful lemma.

Lemma 1.3. Let R be a ring and $\tau \in R$ -tors. Given $P \in Spec\ R$, then R/P is ither τ -torsion or τ -torsion-free.

Proof If R/P is not τ -torsion-free, then there must be an $r \in R/P$ and an $f \in \mathscr{L}_{\tau}$ such that $Ir \subseteq P$. Since P is prime, we have $I \subseteq P$, so $P \in \mathscr{L}_{\tau}$, namely, R/P is -tortion.

Definition. Let R be a ring and $\tau \in R$ -tors. A nonzero R-module M is said to be -cocritical if M is τ -torsion-free and every proper quotient module of M is τ -torsion. I ring R is said to be seminoetherian if everyproper torsion theory τ over R has a τ -ocritical R-module.

Theorem 1.4. N-rings are seminoetherian.

Proof Let R be an N-ring. We must show that every proper torsion theory τ ver R has a τ -coordical module.

By Proposition [GH], $0 = I_1 \cap I_2 \cap \cdots \cap I_n$ where I_i is P_{τ} -primary and $P_i^{m_i} = I_i$ or some natural number m_i . Then $P_1^{m_i} P_2^{m_i} \cdots P_n^{m_n} \subseteq I_1 I_2 \cdots I_n \subseteq I_1 \cap I_2 \cap \cdots \cap I_n = 0$. e., $P_1^{m_1} P_2^{m_2} \cdots P_n^{m_n} = 0$. By the assumption that τ is proper, we must have $P_i \notin \mathcal{L}_{\tau}$ for ome i. Therefore $R \setminus P_i$ has to be τ -torsion-free in view of Lemma 1.3. Thus the set $\mathscr{P} = \{P \in \operatorname{Spec} R \mid R/P \text{ is } \tau\text{-torsion-free}\}$

s not empty. Using Proposition [GH] and the fact that strongly Laskerian rings navd a. c. c. for prime ideals (see Theorom 4 in [9]), we can find a maximal element P in \mathscr{P} . We claim that R/P is τ -cocritical. From our choice we know that R/P is τ -torsion-free. To complete the proof, itsuffices to show that for an ideal $I \neq R$ $I \not \sqsubseteq P$, R/I is τ -torsion. Again using Proposition [GH], we have $I \supseteq P_1 P_2 \cdots P_k$ where $P_i \in P_i$ and $P_i \supseteq I \supseteq P$. Be the maximality of P in P, we know that P_i is not τ -corsion-free, so it is τ -torsion by Lemma 1.3. Hence, $P_1 P_2 \cdots P_k \in \mathscr{L}_{\tau}$ and therefore $I \in \mathscr{L}_{\tau}$.

Definition. Let R be a ring. $\tau \in R$ -tors. τ is said to be stable if \mathcal{F}_{τ} is closed under taking injective hulls. R is said to be stable if every torsion theory over R is stable.

Proposition 1.5. Let R be a seminoetherian ring. Then R is stable if and only if every prime torsion theory over R is stable.

Proof An intersection of stable torsion theories is stable. According to Raynaud's Theorem (see Proposition 20.12 in [7] where "seminoethrian" is misprinted as "semiartinian"), each torsion theory over a seminoetherian ring is an intersection of prime torsion theories.

From this, the desired result is clear. Next, we give a lemma which assures us

of certain "boundedness".

Lemma 1. 6. Let R be an N-ring, $\tau \in R$ -tors. Given a pair of ideals of $RI \subseteq J$ such that $J \setminus I \in \mathcal{F}_{\tau}$, then we can find an $H \in \mathcal{L}_{\tau}$ such that $HJ \subseteq I$.

Proof Take a noetherian unitary extension T of R such that $IT \cap R = I$. Suppose that $x_1T + x_2T + \cdots + x_nT = JT$ with x_i in J. Since $J/I \in \mathcal{F}_{\tau}$, by assumption, there exist H_1 , H_2 , \cdots , $H_n \in \mathcal{L}_{\tau}$ such that $H_ix_i \subseteq I$. Set $H = H_1H_2 \cdots H_n$. Then $H \in \mathcal{L}_{\tau}$ and we have $HJ \subseteq H(\sum x_iT) \cap R \subseteq (\sum (Hx_i)T \cap R \subseteq IT \cap R = I$.

