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THE DIRICHLET PROBLEM FOR DIFFUSION
: EQUATION - |

L1 ZricHAN (% ]sf_])* Yane quu‘ ¢ )N

_Abstract

Let D be a bounded ‘domain in ‘the d+I1-dimensional Enclidéan space-R%*1 This paper
aims at giving a probablhstle tréatment of the Dirichlet: problem for the followmg diffusion

equation on D - S e g e 3

(1/2A+q)u<m, t)— = U@ %), (w, t) eD; '}

where g is a functlon to be speclﬁed Ia,tel a.nd A 1s the Laplace operato1 EW Th

existence and nniqueness theorems are g;ven, and furthel;more, tﬁe p10bab111st1c reprwentatlon
1
© and martingale charaeterization of ‘thie solutions for diffusion equatlons are obtained.

e - T L

§O Introductlon e e e

{3 f LT -
i, Let-DDea bounded domam in R" In 1954 J L Doob gave an infensive stuc
of the Laplace,s equatlon on D from a probablhstlc point; of yiew. ;(see: [1]) -Recs
tly, the probabilistic treatment of the foHOng Sehrodmger equation on D

(@/2+Qu@ =0, 2€D, .

¢ 1 ha. [V
becomes an active’ t0p10, Where 4= Z 33 7 g Ha smtable ftmctlon on D. A seri

of results have been obtained (see [4 6]) The tool employed thele is B1owma
motion.

Now let D be a bounded domain in R‘“l A pomt in R** is denotedby X = (:v,
with s€R* and tcR. In [2] J L Doob s’oud1~ed the followmg heat equatlc
(O 2) by proba.blhty methods e

..1_Au<m, t)=—q—u(a;,¢t), (a;, t)ED

- - TR LA
ERINIY B

‘We have observed that the key in hig proba.blh ty approaeh is the use ‘of stochast
process-———spaee—tlme Brownia;n ‘motion' to'be defined’ below:. Vi ¢

11 Keéping the Hrevious Teviews in inind, ‘a detailed observafior‘i'yields ‘a.‘q'tiestlox
Can we approach the following most typical diffusion equation (0.3) oa .
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probabilistically?
(—A—i—q)u(w, t)-——u(m, f), (@, £ €D, 0.3

where ¢ g 15 a suithble’ funchon on D: It seems thab tHigswork has ot beer: explored
up to now. This paper is contributed o the'answer:of such a question to someextent,

§1. Preliminaries

The set I=(ay, b1) X+ X (@s ba)X(si; “sa) in R** ig called an interval.
Particularly, for any r>0, X = ((#1, 12+, 20), ) EB*, we seb R(X, r).=(ma—1, @
+71) >< X (@g— 1y wg+1)X (87, 5+7r). Throughout: this paper, ¥;(dz) denotes:the
Lebesgue measure in R%. Lot D R%*** be an open set, we use 0%*(D) to denote the
slass of funotions on D which are twice continuously differentiable with respect 10 »
and continuously dlﬁ'erentlable w1’ﬁh Tespect to ¢.

A functlon u(X ) on an open set DCR"+1 15 called pa,raboho 1&'

Vo - p [ P

o e ; tu(a,, t)————u(w, 8 @) E€Din e (L)

Let X o="{(2¢ $,) ER*** and {z(?), &, t>0} be & d-dimensional standard
Brownian motion in R? starting:frém k. THe process”
X@, # 120L ~{(@®), u—1), F, t>0}
with state space’ R*'ig called a- s’aanda,rd space—tune 'Browma.n ‘motion (denoted
sitaply by SSTBM) from X, (see [3] p 575)
Deﬁne ChoTDL e gl L g SR F O P ER SIS ORI S AR S DC TR SRR S PRV SRR

