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FORMAL GROUPS AND LOCAL CLASS
FIELD THEORY"
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Abstract

The purpose of this paper is to prove that every abelian extenison of a local fleld can
be embedded into certain generalized Lubin-Tate extensions. As a consequence of the
embedding theorem, a new proof of local class field theory is given, which looks more
intuitive than Galois cohomology. Also the author getsa necessary and sufficient condition
for a totally ramified extension of degree p to be normal in terms of the coefficients of
its definition equation.

§1. Introduction

‘Suppose K is a local field. To study abelian extensions of K, Lubin and Ta
defined a special kind of abelian extensions of K by using formal group theory o
as Lubin and Tate called if, formal complex multiplication, Hazewinkel gave a ne
proof of local class field theory without Galois cohomology. _

In the present paper we prove that every totally ramified abelian extension «
local field K can be embedded into Lubin-Tate extengions L,,, for certain m if an
only if & lies in the norm from L. Furthermore every abelian extension of K ca
be embedded into certain generalized Lubin-Tate extension. Henceforth we oa
define reciprocity map and calculate the kernel, We get local class field theory in
way different from [2]. More precisely we do not use an “almost reciprocity maj
baged on the snake lemma as used in [2] but we use more formal groups. Also v
get a necessary and sufficient condition for a totally wildly ramified extension -
degree p, the characteristic of the residue field, to be normal, which makes it possib
to distinguish a normal Eisenstein polynomia.l of degree p by its coefficients,

The em'bédding theorem for tamely ramified extensions follows fro
Krasners's lemma. To deal with the wildly totally ramified case we begin wi
extension of degree p. We find first a necessary condition fgir such extension to
normal, then we compute the number of extengions satisfying this condition und
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ome restrictions and of the subextensions of L., ,./K for certain m and we see thab
hese two numbers are equal. Hence this condition ig algo sufficient and every
xtensien verifying this condition can be embedded into Lg,s. Finally we get the -
-eneral embedding theorem from this special case with the help of Galois theory.

§2. Preliminary and Notations

In thig section we collect the notations and the results that will be used in the .
ollowing. The proofs can be found in the standard texts, for example [4, b] (for -
>eal fields) and [1] (for formal groups).

g Nota.tlons for local fields

By a local field we mean a field K with a normahzed exponenina.l valuation

x: K®->Z on it such that K is complete and the residue field is finite. We define
A(K)={z€ K |vg(x) =0}, the ring of integers of K,
U(K) = {z€ K |vx(s) =0}, the group of the units of K,
@x, a uniformizing element of K,
M (K) ={s€ K |vg(s) >0}, the maximal ideal of 4(K),
Un(K)={2€U(K) |m=1 (mod AP},
K=A(K)/#(K),
10 resniue field of K, whlch ig always assumed to be finite, -
=K\0, the invertible elements of K.
.2 Formal groups and Lubm—Ta.te extension

Let K be a local field and E/ K an unramified ex’oensmn Let 6 be the Frobenius:
Thstitution,

Let o g(X) =X+:21 bt

> a power series over A(H), and f(X) be a power series over F satisfying

f(X) —m20, f (XD = g(X),
here w =wx and o, denotes the substitution obfained by aotmg o on the coeﬁimenw'
£ f. Wecall

F(X,Y): f‘l(f(X)-!-f(Y)) |

twisted Lubin ~Tate formal group assooiated to w. When E=K, we smply oall
(X, Y) a Lubin-Tote formal group associated to .

‘We have a homomorph:sm of rings from A(K) to the endomorphism ‘ring of F
‘hich sends a€ A(K) to the power geries [a);=f"1 (af (X)), Itis knowr} thab

[#);=X"4+xX (mod m, degree 2)
and there are elements ME Q such that
- [#1,000 =0,



No. 2 Li, D. L. FORMAL GROUPS AND LOCAL CLASS PIELD THEORY 243

(] O‘m) =An—1. :
Lot Lx,m= K (Am). Then L, is a totally ramified extension of degree ¢™1(g—1) of'
K and is called the m—th Lubin-Tate exiension associated to .
There exists a homomorphism p from the group of units U(K) onto the Galois
group Gal (Lg,m/K) such that
p(u) (A) = ] ()
with kernel
ker p= U (K)=Norm;_, ,,./x(UL, ,..) :
Let G(X, Y) be a twisted Lubin-Tate forma.l group associated to w defin
over an unramified extension K /K with loga,nthm g- Then the roots of the equati
_ [w],(X) =0 ,
define a totally ramified extension L,.,(E) over H. We have
F (X)) € AE) [X].
Suppose that u is a root of [w],(X) =0. Then f-1 (9 (w)) is a root of the equatbis
[®1;(X) =0, Therefore Ly, +HECLg,(H). Similarly we get the opposite inclusic
and henceforth Ly, E = Ly, 1(#). Wecall L,,1(+H) a generalized Lubin-Tate extensic
of K with respeot o E and w. Similarly we define m—th generalized Lubin-Ta
extension of K with respect to A and .
For the proof see [3] or [1]».