Theorem 1. 7. N-rings are stable.

Proof Let R be an N-ring. By Theorem 1.4 and Proposition 1.5. it suffice show that prime torsion theories over R are stable.

In the commutative case, prime torsion theories coincide with the us localization at a prime ideal (Example 3 of Chapter VII in [7]). So we have in 1 to show the stableness for $\tau = \chi(R/P)$ where P is prime. Suppose, on the contrathat τ is not stable, or equivalently, that there exists an R-module M such that $M \in \mathcal{F}_{\tau}$ but $E(M) \notin \mathcal{F}_{\tau}$. Since $T_{\tau}(E(M)) \not \equiv M$, we may assume that $T_{\tau}(M) = M$ without loss of generality. Take any $m \in E(M) \setminus M$, we have $R_m = R/I \notin \mathcal{F}_{\tau}$, but $T_{\tau}(Rm) = Rm \cap M = J/I \in \mathcal{F}_{\tau}$

and that J/I is essential in R/I as R-modules. By Lemma 1.6 we have an $H \in$ such that $HJ \subseteq I$, or equivalently, there is an $s \in R \setminus P$ such that $s J \subseteq I$. Suppose $t \in P \cap J$ for some $p \in P$. Since $R/J \in \mathcal{F}_{\tau}$, it follows that $J \cap R \setminus P = \emptyset$ and he $J \subseteq P$. So $P/J \subseteq R/J$ and $P/J \in \mathcal{F}_{\tau}$. Hence, $sp \in J$ implies that $p \in J$. Thus, obtain $sP \cap J \subseteq sJ \subseteq I$, in other words, $(sP+I)/I \cap J/I = 0$. Noting that J/I essential in R/I, we have $sP \subseteq I \subseteq J$. Again using the fact that $R/J \in \mathcal{F}_{\tau}$, we have $sR \subseteq I \subseteq J = P$. In particular, $s \in P$, a contradiction. Therefore, we have in the proof that R is stable.

Corollary 1.8. Commutative noetherian rings are stable.

§2.

First, we consider N-rings of Krull dimension zero. Here, the Krull dimens of a ring R is the largest length of prime ideals of R.

Theorem 2. 1. If R is an N-ring of Krull dimension zero, then R is isomorp to a direct product of a finite number of local N-rings of Krull dimension zero and t decomposition is unique up to isomorphism.

Proof By using Proposition [GH], the proof is similar to that of the Struct Theorem for Artinian Rings (see, for instance, [8]). The only thing that needs more explanation is that each direct summand in the decomposition is an N-ring. This

is true because the class of N-rings is closed under taking homomorphic images (see Corollary 2.3 in [1])

We now give an application of Theorem 2.1.

Proposition 2.2. Suppose that R is an N-ring of Krull dimension zero. Then there is a ring $S = F_1[x] \oplus \cdots \oplus F_n[x]$ where F_i s are fields and x an indeterminate satisfying the condition that R[x]-tors and S-tors are isomorphic as lattices.

Proof By Proposition 2.1, $R = R_1 \oplus R_2 \oplus \cdots \oplus R_n$, where R_i s are local N-rings of Krull dimension zero. Let A_i be the unique maximal ideal of R_i and $F_i = R_i/A_i$. We have $R[x] = R_1[x] \oplus \cdots \oplus R_n[x]$. The zero ideal of R_i can be represented as a product of prime ideals of R_i by Proposition [GH]. Since A_i is the only prime ideal of R_i , $A_i^{k_i} = 0$ for some k_i . Consequently, we know that $A_1[x] + \cdots + A_n[x]$ is nilpotent. It is known that if T is a ring and I an ideal of T, then we have a one-to-one correspondence between T/I-tors and the subset of T-tors $\{x \in T$ -tors $|x < \xi(T/I)\}$. Moreover, this correspondence is order-preserving (see [10]). Since I is now nilpotent, $I^k = 0$ for some k, thus $\xi(R/I) = \chi$. It follows that $\{|x \in T$ -tors $|x < \xi(R/I)\} = T$ -tors where T is $R_1[x] \oplus \cdots \oplus R_n[x]$ and $I = A_1[x] \oplus \cdots \oplus A_n[x]$. Note that $T/I \cong F_1[x] \oplus \cdots \oplus F_n[x] = S$, therefore R[x]-tors is isomorphic to S-tors as lattices

