A NOTE ON FULLER'S THEOREM

ZHU SHENGLIN (朱胜林)*

Abstract

In 1972, Fuller proved that a complete additive subcategory $_R$ C of R-Mod isequivalent to amodule category Δ -Mod if and only if $_RC = \operatorname{Gen}(_RU)$ for some quasiprogenerator $_RU$ and $\Delta \cong \operatorname{End} _RU$ canonically. In this note the author gives a characterization of $_RC$ which makes $_RU$ a projective R-module in the case when R is a right perfect ring with identity, and shows that R-Mod is the unique complete additive subcategory of R-Mod which is equivalent to R-Mod for a left Artinian ring R.

In 1972, Fuller⁽¹⁾ proved that a complete additive subcategory $_RC$ of R-Mod is equivalent to a module category Δ -Mod if and only if $_RC$ =Gen $(_RU)$ for some quasiprogenerator $_RU$ and $\Delta\cong \operatorname{End}_RU$ canonically. In this note we give a characterization of $_RC$ which makes $_RU$ a projective module in the case when R is a right perfect ring with identity, and show that R-Mod is the unique complete additive subcategory which is equivalent to R-Mod provided that R is left Artinian.

Throughout this note all rings are associative with identity, and all modules are unital. Each endomorphism will be written on the other side of the module. We write R-Mod for the category of all left R-modules. A full subcategory of R-Mod is called complete additive^[1] if it is closed under taking submodules, epimorphic images and direct sums. A left R-module $_RU$ is a quasiprogenerator if $_RU$ is finitely generated quasiprojective and $_RU$ generates each of its submodules. A ring R is semiperfect if every finitely generated left R-module has a projective cover, and R is right perfect if and only if R is semiperfect and left semiartinian (Theorem 27.6 in [2]; p. 151 in [3]).

Proposition 1. Let R and Δ be rings. Let $_RC$ be a complete additive subcategory of R-Mod and assume that $T: \Delta$ -Mod \to_RC is a (additive) category equivalence. Let $_RU$ be the canonical left R-module $U = T(\Delta)$. Then the following are equivalent

- (a) $_{R}C = Gen(_{R}P)$ for some projective module $_{R}P$;
- (b) $_{R}C = Gen(_{R}P)$ for some finitely generated projective R-module $_{R}P$;
- (c) U is a projective left R-module;
- (d) There exists a ring Δ' and a Morita equivalence $T': \Delta'-Mod \rightarrow \Delta-Mod$ such that

Manuscript received October 28, 1986. Revised June, 2, 1987.

^{*} Institute of Mathematics, Fudan University, Shanghai, China.

 $P = T \cdot T'(\Delta')$ is projective.

Proof Obviously.

Given a ring R, let Ω denote the set of isomorphism classes of simple left R-modules. If Ω_1 is a subset of Ω , then a hereditary torsion radical \overline{S}_{Ω_1} can be constructed as follows: for a module RM, the Ω_1 -socle $\operatorname{soc}_{\Omega_1}(M)$ of M is the sum of all simple submodules of M with isomorphism classes in Ω_1 ; let

$$\begin{split} s_{\mathcal{Q}_{1}}^{0}(M) &= 0, \\ s_{\mathcal{Q}_{1}}^{\alpha}(M) / s_{\mathcal{Q}_{1}}^{\alpha-1}(M) &= \operatorname{soc}_{\mathcal{Q}_{1}}(M / s_{\mathcal{Q}_{1}}^{\alpha-1}(M)), \\ s_{\mathcal{Q}_{1}}^{\alpha}(M) &= \sum_{\beta \leq \alpha} s_{\mathcal{Q}_{1}}^{\beta}(M) \end{split}$$

when a is a limit ordinal,

$$\widetilde{S}_{\rho_1}(M) = s_{\rho_1}^{\alpha}(M)$$

where α is the first ordinal for which

$$s_{\Omega_1}^{\alpha}(M) = s_{\Omega_1}^{\alpha+1}(M).$$

Then $S_{\mathcal{L}_1}(M) = M$ if and only if $\operatorname{soc}_{\mathcal{L}_1}(M/L) \neq 0$ for every proper submodule L of (Prop. 3.1, VIII in [4]).

