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SOME NEW CLASSES OF ALMOST
PERIODIC FUNCTIONS

C.J.F. Upton*

Abstract

In this paper classes of almost periodic funictions are formed which lie between those
established by W. Stepanoff and by H. Burkill.

Ihtroduction :

In this paper olasses of almogt penodlo functions are formed which lie be’aween
the classes of almost periodic functions of Stepan off and Burkill ™%, and then‘
properbies are established. The Denjoy mtegrals of these funotions form sub—classes
of the ola.sses of the ¢?~almos} periodio funotlons defined in [12], to which paper the
present paper forms a sequel. 5

Defmltlons and N otatlons

We consider measurable complex valued functions which are defined (at leas‘b
almost OVBryWhere) on the real line, If f is suoh a funotion we define the functions

P@ =@ r@ @

h@ =@ | Fe+DE=hF 0+h) P @), @

for 0<h<1, whenever the integrals exist in the (special) Denjoy sense. Unless:

otherwise indicated, all integrals used throughout the paper will be assumed to b",—‘;

Den joy integrals in the special sense.
"The class V? (1<<p<<oo) ig defined in [8]; the class V= in [12]. U ap, S?ap and

V* ap functions (1<Xp< o) are defined in [1] and [9], V= ap and ¢* ap funetlonﬂ

* (I<p<<©) in [12} and Dap functions in [3].
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The De~Norm

‘We define the D?-norm as follows. For 1<<p<Coo,
Iflor=sup sup {2 D" swasis}”,
where the supremum is taken firstly over all partitions
» o a;=mo<:a1<-~<¢>;,=a:+1
of the interval (v, #+1) and then over all z. It follows from the definitions that
|f1o»=sup sup {X | F () ~F (1) l”}l”’=sgp VolF; @ a+1)=|Fl4  C

where F is given by (1), V,(¥; @, v+1) is the Wiener generalized p-th variabic
of F over the interval (z, z+1) ®9, and ||+ | is the ¢*~norm &2, '
For p=o0, |f|p- is defined to be
sup
. 0<a<0
This norm has the same form as the D-norm defined in [3], and differs from it on

in that the latter uses a general Denjoy intergral. It follows again from &
definitions that '

(D) j:”' f(z) d l

(Dj r'” ) dt
S y<y+hac+l 2 f< |
=gup sup (F(y+h) —F(y) I

& o<y<y+h<z+l

=gup osc. (F; o, a+1)=|F|,-. ' (

111 pr=sDp  SUD

It is shown in Theorem 1 that |:|p=|-[s. From the behaviour of [«|,
then follows, using (3) and (4), that, as p inoreases from 1 to oo, | «|p, deoreas
from |- |s to |+ |-

It should be noted that the customary omission of the index when

p=1(e. g |-lao=1-1s
vannot be followed for the D*-norm as | +[p and |« | denote different norms,

Theorem 1. For any (measurable) function f, |fo=|fls.

Proof If both | f|p: and |f|s are infinite, there is nothing o prove.

Suppose, then, that |f|s is finite and let F be defined by (1). Since f is (locall:
Lebesgue integrable and its Lebesgue and Denjoy integrals are consequently eque
F ig a Lebesgue integral of f and, by (3),

flp=sup ¥ (F; 2, o) =sup [ |72 |ds= Il

Suppose, on the other hand, that |f|p: is finite, Then |7 |, is finite by (8) ar .
- F therefore has bounded variation on every finite interval. Since F is also
continuous, being a Denjoy integral, F’ is (locally) Lebesgue integrable (see e. g.



202 , CHIN. ANN. OF MATH. . Vol. 10 Ser. B

[7, page 590]). Now f=F' almost everywhere. Henoe f is also Lebesgue integrable
as well ag Denjoy integrable, and the Lebesgue and Denjoy integrals of f must be
equal. The conclusion then follows as before, '

If |f|¢ is finite, where | - |¢ denotes any of the norms used in this paper; then
f is said to be G‘—bown,ded. If '

If (o) ~f @) a0

as h—>0, then f is said %0 be G-continuous. If there exists a function f such that
17+ —Fflle—>0 as n—>oo, then the sequence (f,) is G—comver gent. Clearly f is D*~bounded
(respectively D?-ccontinuous) if and only if F is ¢?~bounded (respeotively -
continuous). Also the sequence (f,) is D?~convergent if and only if the sequence
(F.) is ¢*~convergent, where .

