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EXISTENCE THEOREM AND FINITE ELEMENT
METHOD FOR STATIC PROBLEMS
- OF A CLASS OF NONLINEAR
HYPERELASTIC SHELLS

L1 ZATPING (44 F)*

Abstfact

In this paper, various boundary value problems of hyperelastic shells are considered.
{t is assumed that the storede~nergy function W (z, F) of the material,of which the shell is
made, satisfles polyconvex conditions proposed by Ballt!, Existence of minimum points of the
total energy of the shell in suitably chosen function spaces, and in suitably chosen finite
element spaces is proved. Convergence of the finite element solutions is proved under certain
regular conditions on the minimum pointg and some additional assumptions on W(z, F). A

Gradient type computing scheme for solving the finite element solutions is given, and global
convergent result is obtained.

§ 1. Notes and Basic I_-Iypothéses about Elastic Shells

Agsume o, the middle surface of a shell «* (see [1]), be orientable conneot
compact regular two—dimensional Riemannian manifold with or without bounda
of which the Riemannian metric is induced from R3, For the sake of simplioi
agsume that the thickness of w* is constant before déformatioh oocours, 2! denotes
thickness, ’ ‘

Suppose the deformation of shells, when exterior forces are imposed upc
satisfies one of following basic hypotheses.

Hypothesis A: The line segments of the normals to the reference surface
remain to be straight line segments after deformation and the change of leng
along each line is uniform, ’

Hypothesis B: The normals to the reference surface remain normal to t
deformed middle surface after deformation and there is no change of length alo:
these normals,

Hypothesis B is conventionally called Love—Kirchhoff hypothesis, We may a
assume that the normals to the reference surface w become guadric, cubic, guarwe
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or in general n~th curve after deformation. But for the sake of simplicity, we only
discugs the case when Hypothesis A or Hypothesxs B is satisfied. The other ‘Cages can
be discussed in the same way.

Assume there are finite compatible local coordinate systems {c, Bi }1, Where

w; are connected open sets of w, U o=w and R o>, R? are diffeomorphism,
=1

@, ©, are closures of w;, £, respectively. We denote R;: 3,—w, the inverse of R,

N
and let Q=73 Q, where {J denotes disjoint union. By the compatibility of local
=1

coordinate systems we mean that they induce the same orientation on e.
The position vector in R® of a point on a shell can be expressed as
B*(p) = REp') +£4s(p), , (1.1)
where R*: Q% [~1, I]>* 0 p= (04, 8, &), p'= (01, 85) is the injection of p on Q.
R* (01, 03, &) =Ry(01, 05) +£A5(01, 65), when (81, 8) € Qi A4(0y, 05) is the unit
normal vector of w ab the point B,;(6,, 95), determined by

~OR, 8R;
A‘s — 891 30 2
oR; % AR
a8y = dhy
It follows from the compatibility thatb
As(p") = A44(q)
provided that p'€ G, ¢’ € 2; and R;(p') =R;(¢).
The position vector of deformed shell under the Hypothesis A or the hypothesm

B can be generally expressed as
(01, 05 &) =R (04, Ba, &) +u(Gs, 62) +&ut (01, 6) -
' =18y, 85) +Ec(8, 6,). | (1.2)
The position vector of deformed shell under the Hypothesis B can also be
expressed simpiy as '

r* (81, Oa, €) =1 (B, 65) +Eaa (B, 62), @3
where a3(f1, 6,) is the exterior unit normal of the deformed middle surface at the
point r (01, 62).
The vector u° (01, Oa)+E&u(fy, Gy) is ca]led the displacement vector ab pom’u.
R*(6y, 05 £).

§ 2. The Existence of Solutions for Static Problem
of a Class of Hyperclastic Shells

We say that an elastio matberial is hyperelasfic (see Ball {21, [3], or Ciarlet
[4]) if the stress bensor of the three—dimensinal body made of such material can e
expressed in the reference domain as
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T'r(2) = aW(F), | (2.1)

where W is the stored—energy function, ¥ =I-+vu, and u is displacement veotor.
We only discuss the case when the shell ig made of isotropic hyperelastio materials,
We call the shells made of hyperelastic materials hyperelastio ghells,

Assume the reference domain is the naturalistate of the shell, i, e. stress tensor
vanishes in the case when there are no exterior forces acting upon the shell and the
gholl is undeformed.

Let w be a manifold with boundary. Let 8® =8w, U 8w;. Denote

{(91, z) € Q |R(91, 02) € 3C00} =04y, }
{8y, 02) EQ|R(64, 0,) E w1} =08,

Agsume meag (9Q,) #0. A

‘We introduce first the following boundary value problem of shells: Supp
hat the deformation of the shell satisfies the Hypothesis A, For simplicity, supp
hat the density of exterior forces (measured in Qx [—1,1]) is f°(8y, 02) +£f* (61, 6
Suppose clamped edge condition is given on Q% [-1, 11, i o. (01, 01 &)
7001, G2 £) =R*(01, 05 &) +uo(Bs, 02) +&us(G1, 6a), V(G1, b5 &) €% [,
where u,, %3 are given vector funotions on 292,. And natural boundary condition
given on 82y x [—1, [], the density (measured in 8Qyx [—I, 1]) of exterior for
acting upon the edge corresponding o Q% [—1, 1] is g° (81, 03) +£9* (81, 8a). The
how does the shell deform?