Theorem 2. Let R, A, RC be as in Proposition 1. If RU is projective, then satisfies the following

- (1) RC is closed under extension;
- (2) Let S, S' be simple left R-modules with $S \in {}_{\mathbb{R}}C$. If $\operatorname{Ext}^1_{\mathbb{R}}(S, S') \neq 0$, $t \in {}_{\mathbb{R}}C$.

Moreover, if R is right perfect with each simple modules in $_RO$ being finitely prented (e.g. $_RJ$ (R) is finitely generated), then the converse holds (i. e., $_RU$ is projective

Proof If $_RU$ is projective, (1) is obvious by $_RO = \operatorname{Gen}(_RU)$. To see (2), let S be simple R-modules with $S \in _RC$ and $\operatorname{Ext}_R^1(S, S') \neq 0$. Then there exist nonsplitting exact sequence

$$0 \rightarrow {}_{R}S' \rightarrow {}_{R}N \rightarrow {}_{R}S \rightarrow 0$$
:

and $_RN$ is uniform with minimal submodule $_RS'$. Since $S \in \text{Gen}(_RU)$, and $_RU$ projective, we have Trace $_NU \neq 0$, hence $S' \in \text{Gen}(_RU) = _RC$.

To see the converse, let R be a right perfect ring with each simple module in finitely presented. Let S_1, S_2, \dots, S_n be a representive set of all simple R-modules RC, and set $\Omega_1 = \{[S_1], [S_2], \dots, [S_n]\}; \Omega_2 = \Omega - \Omega_1$. Denote the projective cover of S_i . $P_i \xrightarrow{x_i} S_i \to 0$, then P_i is a local module with largest submodule $K_i = \ker \pi_i$.

Set $P_i^1 = S_{\mathcal{Q}_i}$ (P_i) , we will show that $P_i^1 = P_i$. If it it not the ease, then $P_i^1 \subseteq$ Since $P_i/P_i^1/K_i/P_i^1 \cong S_i$ and $[S_i] \in \mathcal{Q}_1$, we have $S_{\mathcal{Q}_i}(P_i/P_i^1) \neq P_i/P_i^1$. Let

$$P_i^2/P_i^1 = S_{f_i}(P_i/P_i^1),$$

then $\operatorname{soc}_{\Omega_i}(P_i/P_i^2) = 0$. Since P_i is semiartinian, we have a submodule P_i^3 of P_i such that $P_i^3 \supseteq P_i^2$ and $P_i^3/P_i^2 \cong S$ with $[S] \in \Omega_1$. But S is finitely presented, the functor

Ext_R¹(S, -) commutes with direct limits. Ey Ext_R¹(S, S') = 0 for any simple R-module S' with $[S' \subseteq \Omega_2]$, we have $\text{Ext}_R^1(S, P_i^2/P_i^1) = 0$. Thus the exact sequence

$$0 \rightarrow P_i^2/P_i^1 \rightarrow P_i^3/P_i^1 \rightarrow P_i^3/P_i^2 \cong S \rightarrow 0$$

splits. Hence there exists a submodule P^4_i of P^3_i such that

$$P_i^4/P_i^1 \cong P_i^3/P_i^2 \cong S$$
.

This contradicts

$$P_i^1 = S_{\mathcal{Q}_i}(P_i)$$
.

Hence

$$P_i = S_{o_i}(P_i)$$

and condition (1) gives that $P_i \in {}_{\mathbb{R}}C_{\bullet}$

Let $P = \bigoplus_{i=1}^{n} P_i$, then P is a projective R-module in ${}_{R}C$ which generates each simple objects (modules) of ${}_{R}C$. Hence ${}_{R}C = \text{Gen } ({}_{R}P)$. By Prop. 1, we have that ${}_{R}U$ i projective.