Fu@) = f@as.

’ The Dr-Space-

Since |f—g[p,=0 if and only if f and g are equal almost everywhere, we can
fo}'m a funotion space, the D?—space, whose elements are sets of measurable functions
which differ ab most on sebs of zero measure and which are D?P-bounded. The norm
fo the spaoce ig the Df-norm.

The D?-space is easily seen to be closed. For if (f,) is a sequence of D*~bounded
functions and f is such that |f,—f]p—>0 as n—>oco,. then f is measurable and the
inequality - ‘

o oI ~folort folon
shows that f is D*~bounded.

The D*-spaoce is also complete. For the analogously formed S—spaoe is completefm ;
and the two spaces are identical, When p>>1, however, ib is proved in Theorem 4,
Qorollary, that the Dfspace is incomplete.

Dr—=Almost Periodic Functions

For 1<p<oo, a Denjoy integrable funotion f is said o ba D?-almost periodie
(D%ap) if its Danjoy integral is ¥'? and if, for every ¢>0, the sat {#} such that
Hf (@+7) —f (@) |pr<e '
is relatively dense.
- The classes of D'ap functions and Sap functions are identical. For [«]p=1].[s
by Theorsm 1, while the olass V*, sinoe it is simply the olags of functions which are
locally absolubely continuous, contains all integrals of Sap funotions.
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As pinoreases, the class of Dfap functions eitpands from the class of Sap
funoctions to the class of D ap functions, and the latber is a subeclass of the class of.
Dap functions. Since the definitions of D~ap and Dap funotions differ only in the

nature of the Denjoy integrals involved, it can be seen that the properties of Dap

funotions which are established in [3] are also properties of D= ap funections.
- Theorem 2. A function és Dfap if and only if its Denjoy imtegral és ¢?ap.

Proof The proof is immediate from (3), (4) and the definitions.

Two observations may be made, Firstly as a consequence of Theorem 2, max
of the properties of D?ap funotions can be established immediately from analogo
properties of ¢?ap funotions. Secondly, the subolass of the class of ¢®ap funotio
which consists of Denjoy integrals of Dfap funclions isa propsr subolass since
¢*ap funcbion need not be differentiable anywhere,

Lemma 1. If f is Dfap, then f is DP—continuous and D”—bowwled

Proof Theorem 2 and [12, Lemma 7] show, in turn, that F is ¢fap, ¢

! continuous and ¢?~bounded, where F is defined by (1). The lemma then follo

immediately from (3) and (4).
Lemma 2. If fand g are D”ap, so are f+ g and cf wkerre ¢ s any compl

‘eonstant.

Proof The proof follows 1mmed1ately from Theorem 2 and [12, Lemma 8]

Lemma 8. If f is D?~continuous and fy és defined by (2), then
Ifa—Fflps — 0 as h—0,

Proof For 0<h<1, lob '

Fy (w) = h‘ij: F (z+1)dt,

. where F ig defined by (1). Then, by simple rearrangements of terms

s —Flo=| [ fr@as— [ pras |
= | Fr(z) —Fu(0) —F (@) |go= | Fr— F | o
Since, by hypothesig, (3). and (4), F is ¢*—continuous, the right-hand side tends
0 with & by [12, Lemma 4]. The proof is thus complete.
Since || +|pr=] * |s, the pa.rticular case when p=1 was established in [5].
Theorem 3. Let (f.) be a sequence of D? ap fwnotfwns which DP-conwerges to f

n—>o00, Then f és D%ap.
Proof The theorem may be proved directly following a standard a.rgument f
almost periodio funoctions. Alternatively, we may note that if

Fo(@) = L fo()dé and F(z)= j F@)ds,

then (F,) is a sequenoé of ¢?ap funotions which ¢?~converges to F. Since F is ¢?ap
by [12; Theorem 4], it follows from Theorem 2 that f is D*ap.
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The Drap—-Space

The D?ap Space is the space whose elements are sets of D?ap functions which are
squal almost everywhere. Its norm ig the D*~norm. If is a subspace of the D?—space
and Theorem 3 shows that it is closed. The Dap space is also complete since the space
of Sap functions is complete ', and the two spaoces are identical.