..ds:e J flflﬂ*
plh w)A{( Wr)f / x}')‘ { zé 0

o @nNERT, (1.2
y B oo Mes0, L
mdsetform, y‘ER“,Mi>0, S T P R R TR S et
, PG @ DA, a—y). -
E‘or a.ny X (=, s) Y (y, t) ER"“ define o ‘ o
| 2 D ApG=1, 5-9). o @
The SSTBM defined above is a continuous strong Markov process ([3], p. 579)
wnd has the following transition density with respest 1o I (dy) (see (31, p. B76).
P (@s), (@ s=1)
A0, ), (15 5=, 50, X (1 9, T 3= EB,
.. We use PT and HZX to denote the probability and expeotation associated with
the SSTBM from X € B**. o
Lot B be a Borel subseb of RI*%, r>0 deﬁne
s —int{i>0, X () ¢ B}, ' (1.5)
' (inf p =o0), >
—mf{t>0 X(t}%R(X(O), r)}, ol (.8)
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Then it can be proved that 7z and 7, are optional relative to {F}.,.

For an open set D R***, 2D denotes its boundary, a point Z €D is said to
bearegular boundary point iff Pz (#p= 0) = =1. By the zero—one law for SSTBM (seo
. [3), p. B83). Z €D is irregular iff P? (zp=0) =0,

For X = (=, 5), Y=(y, t) €D, define _ : : A
. Po(X, D) Ap(s—t, 5-9) B {pG—t-tm a(r) —9)}. . (L.T)
' Then pp(X, ¥) is continuous in Dx D\{(X, X), X €D} (seo[3], p. 693, p. 661
" Theorem 17(3,) and p. 298 299). 1

The SSTBM in an open get D is a bSTBM from a pomt in D, kllled at. th
irst exit time of D. It is a Markov process with subiarkovian i1:1'3,n.<nf;1,on funotiol
ziven by ‘ | e
2ot (2, 8), B)AP“{X () €B, <=}, t>0, BGR%,

I‘he transn&mn density with respaotbo ld(dy) is gwen by ’

ot (=, 8), (@ s—t))ApD((w, $), (¥ s=t))

=p((=, ), (y, §— t)) 'rn((w, s), ', s= t)), ST (.8
where 3 RERICII 3N DY e e
ro((2, 8), (¥, s—¢)) =B {p((a:(m-,,),rs 7o), (¥, s— t))} a.9

As in the situation of. Brownian paotlon, we, have the followmg proposition. Fo
the proofsee Proposiﬁbﬁz 2. 1m _A T R TTIC T

Propomtlon 1. 1. Tt D be an opan, subset of R"+1 Then for wn,y t>0 P {7D<t
is lower semicontinuous in RO*L. 1 %0~ A

An immediate consequence of this, proposu,tlon is the following. ... . ..

Corollary 1.1. Let D be an, open subset of R, and 2€ 9D bs a regular boundam
po'mt Foa' amy r>0, 7, 4 daf'med by (1. 6) Then fwé hawe

“lim' PX{TD<7r} 1,

D3X-Z

§2 Basic Deflmtlons and Reqults

From now on; D is always assumed to be a bounded domain in R**' unles
otherwise s tated. ' '

Definition 2.1, Let ¢ be @ measurable fwnctq,on deffmed on D. We say thas g€
K4, 4ff the following condition is satisfied

lim sup X U Iqlv(st)d;]' A 2.1

t-0 XD

kere and hereafter, g(X) is understood to be zero outside D.
Keeping the convention on ¢ in mmd we can easdy 'pr0ve an eqmvalen
oond11uonof(2 1. S B R T e
~ Proposition 2.1. - Let g be ¢ measurable. fz_mctriIOn on D. Then €K iff -+
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lim sup EXU lg[(Xs)cls] ':-'(2.2)

10 Xe€ Ir."“

P/roof It:s enoughfoshow bha’ﬁ for any XOER"“\D t>0 r v
Be[f! |g;<x>ds]<supExU lgl(X)ds] ‘

In fa.ot by strong Markov property wh

U’ lgl(Xs)ds] Ex° U lél(Xs)ds, ’F»°<t]

<~ U gl (X)ds, <ﬂ - = [Exrpﬂ UO |gf~[<(x;)ds], «;,Q<t]
‘ <S‘1PEXU IgI(X,)ds:l O R S SRR DI
as desired: . »
Leb g€ K, define™ - wlivo o m oG T

