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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR
OF n ORDER NEUTRAL FUNCTIONAL
DIFFERENTIAL EQUATIONS

Ruawn JIONG(ﬁ. ) *

Abstract

This paper considers oscillatory and asymptotic behaviour of following # order neutra
functional diﬁerentia.l equation:

B W =w-n 1+ (-1 at+6)dn(®) =0, @,

where v>0, v%>0, 1>¢>0, n(0) is nondecreasing function with bounded variation o1
[—=*, 0]. ‘

In this paper the author obtains some results for any integer # and ¢€[0, 1). Wher

¢=0 or n=1, these results coincide with the results in &. Ladas’s paper [4] and the author’:
papers 1, 21.

§1. Introduction

In this paper we consider oscillatory and asymptotio behaviour of followin
order neutral funotional differential equation:

L 0@ —co(t—01+ (-0 [ a(t+0)n(@) =0, ‘

where >0, +*>0, 1>¢=0, n(#) is nondecreasing funotion with bounded vari:
on on [—7z*, O].

The author™ # gave some results about oscillatory and asymptotio behavi
of first order NDDE. Xu—Yuan Tong™ gave some sufficient conditions, under wh
n order linear RFDE is oscillatory or nonoscillatory. G. Ladas and I. Stavralaki:
0. Arino, I. Gyori, A, Jawhari®™ gave some results about oscillatory behaviour o
order RDDE, _ '

. When c='0, the results in this paper coincide with the results of RFI
Existence of solution on (—oco, +oo) for equation (1), has been given by J.
Hale‘e’. The vesults of nonautonomous n order NFDE will be given by the autl
in another paper. ’ ‘

Manuscript received December 80, 1985.
* Department of Mathematics, Fudan University, Sha.ngha1 China.



144 CHIN. ANN. OF MATH. " Vol 108er. B

§2. Main Results and Proofs

"S‘u'ppos'e {ty, 5=1,2, -, m}, 0> 4 >8>+ >t,,./—'v isa séqﬁenee in[—<*, 0]
and 7 (f) has positive damp on {#}. -
Theorem 1. Inthe case n=1, each of the following conditions s a suﬁc'ieht
condiition for all the sohution of (1)y to b osoillating:

) 3 G <0 @)1 (<) > B@), ®
B3 (0) = moax (20~ (1 —00*) ] =4 ()exp (s4()) [L —0 exp (uei ()],

where z1(c) sateSfies the equation N L
(1~ (0) [L—cexp (& ()] —ouzi(0)exp (ui(0)) =0,

p= v[z (@) =16)] /[ & et ~n) (-3

- me> 3 (~h), |
- ® (3w -] [Z-w]me, ®

where Hi(c) = max [re*(1—ce)] =21( 0) e~ [L —ce™],
z1(c) sctisfies the equation '
| 1-0© —0™0=0;
(O) For some ko, ko€ {1, 2, +-+, m}, we have

[n (&) = ()1 (—h) > B (0); - @
(D) For some p, p>1, we have :
e 3y 0 -1~ ] > By @ ®
(E)- Set { =, max {ti} =1, :
2 ) —n @)1 (-0 > Bi(©). ®
Proof (I) Takmg x(t) =¢ ¥ in (1)1, we obtain a oharaocteristic equation
F1(0) = —A(L—0e*) + j T e dn(8) =0, )

Now we prove f1(A) >0 for all real A. If this is proved, then (1), is oscillatory,
according to J. K. Hale’s book. Now we are in a position to prove this result.

Assume the characteristio equation fi(A) =0 has no real root. Because the

neutral operator for (1)1 is the stable operator (0<e<1), fi(A)=0 has finite

" number of roots with nonpogitive real part, A;j=o;+48;, =1, 2, +-+, N, o;<<0, e~

"are positive exponential funotions. Set Loy ] =, =11023;le ol =a, i. e, a+0;>0(§=2, -+,

N). Take u € (0,  Toax (a+a;)). It ig obvious that if ¢ is a sufficient large number,
=2, N
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then any solution z (%) of (1), can be written as (Ref. 7.4, 12,10 in [6]).