Theorem 4. For p>1, the D*ap-space is incomplete. - ,

Proof We begin by considering any ¢®ap function f. For anypositive integer
n, let

9a(@) =n{f(@+n) —f (@)},
G (@) =jo g@®)d and fu(z)—n :’" Flo+)dt,

Then ¢, is V?ap; by [12, Lemma 9], and it is therefore D*ap. Furtherniore
192 =gl o= 1Ga— Gl o< [G— Floot | f — Gl -
Now it is easily shown that
. G,,(a;) =fa (a;) —fn(‘)) .
I'herefore
o 16 —Floo=1fa—Flss _

wnd tends 40 zero as n—>co by [12, Theorem 3]. Hence (¢,) is a Uauchy sequence of
Dfap functions, ‘

Suppose that the D?ap-space is complete. Then there exists 'a Dfap function g
mech that [ g.—g]ps—>0 as n—>co, Hence |F,—G|4—>0 as n—>co, where

G(2) =jo () ds.
Jince
If =G le<If —Gulsst 16— Flss
ind both terms on the right-hand gide tend fo zero ag n—>o0, it follows tha$
1f-Gle=0
nd, therefore, that f and G differ only by a constant. Furthermore, since G is
lifferentiable almost everywhere, it follows that the same must also be true of f.
That this conolusion is false can be seen by putting

(@) == 67"/1sin ¢’s,
»=0

vhere 1<g<p and ¢>1. For f is differentiable nowhere ®, but it is shown in the
iroof of {12, Theorem 12] that f is ¢Pap, as required. It follows that the Dfap space
is incomplete.
Corollary. For p>1, the D'—space is imcomplete. :
Proof We observe that the sequence (g,) defined in the proof of Theorem 4 is a
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Cauchy sequence of D?~bounded functions. If it is then assumed that a D?~bounded
function g exists such that |g,—g|p-—>0 as n—>oo, the argument of Theorem 4 can be
used to show that this assumption leads to a contradiotion. The D?-spaoce is therefors
incomplete.

Lemma 4. If f is D ap, then f is V?ap, where fj bs defined by (2).

Proof Let F be defined by (1). Then F is ¢*ap by Theorem 2, and

- F(z+h) —F (o)
is V* ap by [12, Lemma 9]. That £ is ¥ ?ap then follows at once from (2).

Theorem 5. The D?ap space is identical to the closure with respect to the D*—noi
of the space of finite trigonometric polynomials.

Proof Let A be the space of finite trigonometrio polynomlals and let Cp.i.
denote its closure with respeot to the DP—norm.

Let f€ OD,{A} Then there exists a sequence (f,) of ﬁmte trigonomet:
poynomials such that |f.—f|ps—>0 as n—>co. But each f, is Uap and, therefore, Da
Henoe f is D?ap by Theorem 3.

Conversely, let f be Dfap and let 8>0 be ohosen arbltrarﬂy Slnce f
Dr—continuous by Lemma, 1, it follows from Lemma 3 that we oan ohoose >0 su
that

Ifs—=Floe<e/2,
where f is defined by (2). Now f; is Uap by Lemma 4. Hence there exmh
trigonometric polynomial s such that
| Ifa—slo<s/2.
Since | +|pe<<] * [z and |f —s|os<<}f —Falps+ [ f»—s|ps it follows that
If—slp.-<s. :
Hence f€ Op.{4} and the proof is complete.

Fourier Serieg

If f is D?ap it is necessarily D ap and, therefore, Dap. Hence, as is shown
(8], the mean value M{f(2)e~"**} exists for all real A, the set of values of A f
which this mean value is non-zero is countable and f generates a unique Fouri
series

; wlaﬁ.l.
The (R, k). summability of this Fourier series has been discussed byBurkill®
A form of strong summability is also possible and this is established in the followi
theorem.
Theorem 6. Let f be D’ap. Then there ewists a sequence of trigonometrio
polynomials which D?~comverges to f and which formally converges to the Fourier serdes
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Let T—>co. Then |50(T, 1) —ao (T) |—}O sinoe f is D*ap and |f|p- is therefore
finite by Lemma 1. Also (T, 1)—>bo(1) and ao(T)—> ae. Hence bo(1) =a, and the
proof of the theorem is complete.

Integrals and Derivatives

Theorem 7. If fis D?ap and F is D ~bounded, where F is defined by (1), ¢
F is Viap.
Proof We observe that, by [12, Lemma 5],

IPlo<|Zlo+| [ F @ at] =171+ 121

Now F is D=-bounded by hypothesis and f is D=-bounded since it is D~ap. Heno
is uniformly bounded. Since ¥ is ¢* ap by Theorom 2 and all bounded ¢
functions are V?ap ({12, Theorem 10]), the proof ig complete.