Proposition 2.4 indicates that the lattice R[x]-tors for an N-ring R of Krull dimension zero has been determined to a great extent because the torsion theories over a direct product of a finite number of rings can be constructed from that over each of its direct summand (see the remark at the end of Chapter II in [7]). And $F_i[x]$, as a noetherian ring, is much more concret as far as the lattice of torsion theories is concerned.

In general, R[x]-tors for an N-ring R need not be an N-ring. In fact, it is an N-ring if and only if R is noetherian.

We know that semiartinian noetherian rings are artinian (see Proposition 12.8 in [7]). Nevertheless, semiartinian N-rings need not be artinian. We may assure ourselves of this fact by examining the example presented in [1]: Let $R = F(t_1, t_2, \cdots)/(\{t_it_j\})$, where F is a field and t_1, t_2, \cdots a set of an infinite number of indeterminates over F.

It is well-know that a commutative noetherian ring R is artinian if and only if the Krull dimension of R is zero. Similarly, we have the following theorem.

Theorem 2.3. An N-ring R is semiartimian if and only if the Krull dimension of R is zero.

Proof We select a complete set of representatives of the isomorphism classes of simple R-modules and denote it by R-simp. We use m to denote the set of maximal ideals of R.

Suppose that R is semiartinian. Then $\chi = \chi(0) = \xi(R-\text{simp})$ by definition.

Remember that $\tau_{\mathfrak{m}}$ is the $\mathfrak{m}\text{-adic}$ torsion theory determined by $\mathfrak{m},$ we have

$$\xi(R-\text{simp}) = \tau_{\mathfrak{m}}.$$

Hence $\tau_{\mathfrak{m}} = \chi$ and consequently $0 = M_1 M_2 \cdots M_k$ for some $M_i \in \mathfrak{m}$. For any $P \in \operatorname{Spec} R$, we have $M_1 M_2 \cdots M_k = 0 \subseteq P$ and therefore $M_j \subseteq P$ for some j, thus, $M_j = P$. This is equivalent to saying that the Krull demension of R is zero.

Conversely, suppose that R is zero-demensional. Again, by Proposition [GH], $0 = P_1 P_2 \cdots P_k$ where $P_i \in S$ pec R = m. Therefore, $0 \in \mathcal{L}_{\tau_m} = \mathcal{L}_{\ell(R-\text{sim}P)}$, i. e.,

$$\xi(R-\text{simp})=\chi$$

namely, R is semiartinian.

The characterization of idempotent filters among ideal classes is always interesting problem. Here we contribute some items to the list of idempotent filt over N-rings.

Definitions. We define the Gabriel filtration of a ring R as a chain $\{\tau_i\}_{i=-1}^{\infty}$ torsion theories over R satisfying

- (i) $\tau_{-1} = \xi = \xi(0)$,
- (ii) if i is not a limit ordinal

$$\tau_i = \tau_{i-1} \vee \xi (M \in R - \text{mod } M \text{ is } \tau_{i-1} - \text{cocriticle}),$$

(iii) if i is a limit ordinal

$$\tau_i = \bigvee \{\tau_i | j < i\}.$$

Theorem 2.4. Let $\tau_{-1} < \tau_0 < \tau_1 < \cdots$ be the Gabriel filtration of an N-ring Then for any integer $h \ge 0$, we have $\tau_n = \tau_{\mathscr{F}_n}$ where \mathscr{F}_n is the set of all prime ideals of whose depths do not exceed n.

Proof We use induction on n.

If n=0, it is clear.