A

o eq(t) —eXP U q(X)dS] ey
where {X,, =0} is: the SSTBM in R'j+1 (e ¥ R
Proposn:mn 2.2. Swp_pose that ¢ € K ¢4, then, .
v AU SuP HE o (pp) <o 1wt e <2 4)
Pfroof “The boundedness of D gua.ra,ntees ‘bhat" 'u'D 1s bounded say by To, i e
for X G R"“ PX{T'D<T0} 1 Smoe q EK 4, there ex1sts a to>0 suoh ’uhat

sup B U 1ql(Xs)ds]<1/2 o ety

xeR¢+l

Then by Kha,s mmsku s lemma“”, we obbain™
O TSRS AL 3 SupaEx[qul@o)] <2

Chooge an J_nteger n S0 ’oha,’o n— 1<To/to<n, then usmg the strcmg Ma.rkov
property, we have o

FHlouGe) <P o, wt»@vﬂf}}

_ Ex{eﬂ){ﬁ: L o+ »+Ln . Iql()ﬁ)d?}}
<(xse]}£,ET{elql () "< 2" <00, o ,

Therefore
sup BE*{o(wp)P<o0,
XeRen N - } 4

§ 8. Dirichlet Problem
The formulation of Dirichlet problem for diffusion equation (0.8) is ag follows:
Given a bounded measurable function f on 8D, a function u on D'is to be found
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such thab

{(—;—A+q——g—t>u(m, =0, X=(z, §) €D, (3.1
lim u(X)=£(2), . (3.2)
where Z is any regular boundary point at whioh f is conbinuous. »
Suppose that f ig a bounded measurable flmotlon on aD gEK,, deﬁne
“ T u(X)AB e, (o) f (X))} XED. (3.3)
Tt follows from Proposmlon 2.2 that ||u|!1; suplu] (X ) <oo. ‘

The following theorem oharaotenzes the boundary behavlor of u(X) deﬁned by
3.3. : : :
Theorem 3.1. ;S'uppose that gEK a_amd, f ws a baunded measwmble funct'z,on o1
aD. I f Z E@D s a regula/r boundafry poqm.t at which f is continuous, then we hwve
h 11m u(X) —f(Z) IR ' (3.4
Proof It oan be eadily deduced that ? o o -
W(X) = Pof (X) + B (X2 [ g(x.>exp [Faxoals) s
where IR R P T - :
Ppf(X )AE‘X{f (X+)} X €D. : (3.6
Using Fubini theorem, the second term on the nght side of (3. 5) is equal to

{J f( X)X .) I s>7) exp U q (X +) dt ]ds}

- m= {f(wf,,mxo Lo [[Ma@oat s @
By the strong Markov property, the mtegra.nd on the rlght sude above rela.tlv
to ds reduces to

e (B [}f (X.)g(Xo) ie,«,;-exp[f"’ﬂxt) dt ]’ |5"’3 ]]' |

=B [q(X ) Ligwrn BT {ey (@) f (X p)}]
=B [q(X)u(X ) Liicon] - o L (3.8
Oombining (8.5) with (8.7) and (3.8), and using Fubini theorem we get

w(X) = Po f(X) + B {[ g (X)u(X)ds |~ Pof () +Go(q) (X), (3.9

where Gy (qu) (X) A EX {K"q (X)u(X.)ds }
It is known (see [2], Theorem 3.1) that
lim PDf<X) =f(Z). - * (8.10

Hence, to prove (3.4), it is sufﬁment to show that . ‘
hm Gp(gu)(X) =0, = Lo
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In faot, for any 8>0, using strong Markov property, 30, 0s>0, s. t.,
GD(|gu[)(X) EX{J |qu| (X,)ds, 7D<6}»+E" {[ | qu ] (Xs)ds, 7D>6}

<Cugmp (], o1 s [+ 0up (0> gup || lal xoe
Henoe lun GD(gu)(X) 0 i B U NP O T 2

Before gwmg the mam result in "ihlS paper, let us ﬁ1 gb state several olassmal
-esults to be needed later. :