Theorem 8. Let f be D%apand let f' exist (finitely) everywhere and be .
contimuous. Then f' is also D%ap.

Proof Since f’ exists finitely everywhere, it is Denjoy integrable and

| HOR OB IFLOL
For >0, put 5

@ = [} @ dt= @R —F @Y.

Then g, is D?ap since i} is the difference between two Dfap functions. Furthermo
sinoe f’ is D?-continuous, Lemma 3 shows that g, D*—converges to f’ as ~—>0. Her
f' is D?ap by Theorem 3,

Products

That the product of two Dfap functions is not necessarily D?ap can be seen fr(
the function f which hag period 1 and for which f(#) =272 on (0, 1]. For f
clearly Sap and is thus D?ap for any p>1. But f* is not Lebesgue integrable an
since it is one—signed, it cannot be Denjoy integrable. Hence f? is not Dfap. In t
following theorem we consider sufficient conditions for a product fg to be D®a
given that f is Dfap.

Theorem 9. (i) Let f be D'ap and let g be Uap. Then the product fg és D*ap.

(i) Let f be DPap and let g be Udp and locally absolutely continuous. Then sufficie
condition s for the product fg to be D?ap are that

(a) ¢ is SP~bounded when 1<p< oo,

and (b) ¢ is U-bounded when p=oo.
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Proof Since, by Lemma 4, fhjs Uap, where f, is defined by (2), the product
.9 is Uap and, henoe, it is Dfap. In order 0 prove that fg is also Dfap, it follows
‘om Theorem 3 that it will suffice to prove that
1 (f»—F)9lpo—>0 as h—0.
Let p=1. Then, sinoe |+ |p=|+|s by Theorem 1,

l <f,.—f>gup-=sup ORI ORI

<lglosup [ 11,0) ~£ ) 1y
= Igholfa—Flo

'ow llg]y is finite by hypothesis and, since f is D'-continuous by Lemma 1, |f3—
| p+—0 as A—0 by Lemma 3. ‘Hence the left-hand side tends to 0 with 4 and the

roof of (i) is complete.
Let p>1. For F defined by (1), let

Fs(z) = j () ds.

et ¢’ be locally Lebesgue mtegra.ble and: let (a, b) be any finite interval. Then,
y using integration by parts and Fubini’s Theorem, -

B[ @@= F@+m ~F ©)1gw)dy
= UF:@+R) ~F: )} @)1
S REAGOES AN O

~9® | FOa-g@ | F@a
~Lowa [ Fwa
[ F@+H9® ~F @+Hg@)]at
—J: dé IZF(yﬂ)g’(y) dy. )

Marthermore, by applying the theorem on integration by partsfor Denjoy integrals
7, page 711]),

[ rwswa=reews - Forwa. ®

For 1<p<oo, lot o be chosen arbitrarily and let m: &= we<wy <+ <zy=z+1 be
ny partition of the interval (z, #+1). Then

{slf o T | e
- {;]iri [L117 ) ~F @)1 |
~ [F(wiat+1t) —F (@) ] g (wi-1) }dé
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9}1/9 | : (10)
. B P19 -
<{Z!h‘1 j (P (@t ) ~F (0)1~ [F (@iat) —F(a;._i)]}g(:m)dtl }

—h-ijz dt J [F(y+1) —F @)1y @)dy

+{2 ][ 17 st - F 01 9@ ~ 91t}
He irwro-roloa [ v 1w ]} an
< Ilyllu{§h-1 j: |[F (@+8) — F ()] = [F (@-1+8) — F (1)1 |? dt}w
4z 1P - P @) 1 l9@) gt e
- firery-roy paS[] l¢@ lrw@-adr"
| <lglo{i* [V, (v+8) = F @4); o<y<a+1)rat b

+sup | F (y+3) - F(y) vllu[Vp(y; o o+1) #{K+1 4O I"dy}m]
<lglvgup 1 y+1) —F @) leo+{lgle+19ls} sup | F (y+8) ~F @) o.