5_: Attt cos (Bit+y;) +0(e™™)  (y>0)

- eat{ Ayt cos (Byt+ ‘}'1) + 2 Aarig= " cos (Bt +7;) }+ 0(e™™)
p=

=e"{A;t" cos (Bit+7y1) +0(e )} +0(e ), .
where k; concerns the multiplieity of root A;. Since the function 6* A" cos(Bit+7y1)
is ogeillatory, any solution z(#) of (1) is also oscillatory.
(II) Otherwise, assume there exists Ao € R, such that fy(A) <0, i. e.,

—Ao (I —ce™) + J'o . e~ dn (6) <0,
0 A
j_ 6 (6) <ho(L—06™).
In faoct Ao (—o0, 0], Then, we suppose 20>0, ‘1—vce"°">0. ‘We easily obtain
21 In (@) —n ()] <ho (1 —06).
(I1I1) (A) We first prove suffioient condition (2). Becanuse
1_',‘ y m . m _
33 ket exp Lzl lo.z,] (‘;21'10, 1),

we heve » g,
_ho(l=ee) & [n(t) —m(E)le™ -
2 @) =@ T X () —n @]
>exp [i [n (t+) =) (—Mot) ]
D H LICIRL TN
Ao (1 — ce™) [2(7] (89 —m(52)) (=t exp -M% (=) IGEH =@,
2 [ @) —q@¢w] 2 [n @) —n @]

>3 () =0 ()1 (=)
Set 2= B(=1) [1(80) —n ()] /Zn (@) —n (D],
p=s D) —1 ()1 / BlnE) ~n(1 (1),

i. e., Aov=puz. We have 0<ho< —1gec/7, 0<z< —~lgc/p.
2 [n(#) = ()] (=) <ze™* (1 —ce*).

Set G*(z) =ze™*(1—ce"), we obtain G*(z) =¢™ n(z) =0, where

p(z) = (1 —=) (1 —ce") —cpre.
Because p(0) =1— >0, p(—1ge/m) =1g <0, there exists #z5(c) € (0, —Igo/u) such
that p(zs(c)) =0, i. e. 1—oexp (uz5(c)) >0. Also we have
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- 1—23(c) =opeg(c) exp (uzs(0)) / (L —eexp (uzs(c)) >0,
e., 25(¢) <1, Notice that _ .
G (z5(c)) =exp(—2o(0)) [p'(#5(0)) —p(z5(0))]
=exp(—25(c))p (4(0)).

~ —oxp (~s5() [1m2epest(@) |
[25(e) + [(1— )75 (e) —2] [#5(c) —11] <O.
(For p>1, (1 p,)zo(c) —2<—-2<0; For pu<l, (1—w)z(c) —2<l—p— 2<0)
/e have -
G* (25 (c)) =25 () exp (— pzg(0)) [1 —cexp (— 2l (c))] = Ei(0)

= max G*(z),
2 €(0, —18c/ 1)

o o [Bae-nen]w<Eo.

'his contradiots the hypothesis (2). So (1) is osoillatory. _
(B) The p roof of sufficient condltlon (8). Notice

2 [n(#) —n (t) 1o~

>'m[[[ nGH) 'rl(fk)]] eXP(WO é (—tk)/’m));
Ao (L —ce™)
m +exp (Ao 2 (— tk)/m)

[EEw ][ ma y=~n(1]"

(—tk)> . [1—cexp<Ko é (—tk)/m)]
o exp[ho 3} () /m]
o e 3 (W] /m o) a1,

Ve have

o [ e -] <

(11 (@) —n@1]-[ 3 (—8) | <max@ (o) - Bs(o).

This contradicts the hypothesis (8). So if (8) is true, then (1), is oseillatory.
(0) From sufficient condition (2), we can prove sufficient condltlons 4, (©).
Notice Cauchy inequality

231108 0T (=8 <[ 3y Inet) ~n @)1 (1) | i,

We ocan prove sufficient condition (5). Theorem 1 ig proved.

It is obvious that some results in the author’s papers[l, 2] coinside with
Theorem 1 of this paper.

Theorem 2. If nis odd, then each of the following conditions is a suﬁicwnf,
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condition for all the solution of (1), 40 be oscillating. If n is evem, then each of the
following conditions is a sufficient condition for all bounded solution of (1), to be

oscillating. .
) 3 &) ~n )] (—t/m)">Ba(o), ©
where

B,.(0) = B3 (0) (u/m)™,
B (0) =max{[z6~]"[1—0e*]}
= [z:(0)oxp (—21(e)) 1" (L —cexp (uzs(e)) ],
¢t(c) satisfles the equation
9" () =n(1~2z) [1—ce"] —opze**=0,

=] 3} =@ ] / [B(~t/m ) —n 1],

=
(B) For some ko, ko€ {1, 2, -+, m}, we have
[n (@) —n (@)1 (—tr/n)">E,(c);
(0) For C=k_1:a2a,x {tx} =11, we have

(2w B (D)~ (621> Ea(o):
(D) [1(0) —~n(—2*)]ev">H,(c),

where :
B, (c) =max # (67 —0) = [4(0) ]"[exp (2 (0) —c],
25(c) satfisies the equation
9(z) =n(e*—c) —ze~*=0.
Proof Taking e~* in (1),, we obtain a characteristio equation

Fo8) = (=W (L=0)+ (=120 65 am(9) =0
() When n is odd, (13) is changed into
Fa0) = =22 =ce) + [ 62 (@) =0,