Suppose that $\tau_n = \tau_{g_n}$ hold for $n \leqslant k$. Consider the case when n = k + 1. Let $P \in \mathbb{R}$ R, depth P = k + 1. We claim that R/P is τ_k -cocritical. First, we have that R/I τ_k -torsion-free, for, otherwise, by Lemma 1.3, R/P would be τ_k -torsion, then $P_1P_2\cdots P_m$ for some prime ideals P_i of depth not exceeding k. So $P \supseteq P_j$ for som This contradicts the fact that depth P = k + 1. Second, suppose that $P \not \sqsubseteq I$ According to Proposition [GH], $I \supseteq Q_1Q_2\cdots Q_t$ for some $Q_i \in \operatorname{Spec} R$ and $Q_i \not \sqsubseteq P$. I implies that depth $Q_i \leqslant k$. So we deduce that $I \in \mathscr{L}_{g_k}$, by the induction hypothe $\mathscr{L}_{\tau g_k} = \mathscr{L}_{\tau_k}$, so $R/I \in \mathscr{T}_{\tau_k}$. Thus $\tau_{g_{k+1}} \sqsubseteq \tau_{k+1}$. For the inverse inclusion, let M τ_k -cocritical R-module. It suffices to show that every cyclic submodule of M is τ torsion. Suppose that $0 \ne R_m = R/P$ is a cyclic submodule. Then P must be prime Proposition 18.2 and Corollary 18.8 in [7]). We claim that depth P = k + 1. First cannot be smaller than k + 1, or else we would have $R/P \in \mathscr{T}_{\tau g_k} = \mathscr{F}_{\tau_k}$, a contradict to the fact that R/P is τ_k -torsion-free. Second, the depth of P cannot be larger than k + 1 either. Suppose, on the contrary, that there is a chain of prime ideals

 $P \not = P_0 \not = P_1 \not = \cdots \not = P_{k+2}$. Note that R/P is τ_k —cocritical, so $P_1 \in \mathcal{L}_{\tau_k}$. This tells us that $P_1 \supseteq Q_1 Q_2 \cdots Q_s$ with $Q_i \in \text{Spec } R$ and depth $Q_i \leqslant k$, so $P \supseteq Q_j$ for some j. This contradicts the fact that depth $P_1 \geqslant k+1$. Thus the depth of P must be k+1. The proof is completed.

Gorollary 2.5. If R is an N-ring. The nthe Gabriel dimension of R G-dimR is finite if and only if the Krull dimension of R K-dimR is finite. In addition, if they are indeed finite, they must be equal.

Proof For any integer $n \ge 0$, $G-\dim R \le n$ implies that $\tau_n = \chi$, i. e., \mathcal{L}_{τ_n} contains all the prime ideals of R. By Theorem 2.4, $\tau_{\mathscr{P}_n} = \tau_n = \chi$. This is the same as saying that depth $P \le n$ for all $P \in \operatorname{Spec} R$. Therefore, $K-\dim R \le n$. Note that the deduction above is reversible, so the first statement has been proved. When the two dimensions are both finite, the above proof also indicates that for any integer $n \ge 0$, $G-\dim R \le n$ if and only if $K-\dim R \le n$. This forces the two dimensions to be equal.

§3.

In this section, we always assume that R is a ring, G a finite automorphism group of R such that the order of G, n = |G|, is an invertible element in R and $R^G = \{r \in R \mid \alpha(r) = r \text{ for all } \alpha \in G\}$, the fixed subring of R under G.

Proposition 3.1. For any ideal I of R^G , $IR \cap R^G = I$.

Proof It is clear that $I \subseteq IR \cap R^a$.

Suppose that $r \in IR \cap R^{G}$. Then

$$r = \sum_{i=1}^{n} r_i \alpha_i$$

for some $a_i \in I$, $r_i \in R$. Write G as $\{a_1, a_2, \dots, a_n\}$. Then for each $j=1, 2, \dots, n$, $r = a_j(r) = \sum a_j(r_i) a_j (a_i = \sum a_j(r_i) a_i.$

l'aking summation about j, we obtain

$$mr = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} \alpha_{j}(r_{i}) \right) \alpha_{i}.$$

It is easy to see that $n^{-1}(\sum_i \alpha_i(r_i)) \in R^G$ for all i. Thus, $IR \cap R^G = I_{\bullet}$

Corollary 3.2. If R is an N-ring, then R^G is also an N-ring.