Example 3. Let

$$R = \begin{pmatrix} S & 0 \\ \bigcirc & \bigcirc \end{pmatrix}$$

where S is the localization of \mathbb{Z} at $2\mathbb{Z}$, then R is semiperfect but R is not right perfect Let

$$I = \left\{ \left(\begin{array}{cc} 0 & 0 \\ q & q' \end{array} \right) \middle| \ q, \ q' \in \mathbb{Q} \right\},$$

then I is an ideal of R. $_RU=R/I$ is a quasiprogenerator such that $_RO=\mathrm{Gen}(_RU)$ satisfies (1), (2) of Theorem 2. Moreover, J(R) is a finitely generated left ideal. But $_RU$ is not a projective R-module.

Example 4. Let S be the ring of all the \aleph_0 -square upper triangular matrices over a field F that are constant on the diagonal and have only finitely many nonzero entries off the diagonal. Then S is a right perfect ring (Ex. 28.2 in [2]). Let M be all the \aleph_0 -square matrices with finitely many nonzero entries, then M can be seen as an S-S-bimodule canonically, and MJ(S) = M. Let

$$R = \begin{pmatrix} S & 0 \\ M & S \end{pmatrix},$$

then R is a right perfect ring. Let

$$I = \begin{pmatrix} 0 & 0 \\ M & S \end{pmatrix},$$

then I is an ideal of R, $_RU = R/I$ is a quasiprogenerator and $_RO = \text{Gen}(_RU)$ satisfies (1) and (2) of Theorem 2. But $_RU$ is not projective. In this example the only simple R-module in $_RO$ is not finitely presented.

Theorem 5. Let R be a left Artinian ring, and let $_{\mathbb{R}}C$ be a complete additive subcategory of R-Mod. If $_{\mathbb{R}}C$ is category equivalent to R-Mod, then $_{\mathbb{R}}C = R$ -Mod.

Proof Let $T: R\operatorname{-Mod} \to_R C$ denote the category equivalence. Let S_1, S_2, \cdots, S_n be a set of representitives of all nonisomorphic simple $R\operatorname{-modules}$. As RC is complete additive, we have $RC(S_i) = S_{\sigma(i)}$ for a permutation σ on $\{1, 2, \cdots, n\}$.

Let $P_i \xrightarrow{\pi_i} S_i \to 0$ be a projective cover in R-Mod, then P_i is finitely generated (hence has finite length). Since T is a category equivalence, we see that $T(P_i) \xrightarrow{T(\pi_i)} T(S_i) \to 0$ is a projective cover of $T(S_i)$ in R. As in the category R-Mod, we have a commutative diagram

$$0 \to \ker \ T(\pi_i) \to T(P_i) \xrightarrow{T(\pi_i)} T(S_i) \to 0$$

$$\uparrow^{f_i} \qquad \qquad \Downarrow$$

$$P_{\sigma(i)} \xrightarrow{\pi_{\sigma(i)}} S_{\sigma(i)} \to 0.$$

Since ker $T(\pi_i)$ is small in $T(P_i)$ (also in the category R-Mod), f_i is epimorphism. If we denote the length of a module $_RM$ by lth(M), then

$$lth(T(P_i)) \leq lth(P_{\sigma(i)}).$$

On the other hand, there is a lattice isomorphism T:

$$\operatorname{Lat}(_{R}P_{i}) \to \operatorname{Lat}(_{R}T(P_{i})),$$

 $\operatorname{lth}(T(P_{i})) = \operatorname{lth}(P_{i}).$

thus

While
$$\sum_{i=1}^{n} l \operatorname{th}(T(P_{i})) \leqslant \sum_{i=1}^{n} l \operatorname{th}(P_{\sigma(i)}) = \sum_{i=1}^{n} l \operatorname{th}(P_{i}) = \sum_{i=1}^{n} l \operatorname{th}(T(P_{i})),$$

we get $l ext{th}(T(P_i)) = l ext{th}(P_{\sigma(i)})$, hence f_i are isomorphisms, $i = 1, 2, \dots, n$; and $P_i \in \text{Since} \bigoplus_{i=1}^{u} P_i$ is a generator of R-Mod, we have ${}_{R}C = R$ -Mod.