If we can prove the equation f,(A) =0 has no real root, then (1), is osoillatory.
can prove this result by a similar argument as in the proof of Theorem 1. Nov
prove f,(A) >0 for all real A. Otherwise, there exists A, € R such that f,.(Ao) <O,
0
J L G (O) <A (L—ee™T).
(A) We first prove sufficient condition (9). From (15) we know ;>0 and
m 0
3 ) - e an @)

Similarly, as in the proof of Theorem 1, we can obtain
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o - .
oseillatory. Notioe f,(0) = —J_ . dn(0) <0. New we prove f,(A)<<O for all AER?,

Otherwise, if there exists Ao>>0 such that fa(Ao) =0, then gimilarly, as in the proof
of (I), we can obtain (15) and come to the conclusion of Theorem 2, Theorem 2 is
proved. . '
Theorem 8. Consider the equation

e lo® —~eo(t—0)]+ (=D [ a(t-+6)dn(6) ~o. o
For all positive integer n, the sufficient condétton, under which there existS boun
nonoscillatory solution of (1),, 4s that A

7 [1(81) —n(6) 1 <E5(e), (

where ‘
E3(0) =max[2"(e7~0)e*], p=(v+in)/7.

Proof Taking e~* in (1)), we have a characteristic equation ‘
. t
F ()= (=) (=0 + (=3[ 6 dn(8) =0, (
>0, when n is odd.
<0, when n is even.

F@ = (-1 m(©) -

Buppose z;,(¢) satisfies
max (¢ (o=~ 0)0#] = [21(0)]"[exp(— 25 (9)) —clexp (w2l () = F2(o).
And we have _ ‘ o
F (4(0) /7) = {[—2(e) /%]"[1 —cexp (2(c) ) Jexp [ — (—6*)25(0) /]
+ (=1 [ (1) —n(Ea)1}exp[(—0%)2u(c) /7],

where 8* € [t,, t:]. Notice - .

G’ (2) =~ { (e~ —c)n+z[(w—1)e* —cul},

g(2) =n(e*—ec) +ez[(w—1)e"—op],

g(0) =n(1—0)>0, g(—Ilge)=clge<0,

* 8o there exists z3(c) € (0, —1goc) such that
9C)) =G (#(0) =0, ie, max@()=G().
When « is odd, we have ) .
F (2(0) /) = —exp[(—6")2(6) /7] { [£(e)]"[1 —c exp (2:(0))]
-exp [~ (—=6M)2(0) /1/%" — [n(¢) —m(m)1}
< —exp[(=0)2.(0) /%1 {B5(0) /7" — [n(t) —1(tm)]1} <O,
‘When n is even, we have o ' ’-
F (2(e) /) = {[£:(0) /71" [1—cexp (2L (0)) Jexp[ — (—0%)zi(e) /]
= [n(#2) —n(&m)1}exp[(~6)zi(c) /7]
> {Bi(e(/7"— [n(t2) —n (tm) I}exp[(—8")2(c) /v>0.

So we can prove that there exists A€ (0, zj:(a) /%) such that F (M) =0, i. e., there
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’xigt® nonoseillatory solution = (¢) =e~*f of (1),. Theorem 38 is pofved

Theorem 4. For any posfmw imbeger n, the suﬁc@ent condition, under which
(1) s osc«z,llatorry, is that

[ (8) —n(Em) 1> ER(e), - @8
where EE(e)= max{z" (e@—0)e™}, p=(v+i)/7.

Proof Taking e~* in (1)}, we obtain the characteristio equaﬁon @an.
(I) When nis odd, (17) is changed into

F@)=—n(—e)+ [ eran(®) =0,

Now we prove F(A) >0 for all AER. Otherwise, there then exists A€ R such that
3 0\40) <O, i.e.,

D [ b) —n m) ] <7 Lo I (O)< o) (67 —0)
o we have '
, [ (%1) —n () ] < (o)™ (677 —0) ¢,
where p=CG+i) /7" ie, "[N@E) —n(a)]<EE(6).
T'his contradicts the hypothesis (18). So (1)}, is oscillatory.
(II) When n is even, (17) is changed into

F(\) =2 (1—0e) — f ' """&n(é)=0

We prove F(\) <0, for AE R* i. e., all bounded solution of (1)), are oseillatory.
Dtherwise, there then exists A¢€ R* such that F (Ao) =0, i. e.,

w(t—em)>|" eean(),

7 [ (t) =1 Ga) 1< (Mov) " (e7*" —0) g™
< ma,x Z (e“’ —_ G) &% = E" ( O)

Phis contradicts the hypdthesis (18). So all bounded solutions of (1)1 are oscillatory.
Pehorem 4 is proved.
Corollary 1. If (1), is the simplest form

B fa(®) ~oot =]+ (-1 paE-7) =0. (50, >0, %>0),  (19)
then for all postiive integer m, (19) s oscillatory &f and only if ‘

v"p> B (c). (20)

Proof - Notice that if —wy~#;3=fs=---=1,<<0, then (19) coincides with (1),.