§8. Reciprocity Map

In this seotion, we define the reciproocity map for any subextension of
generalized Lubin-Tate extension and prove that it is well-defined, that is, if .
independent of the Lubin-Tate extension used in the definition. We leave th
caleulation of its kernel to the nex? sections.

Let & and oy be uniformizing elements of K. Let L,,,, and Lzy,m be the Lubin
Tate extensions associated to @ and @y respectively. Suppose that E/ K isanun
ramified extension. - ‘ ‘ A

Theorem 1. If there exisés an element bE U (K) such shat

(wb/miob —1) >m,
where o ¢s the Frobenius substitution, then we have L;,,,.(E) Ly, ().
~ Proof Let F (resp. Fy) be a Lubin-Tate formal group associated to w(resp.
and f(resp. f1), thedogarithm of F(resp F,). Then one has
f-mon (XY =g(X) € ACK) [X].
Multiplying this equation by b.one gets
bf — (bw/ab)o,bf (X9) =by(X) € A(E) [X].
Let wg=bw/o b and let F3(X, ¥) be the twisted Lubin-Tate formal group defined



244 : CHIN. ANN. OF MATH. Vol. 10 Se}:. B

A(E) agsociated to mwaand f, the logarithm of F,(X, Y). By Hazewinkel lemma
1(fa(X)) is in A(E) [X] and is an isomomorphism from F, to F. Therefore
me(E) =Lm;'m (E) ..
[F]n(X) =2 . X",
[wal 5 (X) =2 b, X,
o may assume by Lubin-Tate lemma that
a1=b; (mod &™), a;=b,;, 4>>2

b

1ce by the assumption -
mi=m, (mod &™),
Let py(X) = [w:] 1 (X) /X, pa(X) = [w3]7,(X)/X. Leb oy (resp. B1) be a woot of -
(X) (resp. pa(X))). Then
" L1 (B) =H(oy)*
© Lgy,2 (B) =B (By).
10 has S
pala) =0 (mod w™*1),
Ph(a) =(g— 1o (mod &™),
7 Newton method there exists an element o€ Ly, 1 (2) such that
p(e) =0, |
a—A=0 (mod &™A}).
ance one gets
Ly, 1(B) = Lg,, 1 (B)
d can agsume thatb v ,
:7\.1—7\4;'150 (mod W"A?u).
The equations ’ ‘ .
' [#]e(X) =M
[wa) (X)) =M,
fine L,,:(E) and L, 3(E) respectively. One has
[wsl 5 () =M —Ay  (mod &™),
.d therefore
[ws]r (A2) =0 (mod &™),
1 the other hand S
- L wilnGa)=as (modw?).
y if m>2, we can use Newton method again and obtain B8€ L,,2(E) such that
[mwalw (B) =M
B—Ax=0 . (mod ™ Ay).
This shows that Ly, (E) = L, 2 (&) and we may assume that 8=2} and
Aa—A5=0 (mod &™ Ay). '
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P

Continuing this frick one gets
Lasi(B) = Ly s (BD),
Ai—Al=0 (mod @™ 1Ay
for all e<<mi,

Remark. The inverse of the theorem is also true, but we do not need it.

- Theorem 2. ILet w and wy be uniformizing-elements of A(K). Let m be a positive
integer. Then there exists an unramifled extension E/K (depending on m, wy and m)
such that

Loy (B) =Ly, m (B).

Proof It is enough to find out an unramified extension # and 5€ A(H) suc
that v(ewy —wb/a b) >m-+1, where ¢ is the Frobenius substitution, So the theorer
follows from induction and the following Lemma.

Lemmal., Letcbe an element of U(K) such that c=1 (mod «"), n=>0, The
there exists an unramified extension /K and bE A(H) such thas

ce=c¢b/b (mod a"?)
b=1 " (mod &").
Preof First suppose n=0. Let b be a root of the equation
Xa-1=g,
Then K (b) =F is an unramified extension of K and
ob=bt=bc (mod m).

and

Suppose now n>>1 and
c=1+da" (mod &"*%),
Consider the equation
A(X) =X9—X ~d=0.
Any root a of A(X) =0 defines an unramified extension since
W(X)=qX?'—1=~-1 (modw).

One has
ca=act=a+d (modwm).
Let
b=1-tan",
Then

cb=1+a"ca =1+ (a+d)a"=1+az”) (1-+da") =be (mod w"*').

