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TORSION THEORIES OVER N-RINGS

Luo Jianeane (7 #A)™

: Abstra(.:tv

In this paper the author studies some properties concerned with torsion theories over
~ an N-ring. Amqng other things, it is provedthat N-rings are stable.

§ 0. Introductlon

A]l rmgs in thls paper are a.ssumed to be commuta.tlve w11zh identity, while all
modules unitary.. : .

In-[1], [2] and [3], N -rings ha.ve been studled extenswely by Gl]mel' Heinzer
and Lantz, An N-rnig, by definition, is aring B with the following property: for
svery ideal I of R, there exists a um’aa.ry extension T of B (i. . RCT and T has
the same identity as .R) such that 7T is noetherian and IT ) R= 1. Such rings can be
viewed as ageneralization of noetherian rings. Many examples: of- nonnoe’ﬁhena.n N~
rings are oﬁ'ered in the papers mentioned above. :

The purpose of the preSent ‘paper is to study torsion theones over N —-rmgs a.nd
»onsider some related questions, In'§ 1, we first exténd to N—rmgs the ‘well-knows
sharacterization of idempotent filters of commutative noetherian rings (see[4]) and
shen extend the result in Gabriel’s paper [5] (also see [6]) that commutative
10etherian rings are stable. In § 2, we discuss some miscellaneous questions. In § 3,
we show that the fixed subring of an N-ring R under a finite automorphism group
f R is itself an N—ing. In a more general sebting, we probe into the localization
rings of fixed subrings. '

Throughout this paper, all terminologies and notations concerning torsion
theories (resp. commutative algebra) are kept in accordance with [7] (resp. [8]).
We usel (M), or E (M) when R is clear from the context, to denote the injective
wll of an RB-module M. As usual, Spec R stands for the prime spectrum of R.

§1.

We start by reéalling that a nonempty set A of ideals ofa (commutative) ring
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R is an idempotent filter if

Al. If T€A and ¢ €R, then (I:a) €A,

A2. If I ig an ideal of R for which there is an H € A such that (I h) € A for all
REH, then IC A.

Proposition 1.1, Let S={I.}.c, be a nonempty sot of ¢deals of an N-ring R.
Then the _fouowmg set 4s an idempotent filter of R

.g {I<R|131112 Im ICES}’

where Jor i#%4, I, and I, are not necessarily d’bﬁé’l‘@nt

Proof Suppose that 1€, IDI4Ia -1, I,€S. Given any z€R, we !}
(I:9) 32 DIiI, -I,. Therefore, (I:x) G.Z So Al holds for Z.

"o cheok A2 for <, let HE Z,or HDI;LIQ -I, for some I;€8 and T be an i
of R such that for all LEH, (I:h) €EL. We shall show that I € &. Takea noethe
unitary extension T' of R such that IT () R=1I. Since T is noethema.n, we have

IyTy eI, T =T+ +w,T
with o inT 1Tae .I,. Then we know from the hypothesw that for each =, there €
JP, oo, TP ES such thab J “)J P JHC (I 2;). Let J Dbe the product of all %
J g, Then it fo]lows that J 2 ) (I a;l) n (I: a;,,) n--n (I @) Thus J IiI, J.=J14

ITnR (z:Ja,-, )chITnR I,ie IEZ.

‘We refer. to the torsion theory determined by S as tha S—adw torsion theory
denote it by =,. :

‘Definition. A primary ideal I of @ ring R is sabd to be s#ronglgj primwrg
some power of the radical is containd in I. A ring R is said %o - be “strongly Laske
if every proper ideal of R can be frepfresented as the interseciion of a ﬁmte numbe
sirongly primary ideals.

- Proposition [GH] (Proposition 2.14 in [1]) N_—ﬁngs are strongly Lasker

This result, which plays a fundamental role in this paper, indicates that prin
decompositiion are practicable in N-rings, The following results reveal o us ths
bring all the idempotent filbers of R under control we have only to know all the
me ideals of R and their behavior under produoct. -

Proposition 1.2. Let R be an N-réng and v a nontrivial torsion theory ove
Then we have © =75 where P=%,NSpec R.

