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'EXISTENCE OF LIMIT CYCLES FOR
QUADRATIC SYSTEMS WITH ONE
INFINITE SINGULAR POINT

Hax Maoaw (3 X 45)*

Abstract

This paper discusses the existence of limit cycles for quadratic systems with one infinite
singular point. In particular, the author gives necessary and sufficient conditions for the
existence of a unique limit cycle of a class of quadratic systems with an integral line under

_certain conditions. As a special consequence, all the results of [6] and [7] can be implied by

means of affine transformations. The method used here is much simpler than those of (6]
and [7].

We know that any quadratio systems with a focus can be changed into i

following form
o= —y-+asi+boy, y=a+dy+lo+maoy-+ny? ¢

by means of linear transformations. And the following result is proved in pap
[1. o

Theorem A™. Al soluitons of the system (1) are bounded for §=0 4ff one of ,
Sollowéng conditions holds:

(i) n=0, a+m=0, a®*+bl=0, b’ +a(a—bd) =0, ab<0;

(i) n=0, b(33+m) <0, (a—m)2+4bl<0;

(iii) n=>08+m=0, b+1+ad=0, ab<<0, (¢ —m)*+4bl<0.

Under the conditions of the above theorem we have b+#0. Thus without loss -

generality, we can suppose b= —1, and consider
= —y+as®—my, y= -+ 8y + b+ moy +ny. ¢
System (2) can be transformed into the equation on the region > —1 ([1]):
z= y—F(a), —~g(m): ' (&
where

(o) = #(2), (o) = (@) (L+a)", g(&) =op(a) (1+2)"3,

¢ (2) = — (a+m+2na)s*— (8+2a-+m)s—9d,
p(z) = (a*n+1+am)z®+ (am+1+ad+20) 2>+ (1+2-+ad) s+ 1.
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Wo shall consider the system (2) as aocording that =0, n=0 and an#0, First.
for the case 4=0 we have the following theorem.

Theorem 2. Suppose =0, 0<l<1, —~1<n<0, and m* <4 (n+1). Then

(i) the system (2) has at most one limit cycle, and has at least two singular points
0(0, 0) and B(—1/1, 0);

(ii) &f, én addition, 1-+n>0, then (2) has a unigque limit cycle around 0 iff m#O0, .
and

nl-—1) .
TCESVE

(#i1) @f én additéon, I<n-+1 then (2) has a unique limit cycle around B iff m+0,

0<d/m<1—

and

n(l—1)

Proof Since a=0, we have
f@)=—(ms+8) A+2)"?, ¢(z)=2(z+1) (1+a)>1,
It follows from 0<I<1 that #g(s) >0 for s> —1, z+ 0. By putting
Z=G () =j0 g(@)ds -
we get two functions of Z, F,(Z), 4=1, 2. Clearly, conclusion (i) is true. For (ii)

and (iii) we suppose m=>0 as in Theorem 1. Now we compute the limits

Fy(Z) _ F(z)  Fo(Z) 3. F(z)
V7T TR e ™M T TR Tew

It is straightforward that

F(a)= _—nl—lr—‘bf #"ito(a™Y), G(s) = T g+ o (g+)
when z —>oco. Thus
. Flz) m~2
I
e =T o SR ey
and - .
~/8<A<0 )

from >0, and m2<4l('n.;|-1).
‘We also have
M3 (1-+z)*+o((1+2)"), n<0, m#3;
F(@)=1(m—8)In(1+3)+o(In(l+x)), n=0, m+3;

ntl
- ﬂ%i_l_%)—'+o((1+m)“ﬂ), m=23,

G )> { (1+"’)2"+0((1+w)"'), n<0;
(—DIn(1+a) +o(ln(l+az)), n=0,
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when o-»—1+40. Henec for —1<n<0

—_ ’\—/‘ﬂ_ﬂz—_:.——é) =u, n<0;
Jim Fl@ _] Nn(l—1)
'.-—1+o___G((ﬂ?) — o0, n=90, m>9J;
0, n=0, m=24.
Clearly, '
p<P<~8 for n<0, m>3. (6)
Denote

B D=1- %b%

Then it is easy o show that A
< iff 3<mD for n<0 and d<m,
_ w=0>>A for n<0 and 8=>=m>0,
And thus we obtain easily
‘ [+o0, 3<mD,
[ , 8>mD.
Note that 0 is unstable for 0. It follows from formulae (5) to (7) and Theorem
B that (2) possesses a nnique limit cycle around O for m+#0, 0<d<mD, and no .
limit oycles around O for mD<3<<m, or n=0, §=m. o
‘We note that

Lim (F4(Z) ~Fs(Z)) = )

P Q@ —g(—w)-(l—(1+a;)"), n<0
B G an TN >0(a0),
5 ‘ 9(z)In(1+2), n=0
where P(.w; ?/) =y—'F(w)’ Q(wv y) = _g(m)'

Then by the theory of rotation vector fields, the system (2) has no limit cycles ‘
for 8<<0 or 8=>mD. Thus conclusion (ii) follows. ‘
Now making the change z: = —z—1/1, y: =y we get from (2)

p= -——l—l—y —ay, y=z+ SZZm Y +1s? —may +my?,

o ,=\/ 7 __Jll
@ —-—-—1._1 x, vy. 1—_ly, = -T-t

we have form the above system

immymst oty T

- which has the same. form as the system (2). Then by a simple computation conclusion

Then putting

a1 +ny?