Lot 3 be the maximal unramified extension of K., It is not complete, Let X, t
its completion. ‘

Theorem 3. Let F and Fy be Lubin—Tate formal groups associated to @ and s
respectively. Then F and Fy are isomorphic over the inieger ring A(Z1) of the fldd 2

Proof Letc=wi/mE&U(K). Then by Lemma 1 there exist b,C 2 such that

¢I1b/0 TT bi=1 (mod &™),
é=1 £=1
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b;=1 (mod a™).
The sequence {ﬁ b;} is a Oauchy sequence, Hence there exists a b€ 2y such that
i=1 : o

b=Lim I b
Therefore '
" 6b/ob~1. |
Let f and f; be the logarithm of F and Fj respeotively. Then
F(X) —a%0, f(X) =g(X) € AK)[X],
f1(X) _W_l—io'ffi(xg) =0:1(X) €A(K)[X]T.
Hence )

() -

G*bf(X‘-') bg(X) € A(2y) [X],
i. e., _
Of(X) —aitaub f(X9) =bg(X).
It follows from Hazewinkel lemma, that
i (f (X)) € A(2) [X].
Let Ly, be a Lubin-Tale extensgion of K. We can define the reciprociiy map
Ry K*— Gal(Lg,m2/K) ‘
as follows:
R (@) |5,,,=p@™), Ry(u)|5=1id. for €T (K),
Ru(@) |2.n=1d., Ru(®w)|s=0,
where o is the Frobenius automorphism.,
By Theorem 3, Lg,m 2 =ULg,m 2 for any uniformizing elements x and oy of K.,
Theorem 4. The reciprocity map s independent of the choice of .
Proof Let & be anotner uniformizing element of K. Define

R, K*—> Gal(Leyn 3/ K) =Gal(L,,» 3/ K)

B (6) | 1rom=p1(u™), Bp(w) |3=1d. for u€ U (K),
R, (W1> |zo,m=1d., Rp(w1) [s=0,
where p1(u~?) is defined by
p1(w™) (Ao ) =Frt @ fi(h)).
We have to show that R,=R),.

Let my=meicEU (K). Then by Theorem 3 there exists a unit b in 3y such that
t= (a0)/b and fi*(6f(X )) is an isomorphism from F to #; over ¥;. We may assume
hat Ap=f7*(5f (Am)) since the right hand side is a root of the equation

[ 7 (X)/ (a7 71(X) =0.

We can view R(a) and R;(a), a€ K* as an antomorphism of L, ,Zy=T, 21
keeping K fixed. Then for u€ U (K) we have

by
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B(w) W) =R@) f1*(f () -
=f(f (B(w) (Am)))
=f@f (1 uf a))))
=F1 (0uf ) = FTwfa (F T (uf (M) -
=fi (ufs(An)) = Bi(w) (A ),
whioh implies R(u) = Ri(u) Furthermore
R(ws) (M) =R () « R(¢) (Mn)

— R(w)-R(0) (F T*(bf (um)

=R(@fi*(bf (f~(ef Am))))

=R(m) f 1 (bef (Am))

=fi*((eb)ef Am)) =F T(bf (Am)) =Nine

Rm (0‘5‘1) IL“,m= ld

_ Henoe

'On the other hand
Rm(wl) IE=RM<W)RM<O) |2=0'-

Therefore ’

R (ws) = Rn(wy).

Now suppose L/K is a finite subexbension of L, 2/ K We ocan define tt
reeiprocity map
R;: K*—> Gal(L/K)

by restrietion:

reg.

: &2, Gal (Lg,n2/K)—> Gal(L/K). _

It is independent of the choice of w and m by Theorem 4 and the fact that
' A= [ 7 (M)

and (1] 7 (hm) =[] ([0 # Anse) )

§ 4. Kernel of the Reciprocity Map
(Totally Ramified Case)

Lot Ly m be a Lubin-Tate extension. We already know thal the kernel :

reoiprocity map is

Up+{m>=Norm 5 /K (Ln).
‘We want to find out the kernel of reciprocity map Ry, for totally ramified oxtensic
L/K.

Definition. ILet L/K be a totally ramified abelian extension. We say L/K h
the embedding property of for any w &Ny x(L¥), where m is a uniformizing eleme
of K, there exists a pos@ﬁwe gnteger m such that L Ly, m.

Theorem 5. If L/K s a totally ramified abelian estension having the embedding
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property, then ker Ry=Nrp,z(L*). ~
Proof Let o be a uniformizing element of K such that o€ Ny/x(L*). Then
w € ker By since wE€ ker By, and Ry (w) =R;_, (w) | ;. Let @ be an element of K lying -
in Nix(L*). Then there exists an integer n such that ¢ #~"€ Nyx(L*) and a @
is a uniformizing element of K. Therefore ¢ m~" € ker R, which implies 4 € ker Ry,
This shows
Ni,x(L*) Cker R;.

Suppose @y is & uniformizing element of K lying outside of Ny,z(L*). Then
olearly Lt Ly, . By Theorem 2 there exists an unramified extension E/K such that
LoynB=TLoymE;

we call this field M. It is clear that LM since L& Ly, .. We have
Ry|=Ry.
Let H be the subgroup of Gal (M/K) generated by Ry (ws). The fixed field of H is
Lz, m sinoce it containg Lg,, » and has the same degree. This means
R (m31) = Ry(mwy) | #id.
since LGt Ly, m.

§5. Embedding Theorems I

In this section we prove that every oyolio totally ramified abelian extension
L/K of degree p or of degree d, (d, p) =1, has the embedding property.

Proposition 1. Les L/K be a totally tamely ramified cyclic estension of degres
d, (d, p)=1. Then L Ly, for any uniformizing element w & Np/x(L*) and d| (¢ —1).