Proof We are going to show that ¥, =%, , Tt is obvious that & iS nonem
According to Proposition 1.1, £ determines a forsion theory 7, Since PCT.Z,
have &, CZ.. For the other direction, let 7 €%, and I#R. Then '

-N1

by Proposiotion [GH], where I; is P~primary for some P;ES8pec R and P C1, for
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ome my. From P;2I,21, we deduce thai P;EZ NSpec R, Notlng that P{Pg...
X TsNIaN---NI,=I, we have I€ %, ,1 0., Z. C,.‘Z .

Now we start to. prove that N-rings are semmoethna.n We begm with the
ollowing useful lemma.

Lemma 1.8. Let R bé a ring and vCR-fors. Given PGSpec R, then R/P ie
dther w—torsion or v—torsion—free. _ :

Proof If R/P is not z-forsion-free, then there mustbe an r ER/ P and an
‘€%, such that IrCP. Smoe P»lS prime, we have T cCP, 80 P, namely, R/P is
~tortion, o . ' |

Deﬁmtlon Let Rbea rfmg arn.d 76R—to¢s A nonzero R-module M is said o be
~gocritical if M is 7—to'rswn—fo €6 wnd evefry proper quotient module of M is v—t0rsion.
4 ring R is said to be semmoatheman of everyproper torsion theory v over R has a -
ocritical R-module. ; . o

Theorem 1.4. N-rings a)re semq;,noet'kelrm}an‘ '. E

Proof Let R be an N-ring. We must show that every proper torsmn theory »
wver R has'a 7-oocritical module.

By Proposition [GH] ’ 0=IiN I 2 ﬂ ‘NI, Where L i Peprimary and P"“=I¢
or some natural number Mie Then P Pyt PinCIy0p -+ I,LEI3N TN - NI1,=0
. 8., P{Pg... P =0, By the aggunmption thab ¢ is proper, we must have P;¢ %, for
ome 4. Therefore R\ P;has to be v—torsion—free in view of Lemma 1.3. Thus the set

P={PcSpecR|R/P is 'z:—torsmn—free} ‘

$ nob empty Usmg Proposition [GH] and the fact that. sirongly Laskerian rings
1avd a. . o, for prime ideals(see Theorom 4 in[9]), we can find a maximal element
P in &, We olaim that B/ P is r-cooritical. From our choice we know that R/P is
~torsion—free. To complete the proof, itsuffices to show that for an ideal I+ R IEP,
R/I is v—torsion. Again using Proposition [GH], we have T2 P P,---P, where P,C
Spec B and P, I P. Be the maximality of P in %, we know that P; is not 7-
orsion—free, so it is z—torsion by Lemma 1.3. Hence, PyPy---P, €%, and therefore
[€Y..

Definition. Let R be a ring. ¥ € R—iors. © 48 said to be stable 4f T, s closed
mder taking imjective hulls. R és said to be stable 4f every. torsion theory over R is stable.

Proposition 1.5. Let R be a semincetherian ring. Then R is stable 4f and only
if every prime torsion theory over R és stable.

Proof An inberseotion of stabli? torsion theories is stable. According to
Raynand’s Theorem (see Proposition 20.12 in [7] where “seminoethrian” is
misprinted ag “semiartinian”), each torsion theory over a seminbetheria.n_ ring is
an intersection of prime forgion theories.

From thig, the desired result is clear. Next, we give a lemma which assures us
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of certain “boundedness”.

Lemma 1. 8. Leét R be an N-ring, v € R—tors. Qiven a pair of ideals of RICJ
such that J\1E€ T, then we can find an H € ¥, such that HICI.

Proof Take a noetherian unitary extension 7' of R such that ITNR=I.
Suppose thab 24T +5,T +---+ 2,0 =JT with @, in J. Since J/I €7, by assumption, .
there exist Hy, H,, *»+, H,&.¥, such that HxCI. Seb H=H H,---H,. Then HE
Y. and we have HICH (T 2T) N RBC C(Ha) TN RCITNR=1I.

Theorem 1. 7. N-rings are stable.