~'We now investigate this problem by means of the tofal energy functional

(2

the shell, which can be expressed in the present case as

B @, ub) EL' W (F) dwdydz—ja j’_z (FO+£°F2) » (u0+£ui) d€ d6* a2

L -
~|. ) @+eP - wreag o, 2.
where 1%+ £u? is displacement vector with (u®—¢&u?) |,0,=to-+E&us, VEE [, 1] a

. N
F=I+Vu,fo= 2(%°R4)f° 9°= 29 (poR), g"=23 §'(pieR), {p} are the pa

tition of unity subordinate to {w:}y.
It follows from simple caculation thatb

_ 0 1y o P*-17 = d(wW+&u') (OR* (61, 04 E)\* .

Vu—V[(u +§u) R ] 6(611 62) f) < 3(91) 02) §) ) ? (2.
. 3’]‘*(9 ’ 0 ' g) a—R*(el- 92' _$> -1

L+Vu- G e (s ) @

j W(F)dmdydz zj oW (F)dw dy de

N ) aR*(g , 92, :f)
=§J.D.‘X[ L1 <P.W(F) _a'm"‘dgdaldﬂ’



172 ' QHIN. ANN. OF MATH. - Vol. 10 Ber. B

" N i :
=, 2] ew@ a-26m+K)
2é=1J -l
' 2R
20: " 20,
rhere H is the mean curvature of w, and K is the Gauss curvature of w. Let
W(alv 02.'?,60(01, 62)) ul(aiy 02))

X oR _ OR
= — .£2 Il =
S o 0w (-3¢ 4 )| 22 x 2 |ae. @n
Then, under the Hypothesis A, the total energy funotional (2.3) transforms to
E@w, ul)EL W (8, 6, w0, u)dé" dg? .-L (FO+u0+ Ftout) a6 dg?

dé ag e, (2.6)

=} g @+Ge, @9

rhere

}(1= _g_ l3f1, fo___ 2170, §1= % I*g, §°=21_5°.

‘We are now going 0 show the existence of minimum poin$ of functional (2.8)
a a certain set for a class of stored—energy function.

Suppose that the stored—energy function W (F') satisfies the following hypotheses
see Ball [2], [8] for reference): ' " :

Hypothesis (I): There exists a continuons differentiable convex function G
A8 x M§ x R5—>R. such that '

W(F)=G(F, adjF, detF), VFECM3, 2.9
Hypothesis (IT): The corresponding function G' satisfies ‘
}']_-fg G(Fm H, 3,)=0 (2.10)
rrovided that F,—F in M3, H,—H in M3, and 5,—0".
Hypofhesjs (III) (coerceiveness): There exist a€ R, 5>0, p=>2, ¢>1, %.{.l
q

<1, r>1, guch that the function G in Hypothesis (I) satisfies
, G(F, H, 3)=a+b(|F|*+ | H|1+d). (2.11)
Here M® ig the linear space of real matrices of third order, M—={4€ M?|det A
>0}, adj4 denotes the adjoint matrix of 4, and det4 the determinent of A. ‘
Theorem 2.1. suppose W (F) satisfies Hypotheses(1)—(III). W (81, 6, u°, ub) is
efined by (2.7). Then the energy functional of the shell defined by (2.8) reaches it

ninimum in the set

D-{, ) € @)y | 20 I O oo (-1, 1),

6(91) 92} f)
. r* (01, 6, )
ad]mﬁ—g«)—eu(()x [-4 ),

37’*(917 02- g) r — ,
dob Z gt € (@ X [, 1),
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det ?géf’——%iﬂ*@ﬁw, a.6. 40 @% [, 1, 0], =to, uil,g,=u1}

provided that D#(Z) and there exists (v°, v*) € D, such that
H (20, oY) < oo,
Note 1 u®|,0,~uo, w*|s0,=u, is clamped edge condition.
Proof of the theorem Let (ul, ui) € D be the minmizing sequence, and
- B, w)<SE@®, o) =M< +o0, VYu>0,
‘We have ‘

J‘n'(foru?,—i—fl.u}.)dﬂldgz J J- (Fo+EFY) (un+§un)d§d01d¢9’
H (FO+EFY -ridé d6* d6?
"U-, (Fo+EFY -Rrdéasrde’,  + ¢

13
20,00 1AL a1 - -0 e A
J'm (3° 12+ §* 1) dor Lm L (GO -+EGY) ~rhdf do

—La. r_, (@+£3) - R d€ do,

Hence there are oonstants K€ Rl, K 3>0, which only depends on Q, R, f, ¢, su
that ' :

[,FoattFdaat| Gl sKitKulrile (@1
On tk¢ other hand, we huve

[ 765 05 005, 6, a6, 620 a6?
=j W(F)de dydz=j _G(F., adiF,, dotF,)dndy dz. @.1
By Hypothesis (I1I), there are constants ¢ € R', b>>0, such that
R jaW(eiy 02: u;’n u}z)dei d02>a+b ("Fn“g,w'-'- "a'dj Fn"g.w’_l_ “det Fnll:,w'

- 6’rn<617 921 5) ‘ a'r: ¢
=0+ E(l 804, B, &) lisoxi-1n adj 2(0y, O3, &) la.oxi-un
a" (91 02 E) 2 1‘\
Hdeﬁ'a(al,_ez, 5 oxi- ) @.
where -
_ orn *
F"—'I+vuﬂ a(gi) 927 ) \8(01) 02) g))
From the fact that 74|sw=1r |suw=R*|sus+te+&ut, and -
128 < B U722 . + 1722000 @.1¢