Lot G be a bounded domam m R Ti, T2€R“ Wl"ih T1<T_», In the followmﬁ '
shree’ lemmas, D=G'% (Tl, Tg) et ‘ CEAE

Lemma 3.1. Suppose that g(w t) isa bown,ded rmeasumble functfbon om D=Gx"

[Ty, T3] Then the fwncmon Vpg(a;, s) deﬁrrwd by T S 1

. Vpg(w, S)AJ J g(?/,s t)p(t (m, S) (y,s t))la(dy)dt (w, s)GD (3 12),

is continuous n D, where T =T,— Ti, p(t (m, s), (y, s— t)) 5 deﬁnecl by (1 4) and
y(w, t) is %dent’l;ﬁed with 2670, outs@de D. -
" Tierama’ 3 2 ;S’uppose that g(w, ) is conbimuous ‘on D Vpg(a;, s) s defined by,

f3 12) Then

V0, ) el 6= 1@ for (5,9 €D end s o &
\a;, S)ED TS P B l ;— L-, | | RER
Before proceedmg further, letus glveadeﬁmtlon. S
Definition 3.1. A functwn g(m, t) en D= GFx [Ty, T,,] s safz,d to be Holde«r .
Ontq,nuous in s EQG umfm‘mlg fm‘ ty wﬁ 3 constanis ¢, a>0s. b,
l9 (=, 8)— g(yy t)|<0lm fyl"‘ Vz, @/EG VtE[TL To] _
Lemma, 3.3 Supposu that g\m, t) is co'vz,tmuous inD arn.d Holdeo" contz;wmrs i
sEQ wwfoq"mly for t. Then Vog(w, s) defined by (3. 12) is twice cmt@muously?

lifferentiable w@m rasP.est to mEG Contnuoushy differ enttable rélative to s€ (Ty, Ts).
Furthermore, we have SRR

L Vo9 9 +9(a 9 ~2- Vog(a, ), (@ HED.

’I’hese lemmag are ‘the versions of the correspondmﬂ' Tesultd in [10] and the
roofs are referred to [10], Chapter Li. . SR :

Theorem 3. 2. Lot D be a bounded domm,n in P“l. Assuma that Q’EK ¢ is
ontimous in D and for any XoED, any '#>0 such that P(Xo,—rjcl), q(w, t) s
Tolder comtirmous tn @ uniformly for t.in R(X,, r). Suppose that fis bounded
neasurable on dD. Then the function .

U(X) = B {eo(w)f (X} X ED

gives a solution for the Dirichlet problem (3.1) and (3.2).

Proof We shall prove this result in four sops.



No. 3 Li, Z. C. & Yarg, Q. J. DIRICHLET PROBLEM FOR DIFFUSION BUQATION 307

Step 1. Ag in the proof of Theorem 3.1, we have- - o
 u(X)=Ppf(X)+Gp(qu)(X), -X€D: (8.13)
, Step 2. In this step, we shall assume that D=@x (Ty, Ty) and ¢(X) is
‘identified with zero outside D, where G is & bounded’ domam in R‘ T,, Ty€R* and
Ty <T,. We ghall decompose Gp(qu) (X) above.’
- For X = (a;, s) ED uging Fubiui theorem, we obtain

Z.V—Tz,“TL EX{S q (Xt) % (Xt) I(t<-md } J Ex{q (Xt) U (Xf) I“«»’}‘z;’

= [7, 4@ =0, 5= DaCh (o 9, (s,

=[1, 0@ 5= 0ut 5= @ 9, @) 3= hCaiar

v RRR

=[2], 4@ s=t0utw s=0yrs(@ 9, <y, =)
AV n(gqu) (X) = Qn(qu) (X )}"Séf A 1\ ;
Where in the fourth equa.hty, we have used the conventlon on g and
Q@) ()=}, 46 s-0u@ s=Dra(m 9), @, s~0)iu()dk.
" We note tha.t the intgral mterva.l [0 T] above oan be replwed by [0 +oc
Then by the definition of #5( (@, s)," (9, 1)) and Fubini theorem, weo have -