Proof Let R be an N-ring. By Theorem 1.4 and Proposition 1.5. it suffice
ghow thatb prime torsion theories over R are stable,

In the commutative ocage, prime torsion theories coincide with the wus
. localization at a prime ideal (Example 3 of Chapter VII in [7]). So we have in i
to show the stableness for »=y (R/P) where P is prime. Suppose, on the contra
that 7 is noti stable, or equivalently, that there exists an R-module M such t
- MET ., but H(M)4¢ T . Since T,(H(M))EM, we may assume that T.,(M) =
without loss of generality, Take any m € B (M)\M, we have R,=R/I¢ T, but

T.(Rm)=BmNM=J/ICT,

and that J/I is essential in R/I as R—-modules. By L.emma 1.6 we havean HE&
such that HJCI, or equivalently, there is an s € R\ P such that s JI. Suppose &
- spEsPNJ for some pE P. Since R/J € F., it follows that JNR\P=¢J and he
JEP. So P/J=R/J and P/J €% ,. Hence, spCJ implies that p€J. Thus,

obtain sPNJCsJCI, in other words, (sP+I)/INJ/I=0. Noting that J/I
essential in R/I, we have sPCICJ. Again using the fact that B/J €%, we h:
PCJ. In summary, we bave proved that P=.J. Then, sRfP=sP =sJCI. Simila:
we have sSREICJ =P. In particular, s€P, a contradiotion, Therefore, we h:
finishe d the proof that R is stable,

-Corollary 1.8. Oommutative nostherian rings are stable.

§2.

First, we consider N-rings of Krull dimension zero. Here, the Krull dimens
of a ring R is the largest leﬁgth of prime ideals of R.

Theorem 2. 1. If R és an N-ring of Krull dimension zero, then R és ésomorp
to a direct product of a finite number of local N-lrmgs of Krull dimension zero and #
decomposition és unique wp to tsomorphism.

Proof By using Proposition [@H], the proof is similar to that of the Struct
Theorem for Artinian Rings (see, for instance, [8]). The only thing that needs more
explanation is that each direot summand in the decomposition is an N—ring. This
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is trae because the class of N-rings is closed under taking homomorphlo images (see
Oorollary 2.8 in [1]) .

‘We now giveanp application of Theorem 2.1. :

- Proposition 2.2.. Supposs that R is an N-ring of Krull d@mensq,on zero. Then
there és a ring S=Fi[o]@®:--@®F.[«] where Fisare fields and @ an imdeterminate
satisfying the condition that Bx]~tors and S—tors are isomorphic as lattices. :

Proof By Proposition 2.1, R=R1DRyD---@R,, where R;s are local N-rings of
Krull dimension zero. Let A; be the unique maximal ideal of R; and F;=R;/4;,. We
have B[xz] =R;[s]@®---@R.[z]. The zero-ideal of R; can be‘represenbed‘ as a product
of prﬁne ideals of R; by Proposition [GH]. Sinoce 4; is the only prime ideal of R,
Ap=0 for some ;. Consequently, we know that 4; [#]+---+ 4, [#] is nilpotent. It
is known that if 7' is a =ing and I an ideal of 7', then we have a one—to-one
correspondence between I'/T-tors and the subset of T—fors {v&T~tors|v<&(T/I)}.
Moreover, this correspondence is order—preserving (see [10]). Since I. is now
nilpotent, I*=0 for some &, thus § (R/I) = . It followsthat{|v € T-tors|v <€ (R/I)} =
T~tors where T’ is Ry[#]®---@R,[»] and I=A4,[2]@D---DA.[2z]: Note thé,t'T/I =4
F1[z]@®---@F.[¢] =8, therefore R[w]—tors is isomorphioc fo S-tors as latbices

. - Proposition 2.4 indicates that the lattice B[x]-tors for an N-ring R of Krull
dindension; zero has been determined to a great extent bescause the torsion theories
over a direct product of a finite. number of rings ean be construoted from that over
eaoh of its direct summand (see the remark a} the end of Chapter II in [7]). And
F[2], as a noetherian ring, is much more conoret as far as the lattice of torsion
theories is concerned. : o