Proof Let a€ L be a uniformizing element of L such that N x(«) =w, Then
« satisfies an Eisenstein equation

MX) =X+ a X0 4o 4ay=0,
where ;€ (w) and ag= (—1)%. The different D(L/K) is (a?%) since
r(®)=0"' (mod .#).

v(va—a) =1/d for any vE€Gal(L/K) =G
since v(va—a) =>1/d and

v(1l  (wa—a))=v(# (a)) = (@-1)/d.

Then

Hence
vo=uo (mod o)

for some €U (K)\U1(K).
The mapping
¢: & —>U(K)/Uy(K)
7 —> vaf/a Uy (K)
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is a group homomorphism and is injective for otherwise we have va/aCU,(K) for
e#1, a contradiotion. This implies d= |G| is a divisor of
(¢—1 =|UE)/UL(E)|.

Therefore one can find an element B8E€ A (Ly,1) with v(8) =1/4. Using B instead
of B for some & €U (K) if necessary we may assume v(3—a) >1/d. This means

u(B—a&) >v(va—a) for all vE€E,
Applying Krasner Lemma® one sees ‘

K () €K (8) © Lays.

To study wild ramification we start from the simplest case of a oyolic extensi
of degree p. The idea is counting the nnmber of such extensions by making use
Krasner lemma and different and comparing it with the number of subextengi
0f Lg,m/K of degree p. : .

Let I/K be a totally ramified oyolio extension of degree p. Let L=K (), wh
« i8 a uniformizing element of I satisfying the Eisenstein équation

‘ B(X) =X?+a X+t 1 X +0p=0
where ¢,€ #(K) and
. ay= (= 1)%w= (~1)* Ny/x(a).
The different D(L/K) is generated hy 2'(«) and
v(d (&) =min {v(pa?~Y), v(aa?*?), 4=1, «, p—1},
Suppose G=Gal(L/K) and &, is the last non—trivial ramification group. Then
7€ G and v+#4id., we have '

v(0—7a) =0 (oY) =l_%1—.

Let k= [v(#'(a)], the largest integer less than or equal to v(A'(«)). Let r=4%—F.
If (A (&) = v(@e?~-1), then k=v(a;) and K = (p—1)r-j since
P=I—1 _ o h () = ey (2= @+1)
k-l—-——p— v () 1glfu(as 7o) P .

In this case one sees .
~ v(a) =k for i<jg;

v(a,) >k for j<i<p—1;
v(p)>k.
If o (' (a)) =o(p?2) =0 () + (p—1)/p, then
' v(a) >k for 1<éi<Kp-1,
v(p) =k=(p-Dr. .
Lemma 2. Let L/K be as above and define %, k, 7, § as above,
If BEQ is a root of the equation
XP4by X9 ot by y X + by =0,
where by=(—1)%% =ag and o
a,=b, (mod «***1) for ¢=1, .-, p—1,
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“hen K (&) =K (B).
Proof One hasg

BB =3 (a—b) 'm0 (mod a*ritg).,
Jinoe ‘
h(B) =11 (B—va),
here exists a 7€ G such that :
v(B—7a)=>v(a**B) [p> (k+r+1) /p= (4+1) /p=v(a—7a).
Jenoe a € K (B) by Krasner lemma. But K () and K (8) are extensions of the same
legree, they must be equal. : ‘
Lemma 8. 1) If k<o(p),there exist at most ¢“*(g—1)/(p—1) cyclic totally
amified extensions L/ K of degree p such that w € Nyjx (I*) and
k<v(D(L/K))<k+(p-1)/p.
2) If k=v(p)=0 (mod p— 1), there is no cyclic totally rams fied ewtension L/K
f degree p with -
70<fv(D(L/K)) <k+1.
fk=v(p)=0 (mod p—1) and pEw*~‘a*(mod a**1) for eny u€U(K), there is no
uch estension; if k=v(p)=0 (mod p—1) and p=ulx* (mod a**1) for certain
vEU(K), there are at most ¢* such extensions with w€ Ny, (L¥).
Ptroof We note ﬁrst thab if a— 7o =ud t*1 where % is & unit, then

W (a) H (6—7'a) = —u ~LaH+Xe-D (modra(t+1)(p—1)+1)i (@)
nd : } :
o+ (—~1)*x=0 (mod wa). (5)