(see Morrey [5]), where K isa eons’a‘a,n’a, it follows that
[ 70 04, 18, )38 20> G+B (Ui gt 1od] Pull ot 08 ol 2. (2.1
By (2.13), (2.17) we get
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E(u,,, )>K1+K2(||rrf,}|,,p wt 12dj Fuld,ue+ [det F, (1R (2.18)
Here K. 1€ R, K,>0 are eonstants. v _ , .‘
Because B (ul, ul) <M < oo, there is a subSequeﬁce, we may agsume it is the - ‘
original sequence without loss of generality, sach that
- rn  —r*in W (e"), :
adjF, — H inlL%(e*),. B (2.19)
- detF, —38in Ir(w).
In addition we have (see Ball [2], [8], or Ciarlet [4]):
“H=adjF, &=detF, F=I+vu, u=r'—R" (2.20)
Beoause w; are diﬂ'eomorphism‘to Q,x[=h 1, ¢=1, ---, N, we also have ri—p*
in Whe(Q, % [ -1, 1), 4=1, 2, -, N; or
ra, —rtin Wh?(QX [~ 1]). (2.21)
But Tn=R*(01, 04, &) +u?.(91, 92)+£u1(6’1, 8s), so0

HIWW“HD%%%QRWMM)Wﬂ%B 2.22)
Hencej (W+E) A EWH(D), n=1, 2, -, aTo bounded in W4?(2). Thus

there is a sequence, which may be assumed to be the original sequence, convergent ‘i
to 21U°(01. 8,) in Wl-”(@) with weak fopology, i. e. '

2 D goo, 6. S (229
From (2.22) and (2.23), it is obvious that ul (6, 02) also weakly converges in |
W?(Q). Suppose that

u

-u,&wm(a,ag. o @2

Tt follows from (2.22); (2.23), (2.24) that 3
U0y, 05, £) =U°(0y, 05) +EU* (04, 65). ' (2.25) |

 Let u°=U°, w'=U" It is obvious -that u°|s0,=uo, «']so,~us, and (u°, «*) €
(W4?(Q))2, From (2.19), (2.20) and (2.4) , We gob

WGL @x[-4 1D,

dj 2 _eLy@x [, 1), . (2.26
i 570 eli@x [~ 1) (2.26)
or*
det —s—r———€Lr(@%x[~-1, 1
5@ 0y oo X Lh D,

By Hypothesis (1), 11; is eagy to show that H (v «') is convex with respect to
(F, adj F, det F'). Henoe F (u°, v*) is lower semi~continuous for (F, adjF, det F)
(see Ball [2], [8], or ciarlet [4]). This fact together with (2.19) and (2.20) shows
BG, ) <lm B, u) = inf H(P o). - @.2D

n—> o w,nNeED

By Hypothesis (II) and (2.27), we have




No. 2 Zi, Zz. P. EXISTENCE THEOREM AND FINITE ELEMENT METHOD 175

det a_(ev%;,_@'>°' a.0.in @x[~1, 1. (2.28)
(2.26), (2.28) together with the fact that u°|s0,=ue, w'|s0,=w1 ensure that
| @, ub) €D.
Hence E u°, u1)>wo1vxl:1)£ ) E(v° »'). This and (3.27) imply
B uwt)= inf E(° '01) (2.29)
@, v‘)eD

This proves thev theorem, _

‘We are now going on discussing the boundary value problem for shells of whi

the deformation satisfies Hypothesis B. The only independent variable in this case

u®(8y, 0), i.e. the displacement vector of the middle surface of the shell. (1 3) giv
the digplacement vector of the deformed shell. Define

WG 0 w00y 09)=3 [ 0i00 O9W () A~%H+£K) l 2% Z

X2 | %

(2.3

|  where F'=1+Vu is given by (2.4). Remembering -
r*(04, 02, &) =R(0,, 6,) +u°(8,, 82) +f“s(91y 02,
the energy functional of the shell can now be expressed as

E@) = W6, 65, w8, 02)) 38" d8"
[ [, Gorery - (- ryag agape

L -
~[ [, @+ -RYat o @3
Theorem 2.2. suppose that W (F) satisfies Hypotheses (1)—(III), W (83, 85, u
is defined by (2.30). Then the energy functional E(u®) defined by (2.381) reach

i1 minimum in set

| Di-{wews(@) laewhe(@), a0 05 ) ey a1, 1),

9(64, U5, &)

. Or*(01, 83, &) ~narau

adj WEU(QX (-, 1),
ar*(0y, 83, £) ~ 7+ _

Aot 5, 0, £ L @[,

et aa’f(-fg_i’%f_flw, a. e.in % [—, z1|7-u°|m,=u(,}
promded that D1+ ¢ and there is a v°€ Dy, such that
E (2% <-+oo.

Note 2 u°|:0,=euo oorresﬁonds to hinge type condifion with zero exteri
moment. »

The proof of the theorem Lot {ul} be a minimizing sequence, There are constants
K, € R, K,>0 such thai
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- L Gorery- er-mnagarar | [ @i iR do
. <K1+Kﬂ“'rn“p we (2.32)
There are also constants € RY, >0, by ]E[ypotheses (I1I), such that

L, W (6, Ga, u2)d6* d6°= j W (F)do dy b

_ j _G(Z., adjF,, dotF,)dzdyds

 2a (| Falb et lad] Fold et [det Fallu).  (2.83)