In general, R[z]-tors for an N ~-ring R need nob be an N«-rmg In fact, it isan
N-ring if and only if R is nostherian,™? _

‘We know that semiarfinian nostherian ringg are artinian (gee Proposﬁilon 12.8
in [7]). Nevertheless, semiartinian N-rings need not be arbinian, We may assure
ourselves of this fact by examining the example presented in [1]: Let R=F (4,

s, <]/ ({#3;}), where F ig a field and #;, %, --- a set of an infinite number of
indeterminates over F. i}

It is well-know that a commutative noetherian ring R is artinian if and only
if the Krull dimension of R is zero. Similarly, we have the following theorem.

Theorem 2.8. An N—wmg R ¢s sembartinian ¢f and only of the Krull dimension
of R ds zero. __ |

Proof We select a eomplete gob of representatlves of the isomorphism classes of
. pimple R-modules and denote it by B—simp. We use m to denote the set of maximal
ideals of R.

Suppose thal R is semiartinian. Then z=x(0)= f(R—sump) by deﬁmtlon
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Remember that 7. i3 the m-adic torsion theory determined by m, we have
. : & (R-simp) =vp.

Henoe 75 =% and oonsequently O0=M M,---M, for some . M;Ent. For any P €SpeoR,
we have MiMy---M;=0C P and therefore M,= P for some j, thus, M,;=P, This is
equivalent to saying that the Krull demengion of B is zero,

Conversely, suppose that B is zero-demensional. Again, by Proposition [GH],
0=P1P, P,, where P,€8 peo R=m. Therefore, 0 € %, = Lsr-simpy i. 0.,
& (R-simp) = %

pamely, R is semiartinian. _
7 The’ characterization of idempotent filters among ideal classes is always
interesting problem;. Here we contribute some ifems to the list of 1dempotent filt
over N-rings. : '

Definitions. We define the Gabriel ﬁltmt@on of @ ring R as a chain {-m};:-1
$orsion theories over R satisfyimg

(1) 71=£=£(0),

(i) zfq, is not @ limit ordimal

o= VEM € R-mod M is rg_i—cocmtwle) ’
(iil) if ¢ s @ limit ordonal .
=Y\ {7; |J<%} :

Theorem 2.4. Let v.1<v0<71<:+ be the Gabridl filiration of am N—mng
Then for any integer h=0, we have v,=vg, where Z#, is the set of all prmne ideals o
whose depths do not exceed n.

Proof We use induoction on n.

If n=0, it is olear.

Suppose that 7,.—;7,” hold for n<<k. -Consider the case when n=Fk-+1. Let P €8
R, depth P=}-+1, We olaim that B/P is v;~cocritical. First, we have that R/1
7—torsion—free, for, otherwise, by Lemma 1.3, R/P would be =;~torsion, then .
PyP,---P,, for some prime ideals P; of depth not exceeding %. Se P2 P, for som
This contradiots the faot that depth ‘P=Fk+1. Second, suppose that PgIC
According to Proposition [GH], I2Q:Qs---Q; for gome Q;C8pec B and Q2P. 1
implies that depth Q,<<%k. So we deduce that I €.%,, by the induction hypoth
Lvo,=Lr, 90 R/ICT ,,. Thus 'vg“.g'vk,ﬁ. For the inverse inclusion, let M
w—cocritical B—module, It suffices to show that every oyolic submodule of 3 is ©
torsion. Suppose that 0+ R,=R/P is a cyolio submodule. Then P must be prime
Proposition 18.2 and Corollary 18.8 in [7]). We claim that depth P=F%-+1, Firs
‘cannot be smaller than k+1, or else we would have R/PE€ .7 vo, =T 4, a contradic
to the faot that R/P is w~torsion—free. Second, the depth of P cannot be larger
than %1 either, Suppose, on the contrary, that there is a chain of prime ideals
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P$P0$P1$ -& Pysa. Note that B/ P is 5,—cocritical, so P; €%, This tells us that
P12Q1Qs-Q, with Q,ESpec R and depth Q,<k, so PQ, for some §. Tnis contradiots
the fact that depth Py>Fk+1, Thus the depth of P must be k+1. The proof is
completied.