Proof Given any ideal I of R^{G} , by assumption, we can find a noetherian initary extension T of R such that $IRT \cap R = IR$. According to Proposition 3.1, $R \cap R^{G} = I$, so

$$IT \cap R^{G} = (IRT \cap R) \cap R^{G} = IR \cap R^{G} = I.$$

Definition. A torsion theory τ over R is said to be R^{G} -lifted if $1 \in \mathcal{L}_{\tau}$ and $J \supseteq I \cap R^{G}$ for $J \triangleleft R$ imply $\in \mathcal{L}_{\tau}$.

Proposition 3.3. There is a one-to-one correspondence between R^{G} -tors and R^{G} -

lifted torsion theories over R.

Proof Given $\sigma \in R^{\sigma}$ -tors, send it to $\sigma^{\sigma} \in R$ -tors determined by $\mathscr{L}_{\sigma_{\sigma}} = \{I \triangleleft R \mid I \supseteq HR \text{ for some } H \in \mathscr{L}_{\sigma}\}.$

It is known that \mathscr{L}_{σ_e} is an idempotent filter (see section 9 in [7]). σ^e is obviously R^g -lifted. Next, given any R^g -lifted $\tau \in R$ -tors, we define $\tau^e \in R^g$ -tors by $\mathscr{L}_{\tau_e} = \{I \triangleleft R^g | I = H \cap R^g \text{ for some } H \in \mathscr{L}_{\tau}\}$. Using Proposition 3.1, we can prove that \mathscr{L}_{τ_e} is indeed an idempotent filter and that $\sigma^{ee} = \sigma$ and $\tau^{ee} = \tau$. We leave out the proof since it is routine.

For the rest of this paper, we assume, once and for all, that $\sigma \in R^{\sigma}$ -tors and $\sigma^{\sigma} \in R$ -tors.

Lemma 3.4. If M is an R-module, then $T_{\sigma}(M) = T_{\tau}(M)$ as R^{G} -modules. Proof It is clear since $\tau = \sigma^{g}$.

Proposition 3.5. Suppose, in addition, that σ is perfect. Then we can n $Q_{\sigma}(R)$ into an R-module so that the R-module structure on $Q_{\sigma}(R)$ preserves the canon R-module structure on $\overline{R} = R/T_{\sigma}(R)$. Moreover, $Q_{\sigma}(R)$ and $Q_{\tau}(R)$ are isomorphic R-modules and this isomorphism extends the identity map on \overline{R} .

Proof Since σ is perfect, we have $Q_{\sigma}(R) = (R^{\sigma})_{\sigma} \bigotimes_{R^{\sigma}} R$. This makes $Q_{\sigma}(R)$ an R-module.

From

$$\hat{\sigma}_{\mathbb{R}}: R \to Q_{\sigma}(R) \ r \mapsto i \otimes r$$

and $\operatorname{Ker}\hat{\sigma}_R = T_{\sigma}(R)$, we see directly that the R-module structure on $Q_{\sigma}(R)$ preserve the R-module structure on \overline{R} .

Note that $Q_{\sigma}(R)$ is an essential extension of \overline{R} as R-module. By Lemma 3.4 is τ -dense in $Q_{\sigma}(R)$. Using the τ -injectiveness of $Q_{\tau}(R)$, we can extend embedding of \overline{R} into $Q_{\tau}(R)$ to an R-homomorphism α : $Q_{\sigma}(R) \to Q_{\tau}(R)$. Since restriction of α to \overline{R} is a monomorphism, so is α . We assert that it is also epic suffices to prove that $Q_{\sigma}(R)$ is a τ -injective R-module. Suppose that $I \in \mathcal{L}_{\tau}$ and $I \to Q_{\sigma}(R)$ an R-homomorphism. By Lemma 3.4, I is a σ -dense submodule of R^{G} -module R. By use of the σ -injectiveness of $Q_{\sigma}(R)$, β can be extended to R^{G} -homomorphism $\overline{\beta}$: $R \to Q(R)$. The proof will be finished if we can prove that is also an R-homomorphism. To do this, let $\tau \in R$. Set

$$f_r: R \to Q_\sigma(R) \quad s \mapsto \overline{\beta}(rs) - r\overline{\beta}(s).$$

