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ON THE GROWTH OF SOME RANDOM
HYPERDIRICHLET SERIES*

L1v QUAN-SHENG (&) & )"

- Abstract
The paper considers the random L-Dirichlet series

f(s; ) ="§.}1 -Pn (3: U.)) EXP(—-MS)
and the random B-Dirichlet series

92,(8, 0) =3 Pa(o+imy, 0)exp(—Ais),
where {A,} is a sequence of positive numbers tending étrictly monotonically to infinity,
% ER is a fixed real number, and
Po(s, 0)= Z s,.,u,.jsf

a ra.ndom complex polynomial of order mn, W1th {84} denoting a Rademacher sequence and
{an;} a sequence of complex constants. It is shown here that under certain very general
conditions, almost all the random entire functions f(s, @) and . (s, w) have, in every
horizontal strip, the same order, given by

A log A,

p=Ilim sup Tog A=7

where

An— oznax {ansl -
Slmllar results are given if the Rademacher sequence {e.;} is 1eplaced by a steinhaus
segence or a complex normal sequence.

§1. Introduction

Leét (Q, o P) be a probability space, where Q= [0, 1], o is compoged of all
ebesque meagurable sets B and P(H) is the Lebesque measure of H. (iven a
squence of non—negative integeré {m,}is, we denote by {e.;} ={c10, 211" 81m 820
210 ***, 8ame } & Rademachsr seqence and exp(2x46,;) a steinhaus sequence on the
robability space (2, <7, P), namely {s,;} is a sequence of inde—pendent random
ariables taking the values +1 or —1 with the same probability 1/2, and {f.;} is a
squence of independent random variables equidistributed on [0, 1]. Suppose
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moreover {Z,;} (n=1, 2, -, j=0, 1, ---, m,) is a complex normal sequence, i. e., a
gequence of independent standard complex gaussian variables (for the definition see
[2], p- 168). We shall consider the following two types of random series:

f(s, @)= i Py (s, @)exp(—1us) 1.1

and
P05 (5 w) = 21 P, (s+37g, w)exp(—A.s) N 1.2

with P, (s, co). =2"0 &niingS’, OT ;"2"0 oxp (2w, 8,) a,;s! or "io ZiGas’, where {a.} is
= = i= :

sequence of complex congtants, 7,€ R is a fixed real number and the A, are pogiti
numbers tending strietly monotonicly to infinity. After Lepson and Blambert, t
geries (1.1) or (1.2) is called random L-Dirichlet series or random B-Dirich
geries respectively, both of them are called random hyperdirichlet series.

Let

A,= max |a.;]. .
0<ji<mn’ .

‘We shall consider the associated Dirichlet series

{Y}: gA.,.exp(—}\.,.s). @.
In this paper, we suppose always that
Li=Yimguplog n/A,< o<, @a.
"= lim sup mu/ A< oo, .
and that
o¢=limsup(log 4,) /A= —oo. : @.

- For » € Q, the series (1.1) and (1.2) represent a. s. entire funchions (see [1]). "
study the growth property of (1.1) and (1.2) for € Q such that (1.1) and (1.!
represent entire functions, M. Blambert and M. Berland ™ showed that the order
them in each horizontal strip cannot exceed the (R) order of . In [5] R. Parvatha
proved that the order of (1.1) in a certain curvilinear strip (with very complicat
hypotheses) is equal to that of . In this paper we shall study the almost su
growth property of (1.1) and (1.2) and we shall ses that in this case the conclusic
can be improved very much. Our results hers are also generalizabidns of t!
corresponding theorems of Paley and Zygmund™ and Yu Jia-Rong™, where il

case of random Tayolr series or random Dirichlet series was considered,

§2. Three Lemmas

We first generalize the Daley-Zygmund lemma ([4]).
Lemma 2.1, Let EC[0, 1] be any measurable set of points, P(H) >0, and {m,}
$8 @ sequence of non—negative integers. Then we can chooss a number N =N (E), such
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hat for any N'>N we have
N ma a d > 1 P E N’
. ”§, jgocnisni(w) ' =5 ( )“=2N P

* / (ma+1) @.1)

md

nj

i, @2

N . 2d 1PE N’ Mn
[]3 D [ 10>3P@® 3 [Za

vhatever the com; §sx numbers c,; may be.