Corollary 2.5. If R isan N—-a'fmg. The nthe Gabriel dimension of R G-dimR is
finite if and only if the Krull dimension of B K~dimR is ﬁmte In addition, &f they
are indeed finite, they must be equal. : :

Proof For any integer n>0, G-dimR<n J.mphes that z,=y, i. e,, Z,” contains
all the prime ideals of R. By Theorem 2.4, 75 =7,=x. This is the same as saying
that depth P<n for all P €SpeocR."' Therefore, K—dimR<n. Note -that the deduction
above is reversible, so the first statement has been proved. When the two dimensions
are both finite, the above proot also indicates that for any integer n>>0, @-dimR<n
if and only if K~dimR<(n, This forces the two dimensions to be equal,

§ 3.

In this seolion, we always assume that R is a ring, G a finite automorshism
sroup of R such that the order of @&, n=|@|, is an invertible element in R and
R¢={r € R|a(r) =r for all x €G}, the fixed subring of R under @,

Proposition 8.1. For any édeal I of RS, IRNRS=1I. -

Proof Tt is olear that ICIRN RC. |

Suppose that r CIRN RE. Then

n
= E: T
$=1

‘or some a; € I, r;€ R. Write @ as {a1, o, ***, &;,}. Then for each j=1, 2, «-+, n

r=a;(r) = Doy (r) a; (@i=Da; () a.
[‘a,kmg summatlon about j, we obtain.

= E(é o; (rs) )w;.

It is easy to see that o~ (3 0;(ry)) € RE for all ¢. Thus, TR RS=

Corollary 3.2. If R is an N-ring, then R és also an N-ring.

Proof . Given any ideal I of RY by assumption, we can find a noetherian
initary extengion T of R such that TRTNR=IR. According to Proposition 3.1,
‘RNR¢=1I, so '

ITNRS=(IRTNR) NR¢=IRNR*~I.

Definition. A forsion theory v over R 4is said io be RYlifted 4f 1€ L, and
J:IHRG for J<IR anlyEZ'

Proposition 3.8. There is a one—to—one correspondence beiwesn R°~tors cmd Ré-
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e

lifted. torsion theories over R,

Proof Given o € R%—fors, send it to o® € R-tors determined by Z,,={I<IR|I2

HR for some H €L},

' It i9 known that .%,, is an idempotent filter (see section 9 in [7]). o® is
- gbviously R%-lifted. Next, given any RS-lifted v € R-tors, we define 7° € R%-tors by
Lo, ={I<{R?|I=HR? for some H € ¥;}. Using Proposition 3.1, we can prove
that %, is indeed an idempotent filter and that 0**=0c and 7*°=7. We léave out the
proof since it is routine. '

- For the rest of this paper, we assume, onos and for all, that o € Rtors and
o® € R—tors. : :

Lemma 3.4. If M isan R—module, then T, (M) =T, (M) as R%—modules.

"~ Proof It is clear gince T=0a°

Proposition 8.5. Suppose, in addition, that o is perfect. Then we can m
Q. (R) into an R-module so that the B-module structure on Q, (R) preserves the canon
R-moduls structure on R=R/T,(R). Moreoer, @,(R) and Q.(R) are isomorphi
R-modules and this isomorphism extends the identity map on R.

Proof Since o is perfect, we have Q, (R) (R?) ;QgeR. This makes Q,(R) .
an R-module, :

... From
ép: R—> Q‘,(R) fr}—>'a®fr

and Kerép="T,(R), we see direotly that the R-module siructure on Q. (R) prese:
the R-module structure on R. v

Note that Q, (R) is an essential extension of B as R-module. By Lemma 3.¢
is 7—dense in Q,(R). Using the z-injectiveness of Q,(R), we can extend
embedding of R into Q,(R) to an R~homomorphism a: Q,(R)—> Q,(R). Since
restriotion of o to R is a monomorphism, 50 isa. We assert that it is also epic
suffices to prove that Q, (R) is a v—injective B~module. Suppose that I&€.%, an
I Q, (R) an R-homomorphism. By Lemma 3.4, I is a ¢—dense submodule of
Rf-module R. By use of the a—injeotivenesé of Q.(R), B can be extended i
R%-homomorphism B: R—>Q(R). The proof will be finished if we can prove th:
is also an R-homomorphism. To do this, let r € R. Set

fe B> Q(B) sb>B(rs) —rB(s).