Because = («v+t1)/'r in (18), p=(+¢n) /7 in (16), we have p=p= (v—7z)/v (if

74 =7>0, then = =0) (16) and (18) are changed into (20). (if 7y=7, then (20)

'is changeu >in’ao f&"p~>ﬁ,.(c)). According to Theorem 3, Theorem 4, we can prove

Corollary 1.

- Corollary 2 The suﬁwwnt condttion, under which the equation
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dt"[m(t)—m;(t )]+ (~ 1)"'1211,:0(# —T) = 0

TS Ty >0 >3 >0, 730, >0, 5=1,2, «-, m, (21)
s oscillatory, 4s that

7"[‘321 p|>BEC). L@
The necessary condition is that »
v [‘:2} pi] >3 (0). S

§38. Some Examples

Examlpe 1.
[60) -4 a(s-2)] +["at+Om@=0, ¢
where
3, 6=—1,
n(0) ={0+2, —2<f< -1,
’ -1, 0=-2,

i e, m=2, f3=—2, t1-——1'r; 8/8, c=1/4e. ,
It is obvious that w=2. The root of the equation 1 -z~ cue’“=0 is
21 (1/ (4e)) =1/2, Bi(1/(4e)) =1/ (8 e),
(=) [n @) —nED T+ (=) 10 (#2) ~n (7)1
=1%x24+2%x1=4>1/(8"¢) =Ei(1/(4e)). ,
From the condifion (2) or another condition of Theorem 1, we see that e
oseillatory. ‘ |

" .
Buample2.  [a()— — m(t— 8) j_ w(E+0)dn(@) =0 (
The denition of n(@) is samlar to that in Example 1. Now the equation n(l
(1 —ce**) —euze* =0 is changed into :
_ 2(1—2z) (1 —2%/(2e)) —2z¢*/ (26) 0.
The root of this equahon is 25(1/2¢)) =1/2. We have

s ()~ (Y (o)
E’( 26)— ( )(”)2—1 323

(=2 [n () —m () 1/4+ (—19)* [0 (#2) —n(32)1/4=3/2>E3(1/ (2¢)) .
According to Theorem 2, we see that (25) is oscillatory.

1
8¢’

Ezample 3. ~ . Lo

[2) 25 o8- 22)] +j o (5-+8)dn (6) = (26)
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'he definition of n(#) is the same as in Example 1. i
' 20 1\? 2\3 N
w=gr78/[(3) X“(y) x1]-3
'he root of the equation
e I _2T 2»),_ 27 s, _
3(1 z)(l 55 ¢ e 55 ¢ 2267 =0
I 23 (2—7 6‘1/5>= 1/10. And we have

27 -1/5) 1 2 -3/10
E3( 1000 <99 <°

27 _1/5) 2 -3/10 -3 ( >
E;;(———s 39 —Xe ><10 X <29, “
)

L8y at) 01+ ) — @)1= 22> 2> By (2

ocordmg to Theorem 2, we see tha.t (26) is oscllla.tory

Example 4.

-1 -
[o() - 3 _ o 2)] +f_ o(E+0)dn(8) =0, @7
here ¢= 1/ (8e?), =2, .y= —t1—1 Ta= —%=2, u=0. n(f) are respectively 7/270,
}+8)/270, —1/270, when = —1, —1>0> —2, = —2. Now the équation n(e~*—¢)
2[(p—1)e~*—cu] =0 is changed into 83(e*—1/(8¢?)) —ze*=0. Its 1'0017 is z,‘(l/Sez)
2. And we have
0
(L=, e -nw1-2.
is obvious that H3(1/3e?) >7*[z(—1) —n(—2)]. According to Theorem 3, we see
ia$ there exists nonoscillatory solution of (27).
Ezample b.
-1
[a;(t) a,(t 4)"] J_zw(t+0)dn7(9) -0, (28)
here ¢=1/T¢%, —4, ty=—1, =2, n(f) are respectively 3/100, (6-+2)/100,
1/100, when f= ~1, ~23<0<~1, 6= ~2. p=1+2=2 2. (1/7¢%) =3 satistios

n(e™*—0) +z((p,—1)e"—a,u,) =2(q“—1/7e*) +2(—1/2¢*—1/14¢%) =0,

nd we have
—3/2

E5(0) = BY2 (1/76°) — % o-t/2,

P (8) —n(t)] = 22

So we have EM*(1/7 ea) >22[n(t) —n($a)]. Accordmg to Theorem 3 we see lhab
there exists bounded nonosoill afory solution of (28).
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