Q@ @)= [ 1 s uars =D B p i e <N
=E“”"’U j {CN s—t)u(g/, s—t)p(t Ty T ?./)la(d?/)d’ |

=g U I Q(y, s— 'ro—t)u('y, s— 7n—t)p(t Bea— y)la(dy)dt}
Set , AR Cent L E e

N . L
1 . '/\A:‘,‘ fopnn

o (a, s)AJ I q(y, s— t)u(y, s— t)p(t @, y)la(cl'y)clt (=, s) €aD. (3.1

Since u is bounded in D, by Kha.s minskii’s lemma."” we can ea.sﬂy conclude tk
@ is bounded measurable on ¢ D. Hence - ' e

Qo(gu) (X) — B O (e $ 'rn) =PD¢(X )

)

Finally we obtain A v

L Golew) (X) =Vn(gi) (X) - Pop(X). T 3.1

¢ . Step8. For any :X,€D; choose an r>0/such that R(Xe; r)CR(X,,.2r)

R(X o, 3r)CR(X,, 3r) 3fr) cD. By the strong Markov property, for any X ER(A
3r), wehave - - rig P T LT L PIE PRl S ‘
M(X )= Ex{eq(fmx,,.an)u(xfm. )b e

We note from this equality that-we caniregard ¢’ as' zeto ‘outside R(X,, 3r) ‘in the
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following without affecting: ihe value of u(X ). on R(X,, 3r).: Repeating the
‘procedure in step 1 and step 2 with fand D there being. replaced by u and R(X,,

;.37'), WB Obtaln decomposﬁ;*ons ey oavegaen Clede oy ol PR RS
CU (X PR(xm:sr)u(X)+GR<xu3r)(9’u) (X): S ria o 2(3*-1‘5)
Gn(xo.sn(gu) (X )= V‘R(Xb,3f)i<gu)_, (X ) ol R(Xoy 3P (X); - ,(‘3 -15)'

where q:(X ) is defined by, (3. 14) with. D there being replaced by R(Xo, 3r)::
bounded on m Using Lemma 3 1 we know ’ohat VR(X,, ary (qu) (X) is
continuous in, R(Xo,_> It is known that Pacx,.s gz:(X ).ist parabolic.on R(X,, 3r)
(seo [2] or [3]). Hence Gmxa,g,,(gu) (X) is continuous in R(X o 31) by (3.15)". By
(8.18), we know that 4 (X) is-continuousin B(X e, 87). " *3/% o
As is similar to (3. 15) and (3 15)’ by regardmg ¢ 837 ero. outsuie m,
we have for any X ER(X o 2rr), ’ e
- u(X )=l P, 2nt{ X))+ G rexi ary(qu) N(X)n s Lo (3.16)
GR(x.,.ar)(Qu) (X)= V.ecx,,sr) (Q”L(X )—F B(Zor 2P, (X )r . (3.16)"
where gv(X ) Js deﬁned by (3 14) correspond.mg to R(Xo, 2'r) '

Smee g IS contmuous 1(n R(X o 2rr), y Lemma 3 2, me, g,)(gu)(w, )
£ X 2% j

emsts and 1s contmuous in (m, t) ER(XO, Zr), ‘b 1{ By (3 16) and (3 16)’

;2

Lokt

we know tha,t %—;_M(X ). exighy gnd iy ccmtmuous dn R(X o, 2r); 6= 1 ++¢y d." Henoe

u(=, 1):i8 Holder oontmuous inw uniformly,for ¢ in m -Congequently, qu

has the same proper’ﬁy as u in R(Xo, ry. )

For the same Teasos, with “$he. Gorivention’ ﬁhat q= O outmde R(X,, 1), for any

XER(XO, fr), Wwe have o v
: " ulxy = Pm,,,u (55 4 G (@) (), \3.17)

Grczon(qu) (X) = VR(Xv’f)(qu> X ) — Prizon® (X )» (3.17)"

where ¢ (X)) has theclear meaning. - by a0 i
_ By Lemma 3 3 we have ;Eor any. XER(XO, rr), R