By definition we have rh=R (81, 02) +ud(61, 02) +£as(61, 65). In partioular, on

Qe [—1, 1], we have r; (84, 4, £) = R84, 02) +26(81, 02)+Eaz (01, 05), (01, 02)E
Q0. Butb |ag,|=1. Hence ‘

bral g g S IRl o+ Blasal < I, | (2.34)

vhere M is a constant, We conolude 1mmed_1a1;ely from (2. 34) and (2.16) that
1725w <K (1 Ful3,0e+8), (2.38)
<, B are constants here. (2.32), (2.33) and (2.85) imply thab L
 E@)=E+E(|ralt, eet 1adj Fo)g o+ [deb Fole), (2.36)

;, K are constants. It may be assamed that H(ul)<H(+*)<-+co, From this and
2.86) it follows that there is a subsequenoce of {u3}, which may be assumed to bhe
he original sequence itself without lossing generality, weakly oconvergent in
WL2(Q % [—1, 1]) (see the proof of Theorem 2.1), i. e. :

rn=>r*in W (Qx [}, 1]). 2.37)

‘We have algo (gee the proof of Theorem 2.1)
La(@X[-4L 1) .. or* oR*
{ad] P > ol <a<01, 7D \awi, 5er) ) a5

Ir(@x [=1, 1]) i
det F,, ——————> det ( 3(01, 92, £) \ o(0y, 05, &) ) )
The boundedness of 75(f1, s &) =ra(0s, 65) +Eamm(0s, 02) in WE2(Qx [—1, 1)

implies the boundedness of 7,(61, ) =-—2ll—r_l %2(01, 03, &) df and of ag, (01, 02) in

W2(Q), so we may assume thatb

ro 22, 700y, 65).

Wo(Q) (2.39)

‘ as ———>F1(01; 6‘2)-
From |a@s,(61), ga) =1, V (04, 05) €Q, it follows that |F1(f1, 82)] =1, a. e, in Q. Let
(0, O5)=F°(04, 02), as(81, 02)=F1(0,, 6). (2.40)
‘We then have . .
7*(Bs, O, £) =1 (B, 6:)+Eas (6, ). @)
L2(Q)

Agam Q3o W@, as, p>>2 implies ag,—as in L~(Q). Noting also
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Ot _ O . oy . o
20, 20, in L?(Q), ¢=1, 2,

‘We have

O« igp—> 2" . in L2(Q), 6=1, 2.

a9, 29,
But we already have
Sr-oum.

‘We conclude that

or
a0,

Hence a3 is the unit normal vector of the deformed middle furface.

+a3=0, a.0. in Q,

: o ,
det m>0, a, e in Q%[ l,.l]

implies that s preserves the orientation, i. e. @s is the exterior unit normal of
deformed middle surface. By Hypothesis (I), we conoclude

B (u®) < 1nf B (fv) 2

(2.42) a.nd Hypothesis (II) imply that

or* ‘ ; _
det m>o a.e, IBQX[ l, l]. ) (2
_Hence u®€ Dy, Thus it follows from (2.42) that
E (u) =inf E(v). ' ' ‘ @
vE€D,

This proves the theorem,

Corollary 1. The corresponding conclusion of Theorem 2.2 holds if D
substituted by Dy = {u’E Ds|as|s0.=as}.

Here D) corresponds to the olamped edge condition,

Corollary 2. Define

By () = B () — (" —RVdde. (@

I Qe X[—1,1]
The concludion of Theorem 2.2 still holds, if B is substituted by Ej.
Here the term

j gote (r*— RV d¢ do
22,X[~-1,1]

corresponds to the given moment in the hinge type condition.
Note 3 Corollary 2 is the general form of Theorem 2.2 in which ¢=0,
Corollary 3. Define

B (0, w) = E(u, ud) —LD staitde, | (2.46)
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-{w W e @) | 5o Z s cte@x -4 ),

or* — . or* '
ad,meu(@x[ A l],'det—————a(gl, ) eLr(@x [~ 1),

--—?I———— ) ' b' 4 — 0 e ) — }
det D) >0, a. e, in @X [~ 1], ©°]s0, = Igpo ueb.  (2.47)

‘We assert that the corresponding conclusion of Theorem 2.1 remains frue if
E(°, u') is substituted by By(w?, u!) and D is substituted by D', provided that
D'+ ¢ and there ig a (v°, v?) € D’ such that Hy(2°, v*) <+oo. :

Here the clamped edge condition in Theorem 2.1 is substituted by hmge ’aype
condition with e, aoting as an exterior moment.

We have now proved the existence of minimum poinf on ocertain sets for the
energy functional of a class of shells, We can also induce from the energy functional,
according to the prinoiple of virtual work, the partial differential equations, i. e.
the Euler equation of the energy funotional, that the displacement should satisfy.
These equaitions are also called the balance equations of the shell. The problem is:
Do those minimum points got above satisfy these equations in some sense? Befoi'e_
solving this problem, le us assume some further assumptions on W (F). We will
also require some regularity conditions for the minimum points,

 Hypothesis (IV): There is an s>>max{p, ¢, v} and continuous functions J1(d),
Oa(d): B — R, such that W (F) satisfies ' '
|

Theorem 2.3. Suppose W satisfies Hypotheses (I)—(IV). Let (u°, w') ED be a
minimum point of B, w) in D. Then for all '
| (@ ) € (WE(@)% (0% oY) [50,=0,

[ D v eydaayae—[ [ (Fo+eFY - oo+ot)ag at ap®

@ +O@IF], VFEM, dos F>d>0.  (2.49)

-Lm || @+ @r+etat do =0 (2.50)
provided that (u%, v) € (Wh=(Q))? and there is @ 30, such that
or* . :
det —= 2 >d>0, :
O >d>0, a. 6. in QX [—1,1].