Proof From the result of Paley and Zygmund™), we ocan choose a number
[ =N (&), such that for any N'>N

N mn N mn
S IZ B (o2 P@ 3 B ol @.9)
n=N 3 a=N ji=0
)n the other hand, from the Schwartz inequality we know that
Y ma ] mn
: Ig;) Oy | < (mat1) onlcnils- _ (2.9)

o we get (2.1). The proof of (2.2) is similar,
Remark 2.1. For the normal sequence {Z,}(n=1, 2, --:, j=0, 1, «--, m,) we

\ave an analogous result, but in this cage the number -%— P(E) in (2.1) or (2.2)

hould be replaced by a constant ¢=c(E)>0. See[6]. (
In addition, we shall use the following two known results, which are due to B.
epson® and M. Blambert and M, Berland™’ respectively. '
Lemma 2.2.% Suppose '

P©) =3 o

M =max |a|.
O<k<n
Then . o
max PO | >y
Lemma 2.8.™1  If the conditions (1.5), (1.6) and (1.7) are satisfied, the Riit

rder of the B-Dirichlet series

min(R", 1),

P (8, @) = 3} Pa(0+imo, @)exp(—=hus)

s given by .
A log A
= hmsup 1o (-Anl)’
rhere
. Pn(s) =2 ll,.js’
nd : 4,= max |ay|.

0<j<mn

§8. The Case of Random L-Dirichlet Series

Neow let us consider the random IL-Dirichlet series



No. 2 Liy, @. S. ON GROWTH OF RANDOM HYPERDIRICHLET SERIES 217

F(s @)= 3 Pu(s, w)exp(—Aus), (3.1)
where ' :
P.(s, w)= 2 8,i@n;s’ OT 2 oxp (2w4 0,,;) an;s’. | (3.2)

Given wEQ if (8.1) represents an entire function, i¥'s Ritt order in a horizontal
gtnp a<<Ims<B (a<B) is defined as

loglogsup |f (o +%, co)]
p=Llim sup (3.

F»—00 -0

In addition, we denote by p*(A*) the Ritt order (lower order) of ¢ in C.

Theorem 1. Suppose the conditions (1.5), (1.6) and (1.7) are satisfied. T?
the entire functions defined by (3.1) have a. s., in every sirip a<<Ims<B(a<p), :
same order, given by .

M log A

log A%
Proof It is well known that the order of f(s) in every horizontal strip can:
exceed p*™, Suppose the theorem were false, there would exist two constants p'<

and oo>0,a horizontal strip a<<Ims<B(a<f8) and a set E(P(E)>0) of w, such il
| 3 Pus, @)exp(—hns) | <oxp oxp(—p'o) N

for o< —09, @€ E and a<Ims<B,by an easy argument of reduotion, Using Lemy
2.1 with '

p=p/=lim sup

Cnj=GnjS’ 6XP(—AsS)
and supposing that the IV in it is equal to 1 without loss of generality (otherwise
consider the series
3P (5,0)exp(—As)
instead of
EP"(S, ®)exp(—2.s)),

we obfain, foro< —oo and a<<Im s<B,

31 L | P [*exp(~200) <2exp(20xp(—p'0) @.
where .
P.(s) =’;i=oa,.,s!.
Consequently '
L 1P.(9) |"exp(~201) <2exp(2exp(~4'0)),
~ or namely '

| Pa(8) | < (2(ma+1))**exp (oM +exp(—p'0)) (.
for o< —0 and a<T<<B(s=0+iv).
Now we use the Lemma 2.2 with
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- s’=a+¢(a+ B;“),

vhere o< —oo—1 and_0<R<min(1, (B—a)/2), and get
A< (2(ma+1))Y2((|o+i(a+ (8—a)/2) | +1) /R)™ exp((c+EB)A
+eoxp(—p'(c—R))). : 8.7

jinece

hm M
" =1lim sup —= IR

N=->00"

7
;iveﬁ 8>>0, we can choose a number ¢,>>0 such that

(2(m. +1))1/2((|CT+’0(“+ (.3‘0‘)/2) l +1)/R)'"”<GXP(—SO‘M) (8.8)
or o< — —o,. Hence '

Aﬂ<9XP(((1—8)0‘+R)M)+eXP( —p' (o — R))) (3.9)
or o< —ogy=min(—oo—1, —0o,) and n>1. Writing
' w (o) =sup A.exp(~no) (8.10)
mnd ‘
M (o) =sup [¢(c+i)], (3.11)

¥e can easily prove that
M(o)<K(e)u(c—L—s) : (3.12)
vhere , _ 4 :
K(g)= g exp(— (L+8)An) <co,
Associating this with (3.9) we get
M(({A—8)o+R+I+8) <K (e)exp exp(~p (¢ —R)), (3.18)

rom which we can easily deduce that p?<p’/(1—¢). Since &>0 is arbitrary, we
rel p¥<<p’. This contradication completes the proof.