5 Ame..,n(qu) (w, 1)+ (gqu) (@, 1) = 7~ me, " (qu} (2, t) s e

It follows from this and (3.17), (3 17" ‘that

—I—AU(X)+(QM) (XD =—-— - u(X)y X ER(X,, 4”) .‘

Lo T R
B R :

Henoe % is :a"solution on- R(X o T Smee Xy is ar'bltrary, we. know that v is a
golution of (3.1) on D. g oyt g U .
Step 4. By Theorem 3 1, we know that u(X ) has the boundary property ‘a8
desired, the whole proof is now completed.
For a more general funotional olass of g, we have the following
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s——

Theorem 3.3. Suppose that g€ K4 % locally bounded on D -and f is bounded
measuradle on 8D. Then u(X') = E*{e,(vp) f (X +,)} is continuous n D.

Proof For anyX o€ D, there exists an r>0, sueh ‘that R(X,, r) <D andq is
pounded on R(Xo, r). For any X € R(X,, 1), by thé strong Makov property, we
bave ! . s

u(X) =Ex{eq(mx,n)u(er r,)} | (3.18)
,Smce u(X ) is bounded on D and hence on aR(X o fr), it follows from (8.18) th -
it is suﬁiolent 0 prove the theorem by supposing that g i9 bounded on D and D
‘an interval, Bub then the conclusion follows from the proof of Theorem: 3.2,

In contrast to Theorem 3.2, the following result gives a probabilis
repesentation and a marbingale ‘ohafacterization ' of the solutions for diffusi
‘equations o TRt Tt A S
Theorem 34. Let gEK’ o Of'the Function u(X) tn'0% 1(D) satfbsf’bes v

| La@r -0 o6 oep @

Then for every domain B, BECD, the following two cmM%m are. sa#bsffwd I
@) w(X) =B g, Avn)u(Xins)} XED, ER:
(2) Forany X €D, {eq(t/\’P'E)u(XMn) Fitino i
forms a PX-martingale. . . it e
Furthermore, (1) and (2) are equwalern,t TR j ‘
Proof Now suppose that «(X) satisfies (3. 1~9) on D we prove (1) N
It X = (s, §) €D\E, then PX{rs=0} =1 henoe (1) is true. Thus we haye or
‘40 congider the case that X € E. Define a funotion F(X.y) on Dx R by .

. ‘ St i

F<Xr ?/) W(X)r X = (‘177 s) ED YyERY, . -, ‘ R (3'.5
Then » - &
R X, y) —y %(X)‘f‘ 3"F(X y)’“' FulX) =
3:0. TV T T e Y T

- X= ((@y =+ :%): s)ED yER, i 1 .z
For the SSTBM {X: Z: }t>0 —{[% s— &, 3”3}»0 from X= (w, 9, we set
M) ={zi""teg =1, 00 dy
Vo) ={s— Advs}o Vl(t) (oG AT im0 3.
N N(t) (e, -+, ), Vo), Vl(t)) R

Then M‘(t) isa oontmuous Lﬂ—martmgale with respeot to {F }M and V"(t) &
are ZF-adapted prooesses which are of bounded Varlatlons on each finite interya.,
and so N(t) is a {F}i>0 semimartingale. Smce MY, MDe=<af, o'yr Nve=3u(r A7),
uging Ito’s formula™ for F (X, y) and N (£), We obtain
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b (b A TR (X e (XY C o e

=R ) B QO Tatat = [ eir) G Licnsitr

R I J-’u(X,-)g(X,)Gq('r)I(r<,,x)d'r+ -" Gq(T)Au(X,)I(KT,)dT. Poa
In VleW of the agsumption (3.19), the above equallty reduoes to

L sRmEa) e _

‘ . ' —ZJ 3«(”')_"(Xr)1(r<rx)dwr M(t)’ Sa.y (3 24)
By the. coriclusion in [8], {M @), % }t>., ds.a Rx—martmgale Wlth M (O) =0. Then
from:(8.24), we.obtain .; - = il oy e :
B i M PIRLIC PR p U(X) ._Eﬂeq(t;/\w)u(xmn)}., i
Henoe (1) is true for X ED S