In Theorem 5 the Artinian condition cannot be replaced by right perfect no Example 6. Let R be the ring S in Example 4. Let $I = \{x \in R \mid \text{all the ent} \text{ of } x \text{ except the first row equal to zero}\}$, then I is an ideal of R and RU = R/I quasiprogenerator which is not a generator of R-Mod. Moreover, End $RU \cong R$. He the complete additive subcategory $\operatorname{Gen}(RU)$ is a proper subcategory of R-Mod whis equivalent to R-Mod.

Proposition 7. Let R, Δ be rings and $_RC$ b₂ a complete additive subcategor; R-Mod such that $_RC \cong \Delta$ -Mod. Then Δ is (semi)-perfect whenever R is. When local, Δ always has the form $M_n(R/I)$, for some ideal I of R and $n \in \mathbb{Z}^+$.

Proof Let $T: \Delta \operatorname{-Mod} \to {}_{\mathbb{R}} C$ be the category equivalence and ${}_{\mathbb{R}} U = T(\Delta)$, is finitely generated quasiprojective and $\Delta \cong \operatorname{End}_{\mathbb{R}} U$.

Let $P \xrightarrow{\pi}_{R} U \to 0$ be the projective cover of $_{R}U$, then P is a finitely generative R-module and ker π is fully invariant in P. Hence there exist canonical ring surjection $\operatorname{End}_{R}P \to \operatorname{End}_{R}U$, setting $f \in \operatorname{End}_{R}P$ to

$$\overline{f} \in \operatorname{End}_R U$$
: $(x + \ker \pi) \overline{f} = (x) f + \ker \pi$.

When R is (semiperfect) left perfect, End $_{R}P$ is (semiperfect) left perfect, and so

's End $_RU \cong \Delta$.

Let R be a local ring with largest left ideal J. Then all simple R-modules are somorphic (to S=R/J). Thus all simple objects of ${}_RC$ are isomorphic, and so is \vdash Mod. Let ${}_4Q \xrightarrow{\pi} {}_4S' \to 0$ be a projective cover of a simple Δ -module ${}_4S'$, then ${}_4Q$ a progenerator of Δ -Mod and $T({}_4Q) \to T({}_4S') \to 0$ is a projective cover of $T({}_4S')$ in C, ${}_RU' = T({}_4Q)$ is a progenerator of ${}_RC$. As in the category R-Mod, we have the ollowing commutative diagram

$$0 \to \ker \ T(\pi) \to {_R}U' \to {_R}T(\varDelta^{s'}) \to 0$$

$$\uparrow f \qquad \text{if} \\ R \longrightarrow R/J \longrightarrow 0$$

is an epimorphism, hence $_RU'\cong R/I$, for some left ideal I of R. From the massiprojectivity we see that I is an ideal of R. Δ and $R/I\cong \operatorname{End}_R(R/I)$ are Morita mivalent, and since R/I is local, we have $\Delta\cong M_n(R/I)$ for some $n\in\mathbb{Z}^+$.

The author wishes to thank Prof. Xu Yonghua for many instructive and alpful suggestions.

References

- 1] Fuller, K. R., Density and Equivalence J. Algebra, 29 (1974), 528-550.
- Anderson, F. W. & Fuller, K. R., Rings and categories of modules, Springer-Verlag, Berlin and New York, 1974, 301—321.
- 3] Faith, C., Algebra II Ring Theory, Springer-Verlag, Berlin Heidelberg New York, 1976, Chapter 22.
- 1] Stenström, B., Ring of Quotients, Springer-Verlag, Berlin Heidelberg New York, 1975, 182-194.