§ 4. The Case of Random B-Dirichlet Series

Now let us consider the random B—Diridhlet geries

Pes(s, @) = 3 Palo+imn, @)exp(—as), (4.1)
rhere
Pa(s, 0) = 3} su(w)aws’ or 3 exp (20 6,) . (4.9)
= 7=

*he Ritt order of (4.1) on a horizontal line v=% are defined as

 pi(ps) =limsup loglog | ps, (68 @) |

: oo —0
The function i is also defined by (1.4). We shall prove the following theorem,
Theorem 2. If the condétéons (1.5), (1.6) and (1.7) are satisfied, then, for
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e

each gié:en 1€ R, we hawe

pr(@<,) =p*. a. s. : (4.3).
Proof If the conclusion were false, there would exist two numbers p'>p¥ and
oo>>02 line v=t, and a set B(P(E)>0) of w, such that

g P.(o +é¢o, w)exp(—As) | <expexp(—p'c), (4.4)

for < ~00o, ® € F and s=0 -+t As in the proof of Theorem 1, using Lemma 2.1
wo can geb

2;bn—%_—i-l.?,.(a'+’l}ro)|2exp(—27\.,.0')<2exp(2exp(—p’a-), (4.
for o< ~ao. '
On the other hand, by Lemma 2.3 we ocan -easily prove that the B-Dirich
geries . ' :
_— ivo) ) 2 -

2 g (Pa(otim0)) texp(—2hs) (4.
has the same order as . So from (4.5) we get a ocontradiotion that p’=p’. Tl
completes that proof of Theorem 2, ‘

Arranging all the numbeérs of @ (the set of all rational numbers) as {£,}7, fTc
Theorem 2 we get immediately the following corollary.

» Corollary 4.1. Suppose the condittons (1.5), (1.6) and (1.7) are satisfied. T}
‘we have a. s. V4,€Q

tim sup 10810810 @+t )| _

—a .

Oonsequently the entire functions defined by (4.1) have a. s. in each horizonial st
i fhe- same order (B) as P (in C). |
© Since we say tnat a property holds almost everywhere almost surely

equivalent to say that it holds almost surely almost everywhere, we can also get t

following corollary. |

Corollary 4.2. Under the conditions (1.5), (1.6) and (1.7), the entire functic

" defined by (4.1), have a. s., on almost every horizontrl line, the same order (BR) as

(in C).

§ 5. The Case of Gaussian Hyperdirichlet Series
‘We finally deal with the Gaussian hyperdirichlet series
F(s, @) =3 Pu(s, )exp(—A,s) . 5.

9. (5, @) =2 P,(c+iv0, ©)exp(—Ms), ®.
where ‘

P.(s, ®) =,m§ s’y (5.3)
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Trom J, —P Kahane 8 a.rgument ([2], D- 172 Prop 3), we know that for-almosb a.ll ‘
. there exigh a constant K = K (@) >0, such that

' 'IZMI<K(1%§(m,+1)) (3=0, 1, -, m). B
noe B*=1limsup m,/An<co, it follows that S
IZMI<K110g('nM) a. 8., (5 5)

r sufficiently large m, say n>mn,, and a constant Ky=K;(w) >0, Therefore if we
tppose moreover L= hm sup log n/A.<oo and s TS

{¥}: S A,oxp(—has), S (5.6)

‘here-
A,= max |ay],
0<¢<mn

represents an entu'e funetion of Rith order p’. From the’ Well known expressuon
f Ritt about the Ritt order and the formulae of Valirom about the absecissa of
JNVergenoce of Dirichlet series, we know easily that almost all the functions

3 4, (0)exp( —as), ‘ B
44(0) = max |aZu(@) |,

rhere

Te also entire and have the same order p*. So the order in each horizontal strip of
Imost all the entire functions defined by (5.1) cannot exceed p* and almost all
he functions defined by (5.2) bave the same order as p*. Hence in the same way as
ve do in the proof of Theorem 1 and Theorem 2, we can prove the following resulis:

Theorem 3. Suppose the conditions (1.5), (1.6) and (1.7) are satisfied. Then
he entire functfl}bns'déﬁned by (6.1) have a. s. n each strip a<Ims<B(a<pf), the
ame order, given by p=p’= hmsnp —i“"a—gl%.

Theorem 4. Suppose the conditbons (1.5), (1.6) and (1.7) are satfi.sﬁed. Then,
‘or each given tE€ B, we have a. s. p;(gvn) = p*, where ¢, (s, w) bs defined by (5.2),
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