To complete, the proof;tit:is enough to show that (1D=>(2).; .. ... ..

c .. Now suppose 1 ’uhat ¢y holds We: only consuder) X= = (a;, 5) EE Smoe E is
bounded w(X t,\,) is bounded Px-a s. Henos we oan eas:ly ‘show that e, (¢A7g)u

(X1rs,) is'PX-integiable; For tany O<s<t<°° by ~the gtrong - Markov prOperty,
Wehfave By
Ex[eq(t/\va)ﬂX:xn 'f] v Ex’[eq(tA'rE)u(X,A'.,.; l,;ﬂf,”x SO
_94(3/\ vg) B {,((t— 3) /\""'E)U(X (3-t)A71)}
—eq(s/\"/E)“(XaAn) EAEREE RN A

Whloh implies ()17 o5 Alan (2 i e e 10

Neéxt resily deepens (1) ‘in the abéve ‘theorem. j S

Theotém 3.5 + Let-¢ € K ; and 'suppose thai u(X ) in 0% 1(D) satrbsffbes (3 19).
Then for every domain'E, EcD, wehavé:. .. i . 5

u(X) = EX{Gq('vu)u(X ﬁ)}, X GD
Proof "We only.consider X € E. By Theorem 3.4(1), we have
u(X) Ex{eq(t Ate)u(Xepe )}, o
3inoe E ig bounded (X ag,) 18 bounded P2, .. Hence,3M >0 s. t.
leq(t/\'ﬂ'ﬂ)u(xt/\n> I <-M3|qi (t Avg) <M‘9|ql ('7E> _
b follows from Proposﬂnon 2.2 that Ex{elql(fm)}<oo Henoe by dominated conve-
genoe theorem, we have e o mamll e s ade
u(X) = l]_ln E¥e, (" ,\TF)“(X*J "x) EX{GQ(TE)'“ (X2}
‘We now prooeed o show the umqueness of the solubion.
Theorem 3 6 Let gEK e Suppose that u(X ) 609 1(D} 48 bmmded and satisfies
-1 L () + () (X) = WX) 24X) ¥ (@ s)ED.

. Furthermore, we assume, - -

lim u(X) f(Z),

" D3X-,
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where f is a bounded measurable function on 8D and Z is any regular boundary
point of D. For any X €D, assume that PX{X ., is regujer for 8D} =1. Then we have -
. o u(X) Ex{eq(‘fb)f(x'rp)} XED -

Prroof Ohoose a seqnenoe of doma.ms {D,.} suoh tha.t D ch+1cDﬂ+1cD and
D,tD. Then wp,t7p P*-a. s. VX €D. We are sure that for any X €D,
{6(zp,)u(Xs,), Feptre1 i8S & P artmga.le. In fa.ct,q for any n>>2, by the strong
Markov property, we have ’

E*{ey(v,)u(X,,) | "nn-- S s
=6y(vp,..) B* [{6(vp,)u( X+, ) }05, | Fo,, ]
(¥, ) BE {60 (on, Yu(X o) Y=, (¥p, (X s, )
where in'the last equatlon wehave used ‘Theorem 3.5. By ‘the a.ssumptlon, U
bounded, say by M, Henoe by Pr0posﬂnon 2.2, we obta.m S T
s B [e(m)u(XL,) Y
<M’sup E{0sjal(7p,) };<1|{ 2B {g3101(70) } <oo. -

We know from Theorem 3.5 that for any n=>1

*

R (X SR ey, XED: Lo
14 follows from the martmga.le conveigence’ 'théorem (8009 Theorem 3. 11) tha.t
| Uy B (o) K )Y Y

vt

'Puttmg Theorems 3. 1 3 2 a,ﬁd 36 together, wWe ﬁnally obta.m the followmg

Theorem 3.7. Suppose that q fbs the same as in Theorem 3 2, and f is bounds
measurale on 8D and contmuous at eveq"y q"egulw boundafry po'mt of D and.for a
x ED Px{X 208 mgular for 2D} =1. Then the Dirichlet pqoblem (3 1) and (3.‘
has a unique bounded solution.
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