In the above argument (10) follows from (7) and (8) in which @==,_4 and %
and (11) and (12) follow from applications of Minkowski’s and H¢lder’sinequal
respeotively. If the supremum ig taken, firstly over all partitions w of (s, 2
* and then over all #, (9) may be replaced by | (fa—5)glps.
Now |¢lv and | ¢'|s» are finite by hypothesis and g}, is also finite since
1gle<lgls=lgls<Ig'ls-

Furthermore, F is ¢*ap by Theorem 2 and therefore it is both ¢?—continuous
U-continuous ([12, Lemmas 6 and 7]). Henoe, as ~—0, the right-hand side of
tends to zero and || (fa—f)gfp-—0.

This completes the proof of (ii) (a).

Finally, for p=oo, let v and k¥ (0<k<1) be chosen arbitrarily. Then by pu
a=z and b=z+Fk in (7) and (8) we see that

| ”:ﬂ{fn@ ~f(y>}y(y)dy|
B hﬂlﬁ{[[l"(““)—F(u)].q(u)];ﬂ |
—K“‘ [F (y+1) —_F(y')w(y)dy} dtl

< (217 () ~F W) lollo bt

+h_1.[:"F W+) ~F@olglods -
< gup F(y-+1) ~F W) fo{2lghu+ 91} )
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If the supremum is taken over all x and all permissible &, then the leff side of
14) may be replaced by | (f»—f)g|p-. Since g and ¢’ are U-bounded by hypothesig
nd F, as.-was observed previously, is U-continuous, it follows that

| (fs—F) gllp-—0 as h—>0.

This completes the proof of (ii) (b) and of the whole theorem.,

Corollary. Let f be D*ap. Then fg és DPap pfromded

(i) g is Shyap when p bs finite;

(ii) g s Uwap when p=-oo. (For definitions of lS"(nap and Uga, ap functlwns so8
1p.

Proof Since an S{’l)ap (rvespectively Uqyap) function is Uap and has an S?-
ounded (respectively U-bounded) derivative, the conditions of Theorem 9 are
atisfied and the conolusions therefore follow immediately. 4

In [3], Eurkill proved that fg is Dap when f is Dap, g is Uap and ¢ is
mniformly continuous. As these conditions on ¢ are shown in [13, Theorem 11] to
19 necessary and sufficient for ¢ to be Un)ap, Burkill’s argument applied to D ap
unobions provides an alternative proof to part (ii) of the above corollary.

Other Properties

Theorem 10. If f is $™ap and D ap, then it is Uap. ’
Proof By Lemma 1 and Lemma 3, |f,—f[»—0 as 2—0, where f; is defined by
2). Furthenmore, by [12, Theorem 3],
Ifa—Fls-—0
8 h-——)O Smce it can be seon from (6) that
Ifa—Flo<Ifs~Fle-+1fs~Flom
b follows that |fi—fly—0 as ~—0. But f; is Uap, since it is V=ap by Lemma 4.
'herefore f is Uap.
Corollary. If f is ¢*ap and D~ ap, then 4 is Vap. \
Proof Since f is ¢™ap, the above theorem shows that it is Uap, It is therefore
ounded and, being ¢®ap, it is also V'?ap by [12, Theorem 10].
Theorem 11, For 1<p<g let f be Diap and D*—contiruous. Trhen f is DPap.
Proof Theorem 2 and the definitions show that F' is ¢%p and ¢*~continuous,
‘here F ig defined by (1). Hence [12, Theorem 11] and Theorem 2, again, show, in
arn, that F is ¢?ap and that f is Drap.
Theorem 12, For 1<p<g<r, lot f be D'ap and D*-bounded. Then f és Dp
wut 9t s not necessarily Dap.
Proof Theorem 2 and the defin t ong show that F is ¢'ap and ¢*~bounded,
awhere F is defined by (1). Hence, by [12, Theorem 12}, F is ¢%p and, by Theorem
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2 again, f is D%p.

~ That f is not necessarily D?ap cannot be established by means of the funotlon
which ig used in the proof of [12, Theorem 12] to show that a ¢*~bounded ¢ap
function need not be ¢?ap. For the function used there is differentiablé: nowhere
while the integral of the D'ap function which we need here must be dlﬂ’erentmble

almost everywhere. ,

The following contrary example which establishes the requu'ed result
constructed in three stages. Firstly we state a lemma,

Lemma 8. Lot p=>1, let (x)ilo and (B)qo be two strictly momtomc sequen
each of which decreases to 0, and let f be the fumction defined on [0, o] such ¢,

F(0) =0, f(ox) =0 and f(an,1) =p: for dll i and, on each interval (ou.y, o), the gre
of f s linear. Then

Vs(f; 0, 0‘0)’=2§) Br.
Proof The proof is elementary and is given in [10].