"herefore if o (h’ (@)= fv(a,) +(p—4j—1)/p, then we have
B (a) (p—7) ao@i-t= — yp-lot+iXs-1)
= —glgete—i=l (mod oftHIX-1HY)
vhich is equivalent to
. (p—9ra;=(—1)***a* (mod w***) (6)
iy (1), (4) and (5). ‘
1) Let L=K («), where « safisfies
X)) =X?+a X+ ooty X+ (—1)*w=0
rith | o (@) =v((p—g)ae3).
By Lemma 2 there are (mod «**"*1)
g’** choices for a;, 3<j,
g" “choices for a, 4>,
¢ (¢g—1)/(p—1) choices for a;,
~ince a; should sabisy condition (6). Hence there are at most
g(r+1>(.‘-_-1)gr(p—i—1)qr (g . 1) / (P — 1) ;
=gV (g 1)/ (p—1D)=¢"" (gD /(p~1)
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choices for A(X). : _
8) If [o(D(L/K)]=k=v(p), then v(K (@) =v(p)+(p—1)/p= (p—1) G+1)/
p, which forces -v(p) =0 (mod p—1).
If it is the case, then condition (4) and (5) implies that
=-—u*"'%" (mod «**%),
‘We have
¢"ohoices for a;, 1<p—1,
modulo #**"*1, Henoce there are at most ¢"#~1’=g* such extensions by Lemma, 2.
Lemma 4. Suppose that char K =0, v(p) =1. Let m=1l+r+1, where r=
(p—1)]. Then the group U/UU has order pq* or ¢* according as —p=X?*(mod "
has a solution or not.
Proof 8ince every root of unit of degree ¢ —1 is a p-th power, we have
U/U =Us/UU .
Define a mapping
7: Us/Un >Us/Un .

UUm = wWUp.
Then
Sino |Us/URU 5| = |coker | = |ker 7],
ince
(1+7w'u)?=14a* (mod =),

one sees that §<r implies U;\U,y i8 not in ker 5. But U, Cker 7,
For ¢=r we have
(A+a"w)?=1+pru+au®
_ s=14+au(p+a®Vyst)  (mod atrit),
Therefore we have
|ker 7| = |Urs1/Un| =¢" if p+ (@w)?*£0  (mod a**?).
When p+ (#w)?*=0 (mod «***), one has

—1
ker n= u (1+uoar' Z{) Ur+1/Um U Ur+1/Um1
§=

where { is a (p—1) root of unit. Henoe
o [kern| =pg'.
Proposition 2. If char K =0, then every cyclic totally ramified extension Ly
of degree p with € Ny x(L*) can be embedded into Lig,m, where
m=v(p)+[v(p)/(p—D]+1.
Proof 1) If—p=X?*"*(mod «'**), where I=v(p), has no solution,
There exist by Lemma 3 at mosb

S -0/ (p-D = @1/ (p~1)

totally ramified eyolio extensions L/K of degree p.
Let ECLg,,m be the fixed field of the subgroup
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p(U*/Um) Cp(U/Um) =Gal(La,n/K).

Then Gal(E/K)=U/U*Ua, which is a group of type (p, «-+, p). Therefore every
subgroup of U/U?U,, of degree p corresponding to a subfield of degree p, which is
totally ramified and has o a8 a norm. There are (¢'—1)/(p—1) such subgroups
because every such subgroup has (p—1) elements of order p.

Hence there are, in this case, exact (¢'—1)/(p—1) oyolic totally ramified
extensions of degree p and all of them are contained in I, m.

2) If —p=X""(mod «***) has a solution.

There are by Lemma 3 at most

kZL}l g~/ (p-D+g=(~D/(p~-D+g'=(p¢-D/(p—1)

such extensions.

On the other hand Ly, contains (pg'—1)/(p—1) such extensions since U/UU,
is of order pg* by Lemma 4.

Corollary. In case Char K =0, every equation

| B(X) = X4, X046y X + (—1)Pm =0
lefines @ cyclic extension of v (A (&) =w ((p—9 a,a"”“i)‘ and
k=[v((p~fapl=4(mod p—1), and
(p—Pay=—X"" (mod o**)

has & solution én K. :

This corollary is interesting since it makes it possible to judge whether a
)olynomial is normal or not by the knowledge of its coefficients.

To deal with the case of char K =p, we need the following Lemma,

Lemma 5. Let Ly,n be @ Lubin—Tate extension, Then

(D (Liz,m/K)) =m—1/(g—1).
Proof It is easy to check thab
0D L/ K)) = (g~ =1—1/ (g 1),
9(D (Lig,i/ Lgyi-1)) = v(mw) =1.
Lemma 8. Let L be a subewtension of degreee p of Lig,m/K. Then
o(D(L/K)) <m(p—1)/p.

Proof Let @=Gal(Ly,n/K)) and let H be the subgroup of G keeping L fixed.
“hen [G: H]=p. Lot G be the ¢~th ramifieation group of G.Then Gyms= (1) since
[1+4wu] p (Am) =Am+ (8] 5 Am-s) (100d i)

thich implies
p(1+au) ECQym if T<m.
1.0 H,; be the 4~th ramification group of H. Then we have
VH | =164 /p.
since H;=G;{1 H. We have ([4] p. 64 or [5] p. 115)
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'”(D(Lx-m/K)) ,,.-1( ) 2 (IG‘I 1)
On the other hand
'D(D(Lx-m/K)) ='m'_1/ (9—1)
by Lemma 5. Hence

gm-1—

VD e/ ) = s 30 (1 D)

e (A

=
"FG@=D B p

=m/p—1/(¢-1)
- and therefore
2(D(L/K)) =v(D(Layn/K)) —v(D(Ls,m/ L))
<m—1/(g—1) —(m/p—1/(¢—1)) = (p—Lm/p.