Then f_r is an R^a -homomorphism. For any $a \in I$, $f_r(a) = \overline{\beta}(ra) - r\overline{\beta}(a) = \beta(ra) - r$, = 0. So f_r induces an R^a -homomorphism \overline{f}_r from R/I to $Q_\sigma(R)$ such that $\overline{f}_r(s+f_r(s))$. $Q_\sigma(R)$ is σ -torsion-free while, by Lemma 3.4, R/I is σ -torsion, so \overline{f}_r , h f_r , must be the zero map, i. e., $\overline{\beta}(rs) = r\overline{\beta}(s)$ for all $s \in R$. Since r is arbitrachosen, is $\overline{\beta}$ an R-homomorphism.

Theorem 3.6. Suppose, as before, that σ is perfect. Then an automorphism of R

which belongs to G induces an automorphism of R. Therefore, G induces a finite tomorphism group H of R satisfying

$$(R^G)_{\sigma} \cong (R_{\tau})^H = \{x \in R_{\tau} \mid \alpha(x) = x \text{ for all } \alpha \in H\}.$$

Proof First of all, we show that $(R^{G})_{\sigma}$ can be embedded into R_{τ} as rings. Since is perfect, we have, as R^{G} -modules, $Q_{\tau}(R) \cong Q_{\sigma}(R) \cong (R^{G})_{\sigma} \otimes_{R^{G}} R$. We can make $\ell^{G})_{\sigma} \otimes_{R^{G}} R$ into a ring by first stipulating that $(a \otimes b)$ $(c \otimes d) = ac \otimes bd$ and then tending it linearly to $(R^{G})_{\sigma} \otimes_{R^{G}} R$ (see, for example, [8]).

Now look at the map $\hat{\sigma}_R$: $R \to (R^G)_{\sigma} \otimes_{R^G} R$ $r \mapsto 1 \otimes r$. We can identify R with its age under the embedding inducesed by $\hat{\sigma}_R$. We see that the multiplication defined ove is consistent with the R-module structure on $(R^G)_{\sigma} \otimes_{R^G} R$. Because the iqueness of such multiplications, we know that the multiplication we defined is st the one of $(R^G)_{\sigma} \otimes_{R^G} R$ as the localization of R at τ . So $(R^G)_{\sigma} \otimes_{R^G} R$ is isomorphic R_{τ} as rings. Next suppose that

$$g: (R^G)_{\sigma} \to (R^G)_{\sigma} \otimes^{R^G} R, x \mapsto x \otimes 1.$$

It is easy to see that g is a ring homomorphism and the restriction of g to $\overline{R}^{g} = \sqrt[3]{T(R^{g})}$ is the identity map. We claim that there is a $0 \neq x \in (R^{g})_{\sigma}$ such that $x \otimes 0$. Then there is an $x \in R^{g}$ such that $0 \neq x \in R^{g}$. Write x as \overline{s} for $s \in R^{g}$. Then

$$0 = r(x \otimes 1) = rx \otimes 1 = \overline{s} \otimes 1 = s(1 \otimes 1) = 1 \otimes s.$$

nee $\hat{\sigma}_R(s) = 1 \otimes s$ and $\operatorname{Ker} \hat{\sigma}_R = T_{\sigma}(R)$, $s \in T_{\sigma}(R^g)$ and hence $\bar{s} = 0$, a contradiction. herefore, g is an embedding.

Now given an $\alpha \in G$, then α becomes automatically an R^G -endomorphism of R. induces an abelian group homomorphism

$$1 \otimes \alpha \colon (R^{\sigma})_{\sigma} \otimes_{R^{\sigma}} R \to (R^{\sigma})_{\sigma} \otimes_{R^{\sigma}} R$$
$$a_{i} \otimes b_{i} \mapsto a_{i} \otimes \alpha(b_{i}).$$

by iously, $1 \otimes \alpha$ is invertible and $(1 \otimes \alpha)^{-1} = 1 \otimes \alpha^{-1}$.