In (2.50), A:B=1r(4B%), Y4, BEM®. Hence (uv°, w') satisfies in weak sense the
Euler equation of the energy funetional F(u® u') defined by (2.2), i. e. (%, ) is
a generalized solution of the balance equations of the shell. |

Proof Because(w’, u') € (Wh(Q2))2,
. or*
, 9(0y, s, &)
For any fixed (+°, o) € (WH=(Q))% (+°, o%) l20,=0, we have

det =>d>0, a.e. in QX [-1 I].
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o 144t oty do
(u0+10°, ul+iv') € D, deb 20, 0. F) >3 >0, a.e. in @x [, 1],

if t is sufficiently small. Here
: Tro=1*+100+ £,
The fact that («°, ¥') is & minimum point implies that
B+ w'+0") —B (W, v')=0. . (2.51)
Divide both sides of (2.51) by ¢. Let t— 0%, By Hypothesis (IV), we get (2 50).
Corollary 4. The corresponding conclusion remains true +f KE(u° u
substituted by By (0, ui) , '
~ For shells which satlsfy Hypothesis B, i. e. the Love-Kirchhoff hypothesus
hava :
Theorem 2.4. Suppose that W satisfies Hypotheses @O— (IV) Let w€ Di
| minimum point of B (u) in Dy. Then, f:,f

LOEWI.w<Q),a’ndde'b 6(0 6' )>d>0 a. e in Qx[—=1,1]
1L Ve
for a constant >0, (2.50) will s#ill hold for all 'v°€W1'“(Q), 2 Js0,=0, with -

1 raXed | eiXra [ riXra: [ riXoed | wdX7ra ] r1X 173
lraxra] * fraxra] " Llraxra] Ilrixrzll lraXral /d [raxra]’
| ' or . o
é here = 9 f= 1 2.
oo AR T

This implies that u° is a generahzed solutlon of the balance equations of
ghell, i, e. the Euler equa,tlon of the energy funotlonal

Corollary 5. The corresponding conclusion will still hold if E(u) and Dy

 substituted by E1(u) and D] respectively.

Noie 4 The above arguments are all in the case where © is a manifold «
boundary and the measure of 92, is positive. We can also get similar results
cases when meas (8Q2,) =0, or @ is a manifold withous boundary. Of course, s
additional conditions, such ag the sum of exterior forces and moments vanish, she
be taken into account. And boundary conditions should be substituted by some o
constraing, for example u°|,0, =%, whould be changed into the form

j u°ds=0,_[ wXrds=

The arguments are also similar. Take Corollary 3 as an example, where
only need to substitute (2.48) by

o< B(|[  Frdodyae| + 1751250 )
=/ . . , » .
<K<|J ,rroda;dydz l +J i c;.dwdydz] -+ Ir,,li’,,,_,,,.)
<.?l7’:lip'w*+1—{-1. :
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Piuo) = {64, ) € €)@t ) | VA XV, () =s0(n(D)
V4§ € Ny 0Qe, w3 takes linear interpolation between oy and

@ (o) for all oy € Qq, uf is a linear continuation of u},, in
the region bounded by 29y, and 20y, v} is a linear continuation
of u;|,, in the region bounded by 22, and 892, and

or* (ul, v }
doti ——~—1 — I §)>O a.e.in Qx[-1 1]

I is easy to prove that 7, (uo, u) €D, V4 (ue) €D, '
Theorem 3.1. Suppose that W (F) satisfies the Hypotheses (I)—(III). E,
are defined by (2.2), (2.46) respectively. Then B, Fy have minimum points in Vs
ui) V' (uo) respectively, provided that Vs (uo, w1) + ¢, Vf. (o) #¢ and there exist
0}) € V(o wi), (wl), wh) € Vi (uo) such that ‘
E(, v})<+oo, Ey(ul, wh)<+oo
respectwely
Proof The proof is similar to that of Theorem 2 1, by noting that in V;. (uo,
and 7} (uo) the weak convergence is equivalent to the strong convergence, :
“equivalent to the convergence in continuous funotion space, because Vs (uo, uy)
~ 74(uo) are sets in finite dimensional spaces. The proof is actually much gimpler
Theorem 8.2. Suppose that W (F) satisfies Hypotheses (I)—(IV).
(1) Suppose (ul, ud) € 7,.(140, 1) is.a minimum point of K in Vy(ue, uy), @
or” (un, uy :
ot ey
Then (2.50) holds for all (v°, v) EVIX Vi=V4(0, 0).-
(u) Suppose that (uf, ut) € V', (uo) is @ minimum point of - E1 in V4 (vo), and
or* (ud, u})
90y 0, &~
Then (2.50) holds for all (v°, v*) € V}(0).
Proof Note we have here r*(uf), up) € W= (Qx [—1, {]) previously. The pr
ig similar to that of Theorem 2.3,

r———=d>0, a.e. «m.Qx[ -4, 1.

=>d>0, a.e. in Q%[ 1].

Next, we are going to investigate the convergenoe of the finite element soluti
under some regularity conditions. For simplioity, we set uy=141=0.