Lemma 7. Let K be of characterisiic p. Then U/U,U? has order g™ "2, where
r=[(m—1)/p].

Proof It is easy to see that u € UiU,, if and only if n is of the form
| u=1+aa®+amw?++--+ax? (mod x™).
Hence [U: U,U?] = {Uy: UU%) =g™ "1,

Proposition 8. Let L/K be a cyclic totally ramified extension of degree p, where

p=ohar K. Suppose
v(D(L/K))=(p—~-1)m/p

“and %€ Nyx(I*). Then E<L,, .

Proof Letl=[m(p—1)/p]. Then m=1I+r-+1. There exist by Lemma 3 at most

3 ¢ g1/ (p-D = (@ —1/(p~1)

oyclic totally ramified extensions of degree p with » (D(L/K)) < (p~1)m/p and with
@ E Ny, x(L?). On the other hand there are
(=1 /(p-D=(¢-D/(p-1)
such extensions contained in L,,,, by Lemmas 6 and 7.
Corollary. In case char K=1p, every equation
R(X) = X?+a X? ooty y X+ (—1)?m=0, aE.4&

defines a cyclic extension &f

jay=—X*"'a* (mod =***)
kas a solutéon 3n K, where k=v(a;) and

Lop—g—1 —i—1
v(a,-)-}-———-P; =mm{fu(a‘)+-—————p » }.

Proof It is olear by the proof of the proposition.
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Combining Proposition‘s 2 and 3 we get the following proposition.
Proposition 4. Every cyclic totally ramified extension L/K of degree d, d=p or
(d, p) =1, has the embedding property and we have
-~ ker Ry=Ny,x(I).
Proof It isclear by Propositions 2, 3 and 1.

§6. The Inequalitiés |

In this section we prove the second inequality
[K*: Nye(IM]<[L: K}
for any abelian exfension L/K. On the other hand we prove the first inequality
[K*: Nyx(L*)]=[L: K] | A
for subextensions L/K of generalizéd Lubin-Tate extensions. In the next sectlon
we prove that every abelian extension L/K can be embedded into a genera,llzed

1

Lubin-Tate extension and hence we get the first inequality.
Note first that both inequalities hold in the following cases:
1) L=Lg,,n B, a generalized Lubin-Tale extension, J
2) L/K is eyelic totally ramified extension of degree p or of degree d with.
(d P) =1
Indeed in thege cases we have
ker Rp=DNyx(I*).
Theorem 6. ZLet L/K be any abelian eztension. Then
[K*: Nyx(L)]=[L: K].
Proof We can find out subextensions | A
K=Lcliyc..cL,=1L
such that L1/ L; is ¢yolio of a prime degree, The extensions L;,;/L; fall into three
cases:
1) L1/ L; is unramified,
| 2) Liy1/ Ly is eyoclic totally ramified of degree p,
8) L1/ L, is oyoliototally ramified of degree d with (d, p) =1.
In all cagses we have
[L;: N Lya/ Ly (L:-u)] = [LH-l: Lj].
Hence

[K*: Niuyw(T) 1 <ITLLE: Nipyys,(Lies)]

=1=11 [Lops: L] =(L: K1.

- Proposition 5. ZLet L/K be a subextension of a generalized Lubin—Tate extensior
L.n B/K. Then
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[K*: NL/K(L’)] = [L K] .
Proof Let M =L, ,E. Then we have by Theorem 6
(" Nypn(M®]1<[M: L],

Butb
[K* Nyx(M*)]=[M: K].
Therefore
[M: K]1=[K": Ny;e(M*)]
<LK Noe (L)1 LY Ny (M*)]
< [K*: NL/K(L*)] [M: L],
I. which implieg

[L: K] < [K*: NL/K(L*)] -

COombining this inequality with Theorem 6 one gets

[L: K] =[K*: Nyx(L*)].
Corollary. Suppose Li/K and Ly/K are two cyclic totally ramified ewtension o

! degree p. Let L= Ly« Ly, Then.

Nie(L*) = Npyx (L) N Nix(L3).
Proof Since

[K*: Ny x(L2)]=[K* Nyyx(L3)]=p

i by Proposition 4, we have

[K*: N, x(L:) N Ni,x(LE]] divides p.
It follows that there exists a prime mw &€ Nz, x(L:) N Nr.x(L:). Hence L; and Ly car
be embedded into L, for certain m by Proposition 4, Thereefore
L=In-LyCLg,m.
Applying the proposition to L/K we get
[K*: Np/x(K*)]=p
if Ly Lj. The corollary follows from this and the fact that
Nye (L) CN e (L3) O Niyx(L3).

§7. Embedding Theorem II

In this seobion we prove that every totally ramified abelian extension L/K ocan
be embedded into L,,, for ecrbain m if # is in the norm of I,*, Clasy field theory for
totally ramified cage follows from this embedding theorem and Theorem 5,

If L/K is a totally ramified abelian extension, we can find subexbensions L/K,
¢=1, ---, r, such that Gal(L;,/K) are all oyolio of degree [ for some prime I, and I
is the composition of L, 4=1,:--, r. Furthermore if w € Nz, x (L"), then o€ Ny x (L),
Therefore embedding L into L, is reduced to embedding L.