It is readily seen that $1\otimes \alpha$ is also a ring homomorphism and hence an itomorphism group of R_{τ} . Set $H = \{1\otimes \alpha_1, \dots, 1\otimes \alpha_n\}$. It is easy to see that $(R^d)_{\sigma} \subseteq \mathbb{R}^d$. Conversely, for a given element $\sum a_i \otimes b_i$ in $(R^d)_{\sigma} \otimes_{R^d} R$ which is fixed by H, e.,

$$\sum a_i \otimes \alpha_j(b_i) = \sum \alpha_i \otimes b_i,$$

nce $n^{-1}(\sum_{j} \alpha_{j}(b_{i})) \in \mathbb{R}^{d}$, $\sum a_{i} \otimes b_{i} = \sum a_{i}(n^{-1}\sum_{j}\alpha_{j}(b_{i})) \otimes 1 \in (\mathbb{R}^{d})_{\sigma}$. This completes the roof of the theorem.

Corollary 3.7. If σ is perfect, then so is τ . Moreover, for any R-module M,

$$Q_{\tau}(M) = (R^{G})_{\sigma} \otimes_{R^{G}} M.$$

Proof Given any $I \in \mathcal{L}_{\tau}$, then $I \cap R^{G} \in \mathcal{L}_{\sigma}$.

Since σ is perfect, $(R^G)_{\sigma}(I \cap R^G) = (R^G)_{\sigma}$. So $1 = \sum r_i a_i$ for some $r_i \in (R^G)_{\sigma}$ and $a_i \in I \cap R^G$. Since $(R^G)_{\sigma}$ is a subring of R_{τ} , we have $1 \in R_{\tau}I$, i. e., $IR_{\tau} = R_{\tau}$. This

proves that τ is perfect (see Proposition 17.1 in [7]). And what is more,

$$Q_{\tau}(M) = R_{\tau} \bigotimes_{R} M = ((R^{G})_{\sigma} \bigotimes_{R^{G}} R) \bigotimes_{R} M = (R^{G})_{\sigma} \bigotimes_{R^{G}} (R \bigotimes_{R} M) = (R^{G})_{\sigma} \bigotimes_{R^{G}} M.$$

Acknowledgement I am much obliged to Prof. Liu Shaoxue for his kind instruction and constant encouragement. My sincere thanks are also due to Dr. Luo Yunlun and Mr. Li Zhongshan for fruitful discussions.

References

- [1] Gilmer, R. and Heinzer, W., Ideals contracted from a noetherian extension ring, J. Pure and Algebra, 24(1982), 123—144.
- [2] Heinzer, W. and Lantz, D., N-rings and ACC on colon ideals, J. Pure Appl. Algebra, 32 (1984), 1 127.
- [3] Heinzer, W. and Lantz, D., When is an N-ring noetherian, J. Pure Appl. Algebra, 39 (1986), 125-
- [4] Stenström, B., Rings of quotients, Springer-Verlag (1975).
- [5] Gabriel, P., Des catégories abélinnes, Bull. Soc. Math. France., 90 (1962), 323-448.
- [6] Papp, Z., On stable noetherian rings, Trans. Amer. Math. Soc., 213 (1975), 107-144.
- [7] Golan, J. S., Localization of noncommutative rings, Mercel Dekker, Inc., (1975).
- [8] Atiyah M. F. and MacDonald, I. G., Introduction to commutative algebra, Addison-Wesley Publi Company, (1969).
- [9] Gilmer, R. and Heinzer, W., The noetherinan property, power series rings and noetherian spectra, Amer. Math. Soc., 79 (1980), 13—16.
- [10] Gardnes, B. J., Rings whose modules form few torsion classes, Bull. Austral. Math. Soc., 4 (1971), 359
- [11] Heinzer, W. and Lantz, D., The Laskerian property in commutative rings, J. Algebra, 72 (1981), 114.