We nexi define a sequence of functions (g,). Let (w)io, be a stric
monotonically decreasing sequence of real numbers with ue=1 and lim %=0. 1

i—>00

values of «; for 4>>0 will be gpecified later. For n=0, 1, 2, .-, let ¢.,(z) =0 wk
#<x0, when =2-"%, 4=0, 1, 2, ---, and when 2™"<s, On cach interval (2"
2", 4=0, 1, 2, --., the graph of g, is formed by placing side by side 2" simi
isosceles triangles each with height 2-"/?y; and base of width 2-*-1,
Then g, is continuous and non—-negative and has the following properties:
0< g.(z) <2~/ and max ¢,(v) =2~ @
g» is absolutely continuous on [8, 1] for every 8>0; @
for 0<z<1,

Y ¢ . e 7 —_ _ .
D ] surts=lim |} 9.3~ 9.2) ~Jizm :2)
| = gn (z) —Hm 272y, =g, (@), -
the Denjoy integral existing as the limit of a sequence of Lebesgue integra
Furthermore, Lemma 5, with ao=2"", shows that

Va(gs 0 1P=V(gs 0, 27)7=2 312 (2u)?=2 3 os. ¢

Since g,(a+2-") =0 for 0<w<2-", it follows from (18) that
V(gu(@) —ga(z+27"); 0, 1)”>V,,(gn(m) —gu(m+27"); 0, 2-7)?

=V (g 0, 2797 =2 . «

o

‘We now fix the values of u; for 50 by defining #;=1/2 and u,—l/q,llﬂ (log rz,)’

for ¢2>2. Then
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Siup=1+1/27+3 ViQogd)», (@0
and this is finite sinco p=>1. Denote it by M/2, say.

The resulting graph of g, on te interval [0, 1] is called an n—gmph, and the
final sbage in our construction isto use these n—graphs and some fideas from [2] to
define a sequenoce of functions (f,) on the real line, To this end we use the letters u,
v to denote integers. :

fo is formed by placing a O-graph on each interval (3v+13v+2) o
- f1 is formed from f, by adding a 1-graph on each unocoupied interval

(w, w+1) within every interval (83, 3%+2.8).
fa is formed from f; by adding a 2-graph on each unoccupied

interval (u, p-+1) within every interval (3% 3%, 3% +2.3%),
fn is formed from f,—; by adding an n—gra,ph on each unoccupied

interval (u, p+1) within every interval (3"*%p+38" 8"1+2.3").,

Then each f, is a continuous periodio function and, for |z <8"™, fu(2) =fur(®) =---
Therefore f(x) =1n1_1)13’ fn(o) is defined for all =, ‘

Now since f— f, consists only of j—gr aphs, where
J=n+1, n+2, n+3, .-,
we see from (—5) that, for all ,
B @)~y | <.
Henoe Ja converges to f uniformly in & as n—>oo and f is Uap. Thus f is ¢™ap.
Furthermore, (16) and (17) show, in turn, thab f’ exists almost everywhere and
that .

t@-[ rwa

for all ». It follows from Theorem (2) that f’is D~ ap.
.. The funotion f’ provides the required contrary example. For it is easily shown
usmg (18) and (20) that

14 (f, @, o-+1) <2 MV,
for all o, so that f is ¢*-bounded and f’ is D*~bounded. Hence, from the first
partof the present theorem, f’ is Dp,

On the other hand the above construction shows that, for any integer n, there
exists an interval (», »+1) in which f is represented by an n—graph. Hence, by
’ (19) and (20),

Vo (f (@) —f(z+2™); v, p+1)=MY?,
It follows that | £ (@) —f(@+2"){»=>M*? and, since n may be chosen arbitrarfly
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large, tl at f is not ¢"~continuous. Henoce f cannot be ¢fap and by Theorem 2, f’
cannot be D?ap.

Remark. When p=1, the function f constructed in the above proof is ¢%p
for ¢>1 and ¢-bounded. But it is not p—continuous and hence cannot be pap. Again,
gince it is Uap, it is also Vap butb it cannot be Vap. It therefore provides a counter

example for part of [12, Theorem 12 and its corollary], where its existence was
agserted without proof. '
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