Lerma 8. Suppose L/K is a cyclic totally ramified estension of degree p*
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condained tn Ly, m. There extsts o cyclics subestension M/K of degree p™** in some Lyg,,
such th.t M>L. ‘

Pa‘cbf Assume u is an element of U(K) such that R(u)€Gal (L/K) has
order p'. Lot n be the smallest infeger such that w?” €U,. Let H be the subgroup of
U/U, such that R{H) has fixed field L. Hence U/H~Gal(L/K ) and  is a generator
of Gal(L/K). Lot H, be a miximum subgroup of H not containing the image of u?"
and let M be fixd field of H;. Then it is easy Vo see that M is that we required.

Theorem 7. If L/K is a totally ramsfied abeléan ewtemsion wéth o€ Ny x(L"),
then I is a subeatenston of L, for some m.

‘Proef Wity o1t Joss of generalily we may assume L/K is cyolic of degree d, a
power of a priwe, If (¢, p) =1, the bheoram is proved already. Suppose d=p". The
conelusion is trus if s=1 (Proposition 4). By induction we may suppose the theorem
is frue for d=p™%, r>1. '

Let Iy be tha subextension of degres p™~*. Then Iy L., for some m;. By
Lemrma 8 thore exists a cyclic extension M /K of degree p” such that LiCM CLy,m,
for (e ain ma.

Let F be the co aposition of L and M,

If L=M, then the proof is finished, o

Suppose L+« M. Then [H: I;] =p® and [E: K]=p". The extension E/K isnot
oyclic since it contains two different cyclic subextensions L and M of degree p".
Therefore Gal(#/K) is of type (p, p") sinoce it has a cyeclic factor group of order p. |
It follows that & contains a subextension N of degree p such that H=L.-N=M-N. I

If we can show that @ € Ny (E*), then w &€ Ny,x(N*) and N Lg,,, for soms
ms. vThe theorem follows from the fact that M L,,,, and N L_,,, for

m>zmax (Mg, Mms).
Indeed @€ Ny (E*). To show this we distinguish two cases.
Case 1. Nyg(I*) =My (LY).
(In fact after finishing the proof we shall see that this case can not happen by
Proposition 5.)
In this case we have
(K™ Ny (L") =p",
[K* Nygx(E*)] divides p".
Bui
[K*: Nye(M*)]=9"
Ny (M*) DN gy (B).
Hence
wC NM/K(«M*) =NE/K(E*)'
Case 2, Ny (L*) % Ny,x(L1).
In this case
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[K*: Nye(L3)]=p"%
(K" Nyyx (L] =p5
| (L Fsax (L] —p
by Theorem 6 and Proposition 5.
If a € L\ Ny/1,(L*), then

-1
L1= .L;(J) a‘ NL/L; (L*)

and ) »
o .
N I/E (LD = ‘LJ) Ni/x (“) ‘N L/E (L') .
This implies that A
N x(o) #w
. ginoce w € Ny (L"),
Now let BE L be such that ‘
Niyx (/3) =,
BENy:.(L3).
Then
BE N (LY.

Henoe it follows from Proposition b, Corollary, that
N B/Ia (E*) =N L/Ia (L*) ny M/ILx (M ') .
Therefore
% =N1,/x(B) € Ng/x (B").

§ 8. Local Class Field Theory

In this gection we prove that every abelian extension L/K ocan be embedde
into a generalized Lubin-Tate extension L,,, £ and the kernel of R is equal 1
Nyx(I). :

First we deal with the case of a cyoclic exfension.

Lemma 9. Let L/K be a cyclic extension of degree d. Then there exists a
unramified eatension E .and & totally ramified estensson M Such that LcM-E
Furthermore we can choose E so that [E: K]=1 or d according as L/K is totall
ramified or not and choose M so that [M: K]=[L: K.], where K, is the mazima
unramified subextension of L. ,

Proof The lemma is trivial if L/K is totally ramified or unramified. Suppos
KC K 5L, Let E be the unramified extension of degree d. Let N=H-.L. Let o€
Gal(N/K) be an automorphism such that o|5=Frobenius substitution. Leb M b
the fixed field of o. Then it is not difficult to see that L-M =N and M is totally
ramified with required degree.

Theorem 8. Every abelian extension L/K can be embedded nto certian
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generalized extension L m<H.