(iii) follows from (ii). The proof is complete. .
Similarly, we ean prove the following theorem.,
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Theorem 8. Suppose that a=0, 0<l<l, —1<n<0, (3—m)?<4n(l—1).
(1) Ifl+n<O, then the system (2) has a unigue Wmit cycle around 0 ¢ff m+0,
1—0<8/m<0, where
t(n+1)
(2) IfI>1-+n, then (2) has a unique limit cycle around B iff m#0, 1/I<d/m<
1+6.
In fact, if we suppose m <0, then

A0, 0<Su<~/8
for m<3, and (7) remains true. Thus the theorem follows in the same way.

It is ea.éj‘ to prove that I+n=0iff D=0, and (I+n)D>0 as long as [+mn*!
Then from (7), the system (2) has no limit cycle if I +n=0. Hence by Theorsms
and 3 we have immediately the following corallary.

Corollary 1. Suppose a=0, 0<l<1, —1<n<0, m*<4(n+1), and (8—m)3«
dn(l—1). Then

(1) (2) has a unique limtt cycle around O 4ff m+#0 and 8/m lies strictly betwes
0 and 1—6; '

(ii) (2) has a unéque limit cycle around B 4ff m+0 and 8/m liss strictly betwee
1/l and 1+6.

Under the conditions of Corollary 1, (2) has two infinite separatrix cycles
denoted by Ly and L,, which congist of the line = —1 and the right or the left hal
of the equator respectively. From Theorems 2 and 3, Corollary 1 and formula ¢
we have easily the following corollary.

Corollary 2. Suppose =0, 0<i<l, —1<n<0, m*<4l(n+1), and (8—m)?<
4n(l1—1). Denote

L))
RAICES))

as before.

(1) The separatria cycle Ly 4s negatinely (resp., positinely) asympotctically stable
iff 5<m(1—6) or 3=m(1—0) <0 (resp., 8>m(1—8) or d=m(1—0)>0). Al the
orbits coniained in the interdor of Ly ave closed 4ff =0 and m(l-+n) =0.

(I1) The separatria cycle Ly s negatively (resp., positively) asympototically stable
§ff S<m(1+6) or d=m(1+6) and dl<m (resp., 8>m(A+60) or d=m(1+6) and
81>m) All the orbits contained in the interior of Lg are closed 4 ff

d=m, m(1+n—1)=0.

In [6] K. R. Zhou corrected a mistake in Cerkas’s work [5]. Some results of
[6] were reobtained by C. A. Holmes™ recently by a simple method, and the
problem left over of [6] was solved by [7] completely. Obviously, our Corollary 1 is
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(2) p(@)>0 for o> —1, where @ bs géven n the sysiem (3). Then the system (2)
kas at least one limit cycle.
Proof As before we can suppese >0. Let
| A=l+am~+a’n, Ay=am+1+ad+2,
B= — (a+m-+2an), B1=-— (6+2a+m).
Then 4>0 from (m—a)*<4l(n+1). And when g —><o
_B_
n+1
F(z)={ Blns+o(lnz), B£0, n+1=0;

By
n

@6 (@"Y), B£0, n-+140;

z"4-o0(a"), B=0, n<0;

___4_.._
G(2) ={2n+2
AIng+o(lnz), n+1=0,

a3+ o(a™t?), n+10;

Thus
~ 2B
tim F @ _ VA(n+1)
osen/ G(z) +o0, n+1=0, B>0;
0, n+1=0, B=0.
Tt is easy to show that [A|<~/B iff B*<44(n+1) iff (m—a)?<d(n+1).
‘While g— —1-+-0, we have
f(@) =a(1—2n) (1+2)"2+o((1+z)"2),
9@ =a’n(d+2)*3+o((1+a)*%).

=2, n+1>0;

Hence

m F(z) _ N2 (1—2n) _
e>—1+o \/G(Qi) \/fn,('n;—l)

‘We nex?b prove thab w<A. It suffices to show that

B? . .
> T D) implies w<<A. ®

w<0,

A

n(n—1)
1) (L—2m)?

Set r(n) =n(n—1)/(1—2n)2. Then r'(n) = —1/(1—-2n)2<0, and hence
max {r(n), —1l<n<0}=r(—1)=2/9<1/4.

In fach, <A iff A> B,

Thus (8) follows. |
Noting that the system (3) has only one singular point O on the region &> —1
and it is completely unstable, the theorem follows from Theorem B. '
Corollary 4. Let —1<n<0, 48>0, (m—a)?<4l(n+1) and
‘ 0<<3a’n+a(m—28) <1—1l—am.
Then there evists at least one limit eycle of (2) around O.
Proof In fach, by the lash condition of the corollary
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[\
=~

p(—1)>0, ¢'(~1)=0, ¢"(=1)>0.
Thus @(#) >0 for z>-—1 since it is oubic. Then the conoclusion follows from
Theorem 6.

As an example, if m=a>0, —1/3<n<0, [>-0, Z+a5(3n+2) <1 and
0<8<a(3n+1),
then (2) has a limib oycle by Corollary 4.
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