Then f, is an R%homomorphism, For any a€ I, f,(a) =8 (ra) —rB(a) =B(ra) —r
=0. So f, induces an R%-homomorphism 7, from R/I 1o @, (R) such that f,(s-+.
f:(9). Q. (R) is o~torsion—free while, by Lemma 8.4, R/I is o—torsion, sofy, h
f», must be the zero map, i. e., B(rs) =rB(s) for all s€ER. Since r is arbitr:
chosen, is Ban R-homomorphism.

Theorem 8.6. Suppose, as before, that o is perfect. Then an automorphism of R
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anhgch belongs to G dmduces an automorphq,sm of R. The«'efoq'e, @ 'mduces a: ﬁmtc
tomorphism group H of R satisfying = '
(B o= (R)I={2ER,|a(z) =2 for dll « € H}.

Proof First of all, we show that (R%), can be embedded into B, as rings. Since
is perfeot, we have, as Rf-modules, Q. (R)=Q,(R)= (B QuR, We can make
) ,®zR info a ring by first stipulating that (a®?d) (c®d) =ac®bd and then
tending it linearly to (B%),Q@gr.R (see, for example, [8]).

Now look at the map 6z B—(R%) Qs B ri=>1@r. We can identify R with its
iage under the embedding inducesed by &5. We see that the multiplication defined
ove is consistent with the R-module structure on (R%)o@peR. Because the
riqueness of such multiplications, we know that the multiplication we defined is
st the one of (R%),®zR ag the localizati on of R at 7. So (B%) QR is Jsomorphlo
R, as rings. Next suppose that - :

g: (BR%,—>(R% ®R'R wl—>m®1

Tt is easy to see thatb g is a ring homomorphism and the restriotion of ¢ to R%=
/T (R®) is the identity map. We olaim: that there is a 0%« € (R%), such that o
—0 Then there is an =€ R® guch that 0+ rz € R®, Write ro as § for s€ R, Then

O0=r(@R1) =rs@1L=s5@1l=s1AR1) =1Rs. . o
noe &z (s) =1®s and Kerér=T, (R) , SE€ET, (RG) and hence 5$=0, a oontradlotlon.
herefore, ¢ is an embedding. '

- Now given an a €@, then a becomes automatically an R endomorphlsxn of R.
induces an abelian group homomorphism Do
1Ra: (BY) (@R —> (B®) (DR
aRb; > aRa(b;) .
bv1ously, 1® e is invertible and (1Ga) 1=1®a'1

. It igreadily seen that 1®o is also a rmg homomorphlsm and hence an
tbomorphism group of R,. Set H ={1®ay, *-;1®a,} . It is easy to see that (B,
R¥). Conversely, for a given element 3 a®b; in (R?) @ zR which is fixed by H, '
o . .

2 aR oy @) =2 a@b;, .
nce n~t (2 () € B, Za@bi=a: (072 055 (5)) ) @1 € (BF),. This completes the
roof of the theorem., ~
Corolla.ry 38.9. If o is perfect, then s0 45 7. Maq~eo've/r, for any R~moclule M,
Q. (M) = (B%) @M.
Proof Given any Ic¥,, then INRYCYZ,.

Since ¢ is perfeot BT NRY =(BY,. S0 1=ra; for some nE (RG‘)cr and
8 €I RE Since (R%), is a subring of B,, we have 1€R,I, i. o.,, IR, =R,. This
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proves that = is perfect (see Proposition 17.1 in [7]). And what is more,
Qs (M) = R;@pM = ((B%) o@1sR) @M = (B®) o Rps (RR2M) = (R) o @M.
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