Theorem 38.3. Suppose W (F) satisfies Hypothese (I)—(IV). The clamped e
condition is imposed on 90, with wo—wuy—0, Suppose that (W, W) ED is an isola
local minimum poing, s, e, there evist in D a (W*(Q))? weak open sst U, such ¢
(w?, u*) €D, and ’ o '

' E@® o) >Ew, w), V(° v) €UTND, (v° v*)+ (ul, ub), 8.1)
.where U™ is the (W2(Q))* weak closure o f U :
Suppose also that
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B (@, ul) E U V(d)"
V@ ={(o0 € (€ (@UB00) 20520 550 i 0 -1, 1]
a(alv 92; f)
nd V(&) the closure of V(d) in (W1 = (Q))3, g, = max{2s, 3r}.
hon for h suﬁicwntly small there ewisis a local minimum point (u;,, ui) of B in
7 73 (O 0) VO X Vh’
uch that (u), ¥i) €U, and - - c _
-, uh) @, v, BN C B
B, w) ——— B, &) | (3.3)

(W2(0))?

s h—>0,
Proof For any: (Wl"’(.{)))’ weak open nelghborhood U,cUJ U of (w0, ul) in
D. It is easy to prove that there exists a constant &(U,) >0, such thab '
E@, =B, i)+, ¥+, o) €U\U. (38
From the fact that . S
R @, HEY TN |
We have a d>0 and a sequence {(u,,, u},)}CV(d), such that .

) O .
E[enee, from the faot that sl>max{p, 2¢, 3r}; (W ) ED and
or*(u®, ul)- '
o1, 03, &)
By Hypothesus (IV), for any 8>>0, there isan N (s) >0, such that
E @, «)<B@, ul)<HB@® v*)+s- - - (8.5)
- Fix ny>N(s). Lot (v, uls,) bethe interpolation of (ul, ul) in:¥, (0, 0).
I‘hen (see Ciarlet [6])

 det >d>0;, a. o in*ax[-z 1.

[~ 1, < R | (3.6)
"uﬂz R "1 Hlvﬂgchlu:m “2yeo’° - ' ST (3.7)
So there is an k>0, such that for any h<he, (un.m %) €D, and

Arnn
d m> >anln9)<[ ll],

whers we denote_ 5 e

rr,h a=R'+ug ,,+§unx he
By Hypotheszs (IV) thele is an ho(g) <fo, such that: .
B, u) < E W U n) <B(u), wi)+8 (3.8

» f’>r any h<ho(s) Take 8= s(Uo)/Q then .
' E(u,., w W) <B (@ ut) +8(00). , (3.9)

We may assume that (u,., i Unn) € U ‘because (uf, », ur,.) convergent to (v°, v') in
(Wh=(2))*asmy~> o0 and A —> 0, By (3.4), (3.9) it is easy to see that for any
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h<ho(8), there is a (4, ul) € V4(0, 0), such that (u, ul) EU,, and -
B, vy <EQ@) ub) <BE(, ), V(o) W) ET(©0, 0)nT", = (3.10)
i. e. (4, u}) is a local minimum point of B in 7,(0, 0). v
From (3.5), (8.8), (3.10) and the arbltrarlty of & it fo}lows tha.t
11m B (u), u,,) =FE @, u‘)
- This is just (3.8)."

(w*, w?) is an isolated local minimum point of B in U, and (&, )€l
h<ho(8(Uo)/2). Hence we see from (3.8) that (uj, %) is a local minim
sequence Using an argument simlar to thai of Theorem 2.1, we get

(o, ) 0 (w0, )

- and also

), L@x[-1,1) .. or* u°, !
s 204 ) > L
or*(uwd, wi) Lr(@x[-i lJ), dot (&, ut) ]
3@, b2 &) 90, 05 &)

Note. For shells, the deformation of whioh seﬁiSﬁes Hypothesis B, i. e
Love-Kirohhoff hypothesis, the finite element solution should ‘be discussed
different finite element space. Genera.lly spea.kmg, for.. conformmg method,
element of the finite element space. should be in H?, Thus it will be mnoh
complicated and more tlme—eonsummg to deal Wlth the problem by comp
though the independent variables reduced to 3 from the original 6, We w1l
discuss this problem here because of the lumba.tlons of spaoe

det

84. Computing M thod and Its_,.: Ce'nv'er,—
gence for Calculating Finite Element
Solutions Approximately

'We begin with the calculation of approximate minimum 'pdinf of Ein' V
u,) from the energy funotional of shells as the deformation satisfies Hypothesi
The energy functlona.l ag deﬁned m 2. 8) , is

B, v = I W61, O 2, ul)deidaﬂ— j (f°~u°+f‘-u1)d6'1d0’ »

[ G i,
For simplioity, we only mvestlga.te the case when the fanctional is B (u°,

and the finite element space is V;.(uo, us) (see § 3) The other eases may be dig0taoo
gimilarly.

In this seciton, we suppose that W (F) satisfies (I) —'(IV) . Define
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P. 1=.{ (u, u,,) € V;.(uo, u1) | (u,., ) is a oritical point of & in V;,(uo, )},

. - r a’l‘ (uln uh) = }
P2 {(uh’ uh) E Vh(uo’ ul) l(ol &, ;)’35)([ =1, (det a(yiy 0..7 §) (01, 02, f) 0 ’A

, : P=P 21U Ps..
or fixed (uf, ub) € Va(tto, us) \P there is a 40, such that

or* (ug, wy)
d°tm>d>0 V(@ 05 &) €QX [, 1.