Proof By Lemma 9 the theorem is true for any oyclic extension. But I is a |
vomposition of oyelio subextensions I;. Hence L;CL,‘,,,.‘-E; Takmg E and m blg f
enough we have Ly ,nCLy,n B by Theorem 2. :

Let L/K be as above., We define B, M and N by the last lemma, We have
reciprocity map Ry: K*—Gal(¥/K). On the other hand, viewing K as a base
field we can define another reciprocity Riy: Ki->Gal(N/K.). We can identify
Ry (K3%) with a subgroup of Ry(EK*). We want to find out the relationship between
By and R},

Lemmas 10. Let L/K be a totally q‘afmfz,ﬁed eyolic extenston with Galods group
G@=GQRal(L/K). Leét v={wu/u|v€G. u€U (L)} and U=U(L). Define a mapping

nG->U/V
by

T —> vy /mwpV
Then n is an injective group homomorphism éndependent of the choice of wy,
Proof Let af, be another uniformizing element of L. Then ap=mgv for some
v U. Hence . ' _
':ar'r,/w’r,-—,-fmz,-'o'v/ovz,-fvé TmL/my .,
80 n.is independent of the choice of .
If p€G, then '
(pv)wr/mwr=p (;m:,-,) /Tmy v/ wmy, € powr/wr v/ 7w v,
Hence 5 i a group homomorphism,
If ewr /7w, €V, lot p be a ‘genefa?uor of G' and suppose v=p". Then
v/ WL:;IE‘E P/t =p u/v,
where # ig an element of U. It follows that
pu/u=p'w/mn=p((p" my) (p"2ws) -+ (v0) / (" owz) -+ -1, '
which implies 4~ (o™ 'wz) -+ (owr)wy is fixed by p and henoe is in K, But v (@) =1/4,
where d=[L: K] since L/K ig totally ramified. Therefore d|r and v=p"=id.
Propotition 6. Let L/K be a cyclic estension. Then ker By—=Ny,z(L").
The proof follows [2] with slight modification.
Proof By Lemma 9 and Theorem 7, L can be embedded into some Lubin-Tate
extension and henoe the first and second inequalities hold by Proposition 5. So we

need only to show that
ker RLDNL/K (L*)

Let M, N and E be as in Lemma 9, i. e., M is totally ramified of degree equal
to e(L/K), and Eis unramified of degree n=[L: K] and N=E-M=M.L=FE-L.
Let K be the maximal unramified subextension of L.

We have
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[M: K]=[M" K;]=[L: K;]=[E: K;]=e,
, . [Ku K]-=f. '
[L: K1=[BE: K] =n=e¢f.
Let o be a uniformizing element of M such that
Nu/g () = Ny/p(e) =,
. Let 5 H={a"€ Ny, (L") |v(x’) = 1}
The set II generates the group Nz g, (L*). It is enough to show that
BN gyx(a')|)n=id.

Let ¢ be the Frobenius substitution of E/K. Then of is the Frobenit

substitution of B/Kj.
‘We define the reciprooity map of N/Kj
R': K3 — Gal(N/Ky).
R' (o) [p=1%d for o’ € IT,
Therefore we need only to show that
RN g.x(@)) =R (a').

Then

Let o’ €II. Then o'=Ny g, («X) for some €U () .such that «v€ L, Then

Nyp(aw) =w. Ny/p(z) =au,
where 4= Ny,z(s). It turns out that
R (w) (@) =
gince w= Ny /x, (&) and M'/K; is totally ramified.
It follows from

R () (@) —a,
R (wu) (o) = az
that
Rwe &
o R (wu)s”
Let : v=Ng x(w) =u(cuw)-- (o)
and Y =4(cz) (¢ )

where ga=0a and ¢ |z is the Frobenius mapping. One has
R (m) =0'= (R(m))'=R(a") = B(Ng,/x(m)).
Hence the proposition is proved if we can show that R(v) =R'(u). Bub
R(v) | p=1d=E'(w)|5.
14 is enongh to show that
R(v)a=R'(u)c.
It follows from (7) thatb
Rwa_ o  _  z _agloz)(a'8)  fo

o«  R@uwsz Rz (o2)-(c's) R’(u)o-fa;

7

®
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there 7 is defined as in Lemma 10 for N/, .
On the other hand the fixed field of R(wv) is totally ramified. It is gensrated
yy some B with Ny, z(8) =m». Let 8=az, where zEU (N). Then

R(mv)B=R(®mv)az=0z=8.
Tence
Rwa 2z &z _ 2z
«  R(@@vw)z Rz oz
‘We need only t0 show that

(mod V). ) )]

2 =Y
oy (mod V)

by Lemma 10 and squations (8) and (9). But
Nuw(2) =Nw5(y) =0.
It follows from Hilbert 90 that

where 7 is a generator of Gal(N/E) and w €U (N). Hence

7, g
2z ¥y  wolw oolw Y TW oW Y
— Tt o . - == . . = e mod p
oz oY dw ordw oy w wow oY ( )

since ca=a. ,
Theorem 9. Let L/K be an abelian extension, Then the kernel of the recipracity
map s equal to Ny (L"),
Proof We need only to show that
ker RO Ny x(L*)
since [K*: ker BR] =[K*: Ni,z(L*)]. Leb Ly, +--, L, be cyclic subextensions of I such
that L is the composition of I;. Then .
Npg(IM SNy x(L*) for é=1, -, s.
For any s € Ny, (L") we have by Proposition 6
B(2) ]L,—%'id.,
which implies R(z) =4d., since L is the composition of L, ¢=1, ---, s.
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