7 the hypothesses. for W (F), we have for any (3, v}) € 75(0, 0)
‘—(E(“h'*'t’vm “h'i‘t‘v i) — E(’U'm Uh))

t->

QW('LJ;.. ) 1 2 aW(uhv uh) 1 1 2
9_———3<vah) VD’U dg dg D*—m—vvdada

] ow gu,;, i) | vl do* dg2 - ja (70. o)+ fi -o})d6* d6*

-I (g -vh+g 1.0}) do,

here A:B=1r(ABT), V4, BE M3; Vp is the gra.dlent operator of functional space
+ Q. Denote the right hand side of above equality by £ (uf, uz; v, v}). We have

-+

e ditE (up+208, wr+iv}) |ty =L (uf +005, u,l,+tofvg; v, @}). G
- For fixed (u}, wi)€ V,,(uo, ul) \P, ..? (u,,, uly 0l ) is a continuous lmea,r
notion fo (V3, V1) €74(0, 0). Now we are going to find a minimum point of Zin
. @R, v 1) €V (0, 0)”'”2'1,2+|’0n| L2
his is equivalent to finding a saddle point for
L(o, o}, M) =2 (ud, uls 02, vb) +A(|09| 20t |0}]22—1) | (4.2)
o. finding (v}, v}) €¥.(0, 0), AE R, such that
Lo}, o @) <SL(od, vd A)<L(ud, o}, &), V(ul, w}) EVA(0, 0), Va€ R, (4.3)
Suppose {(v), v1), Ay is a saddle point of I, then

mj Vool Vouldd: do?+ L(ul, uls wl, 0) =0, Yal€ 79, 4.9
22 j Voul: Voul df do?+ L (ud, ul; 0, wl) =0, Vel €72, (4.5)
I’U l12+l’l]hllo—-1 (4.6)

T4 is easy o show that (4.4)—(4.6) have a unique solution such that A=0,
1d A>0 il L, wr; ¢, «)#0. Lot wi=2), wi=v} in (4.4), (4.5) respeotively.
hen adding (4.4) to (4.5), by (4.6) we have

| — 2 L, ks o}, ob),
Suppose ((¥3, 1), A) is a solution of (4.4)—(4.6), and define

pI=2Av2, Vi=2Av},
Then, (v, v}) € V,(0, 0) satisfies
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={, Vot VouRas a0~ 2, u a2, 0), Vi€ 7}
@.7
-Jﬂ Vool Vowldf'do?= L, ul; 0, wh), Vi€ 72,
On the other hand, suppose (¥), v) € 7% x 7? is a solution of (4.7) with
LU, ur; +, ) #0.
Define
M=~ L 2l ul; of, of), 10,

”’?='21T—0 vy = ;h .
Then ((of, v}), A) is a solution of (4.4)—(4.6) and A>0,

The above argument proves the following theorem.

Theorem 4.1. The stespest descent direction and the descent speed of
functional E at (ul, ut) € V', (g, us)\ P cam be characterized by the solution of (4.

The steepesi descent direction is il 2(3’”" ;,:I)l 5 51 - the descent speed is ([9}i

l'_v-]]i I %,.2) y j-- e,
E(’“ +t'vhy uh"‘t"h}) fico=— ({98124 |222]1).
Considering the following system
- j v, @) d“ @ Vgl d6* 462 — z(ug(t), w(h); wl, 0),
_Ja Ve dﬂ;t@ Vawidd a0 =L@ (1), wu(8); 0, wp), G
(w2(0), ui(0)) = (i, w).

(4.8) is an autonomous system with finite number (the dimension of (75
variables, From the above disoussien and the theory of ordinary differen
equations, it follows that for any

(u1?7 Uzl;) € 1_71-(“0, ’M1)\P ’ . )
there are #,<0<f, such that there is a unique function (u(#), ul(f)) defined
(b1, %) satisfying (4.8). In addition, (uf(8), wh(¥)=(u), ul), —oco<i<+oo, if
u,,) € P4, i. o. P; consigts of singular points of the system. For :

(ub, ub) € Val(uo, u)\ P,

(4.8) implies that B (ul(£), ui(#)) is a strictly decreasing function of £, Let (¢,
be the maximum interval on which (w}(#), 4 (#)) can be defined. Then it foll
from the theory of ordinary differential equations that
() (2), wr(¥))— a point in Py, as t-—>t or § >4y
or (uy (t), u; (£))—> a pointiin Py, as t—1; o § —> ¢,
and for the later case, t;= —oo, iy=+oco. It ig eagy to prove that there is an absorb
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sighborhood corresponding te each Jsola.ted local minimum point, i. e. the solution
'.(4.8) with ifs initial pomt in thig nelghborhood convergents to the corresponding

cal minimum pomt S : .

‘We are DOW gomg 1o define an iterative method for ealculating the erifical.
yint of F. |

For fixed zo= (uf), u}) € V,,(uo, ui)\P let

Y (@0) = (Vi (20), 3 (o))

y the solution of (4 7) with initial point . Denote 'v,,-— v (o), vi=vi(azo), then

E(“h+tv2), u} +iv}) lt—o

_—f Vo ul: Vool 46 d6? —I Vaok: Vool dd'ds. (4.9)
.9) implies that E(u,,,+tv,., u,.+w,,) decreases af ¢ = ~0 agt mcreases On the other
v.nd as ¢ inoreages, either (i) there is a >0, suoh that

ar* (ud -+, u,.+t4v;.)
~ det 2(0,0. ) >0, a. e, mQx[ =51 (4.10)

)1onger holds for t>1, i. o, (ul+ivd, ui+tvl)eD, if £>£, while (4. 10) holds for
< .
or (ii) (4.10) holds for all £>0. But in this case -
lm (Jug+todlaa-t [ud+0k]1,8) = +oo.

By Hypothesis (III) and (2.18), it is easy th show there is a £,>0, such that

1 (u;.+w,., u;.+tm)€l71.(0 O\P, Vi€ [0, t],

_E(u,.+to'vh, u,.+to'v;.) B(u, u,.)
amoe there is a #*>0, such that
LR+, vi+i*vk; o3, v1) =0,

o define ' : A '
t1(@o) ==min{t}0] (w103, i +tvi; 05, vi) =0},

For the case (1), t1(wo) is defined as above provided that

| (0] L (ug-+108, ub+iok; vY o) =0} % .
herwise, define ‘ | _ A
| RACHETS

" Note also that

‘ _ . . : 611' (’M};""‘t"vln uh+tlv’1‘)
4 z0) ~ess Inf deb=——7rg =y

is a continuous funotion of ¢ and d(0, ze) >0. Define #,(z) the number satisfying
d(t, (I'Q)>O, VtE [O, tg(wo)],
‘z(tﬂ(%) ’ 9.70) =0,
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For fixed constants 0 <n<1, M <0, define
t(@o) =min {M, nti(x0), nta(z)}, . (4.11)
@1=0+4 (20)Y (20). (4.12)
It is easy %o verify that z; € P provided that o€ P. Thus (4.12) defines a map
B: Vi(ue u)\P —> Valuo 1) \P.
(4.12) can also be writen as ;= B(w,).
" Define on 7, (1o, u1) \P a sequenoce z, by
= B(@,-1) = B"(xo), n=1, 2, ' . (4.
From the definitlon of the map B, it follows easﬂy tha,t
E(z,) <BE(@p-1), n=1, 2,
i. e. for all € P (uo, us) \ P, : :
, E(B(2)) <E’(B"'1(w)), n>1 “.
E  is oontinuous on ¥ ,(uo, 1) \Pa. We also have the following lemma.
 Lemma 8.1, The function t(z) defined by (4.11)4s lower sems--continuous.
. Lemma 4.2. Let E be the functional defined by (2.8) and B be the map defw
by (4.12), then HoB(x) is upper semi-contimucus.
Theorem 4.2. For any fived '
wo=(u, u3) € V(uo, u)\ P,
the limit poinis of the sequence {z.} dofined by (4. 13) are all in P. i. e,
Tf\{s} <P,

rpq-oof Suppose that
= {wd, +wi} € {m\ o}
but € P. Then there is a snbsequenoe {@n, }» @n,—>x, and 3€ V3 (uo, u1) \P. H
B(g) is well defined and B(z) +w, E(B(s)) <H(s) by the definition of B,
Let
- E@- — E(B(z)) =3.
By the continuity of K, there is a neighborhood U, of 2 z, a.nd a nelghbor
,UB(") of B(z), , )
U= {y| | BG) ~B(o) | <3/2},
Uowy={y| | E(w) —B(B(2)) | <3/2}.
It is obvious that U,CUpw=¢. On the other hand, from the upper s
continuity of EeB, it follows that there is a neighborhood ¥, of %, such that
E-B(y) <EoB(w) +5/2, VyG Ve
- Let W=V 4NU,, then e
EeB(g/)< mf E(z) VyEW... [T

From gz, —> =z, there is an N >0, a;,.‘E W.af fz,>N We may assume that 1
Thus from «,, & W, and (4.15) we have - ‘

EoB(a;,.,)<E(w,.,) N ¢ 1))
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But a,,=B"""(a,,), na—ny>1. Hence L
: (o) <HoB(ay). ' .17
4.17) ontmdlots (4.16). This proves the theorem.
-Theorem 4.8." For fized
_ NS 7» (uo, 'M:L) \P »
{@.}is defined by (4.13). Suppose .
o€ {z.}\ {2}
is an dsolated oritieal point of H. If € Ps, and o is a local miénimum point of B, then
{ﬁv,.}\{a;,,} {z}, i. 0, B4 >w ASH—> O,

Proof Let U be an open neighbohood of » such that » is the unique oritical
pomt on U, the ologure of U. E/(y) denotes the differential operator of K at y. Denote
20 =dist {w, U}, U= (Va(uo, us) \P)\U.

Leb Uo ‘be another nelghborhood of x, such that s € UoCUoCUCU and
NE@<d/M, Ve, - (&.18)
We may assume U, {y| dlst{a;, y} <6} On the other hand, there is an & (Uo) <0
maon tha.t : .
E(y)>(E(w)+é’(Uo), ‘v’yG’U\Uo. S (4.19)
Suppose the subsequence {a;,,,} converges to #. Hence : '
. Bl E@,
E' (@) —> 0.
30 there is an N >0, such that » S o
A H (mm) <H (as) +&Wy)- (4.20)
ind-"@,, €Uy, a8 =N, We: may assume N=1, Thus, by ine definition of B and
4.18), we conolude. : B

" Dpyss Ty H = "B (mﬂx) et " <‘M “ B (a"m) u <3.
E[enoe a;,.,,,,EU But (4.20) implies '
B (@) < B (a;,.,) <E(z)+& (Uo) - ‘
So it follows from (4.19) that a,,,EU,. Similar arguments will show that
wE U, for all n=ny. But o ,i‘sv‘th'e only point of p in Uo. By Theorem 4.2, we conclude
@, —szagn—> oo,
.0 e ‘

{z} = {zu}\{ma}.
Corollary. Let & be an isolated critical point of B in Va(uo, u1), and be a local

ningmum point. Suppose © € Py. Then, there ewists an open set Uy én Vy(uo, uy), such
hat, for any y€U,, :

B*(y)—> x, as n—> oo,

#.The anthor is in acknowledgement of professor Ying I;. A.' sguiding.
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Piroof The conclusion follows from the proof of Theorem 4.3.
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