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PIECEWISE SMOOTH SOLUTIONS OF
SEMILINEAR HYPERBOLIC SYSTEMS. -
lN HIGHER SPACE DIMENSION
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~This paper discusses piecewise smooth Solations® for semilineat hyperbolic ‘systems” in
: multi-dimensional space. In the.clasq of: piecewise smooth ‘fabictions the -author proves the:
existence and uniqueness of local, solutions to the Cauchy problem for 3 x 3 hyperbo}ig;system. -
‘ Besudes, it is also proved that when two cha.la,cten?tlc sulfa.ces bea.ung weak: smgulautles
“nter sect, “the solution will still bé" piecewise smooth a.nd ‘the Wea.k smgulautles W111 propagate
along all chara.ctenstlc surfaces
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§ 1. Introducthn

Reoently, propaga’olon a.nd mteractlon of progress mg Waves for nonhnea
equatlons a,ttla,cts ma.ny mathematlclans a,ttentlon Usua.lly, there a.re three Ways i
deseribe the- progressmg Waves The ﬂmt one 1s by oonormal distrlbutlonb The theor
on saoh progressmg wavc—s ‘is deve10ped By M ":Bony, 8. Almhao, R Melrose ot a
(sed- [1—6]) “The second one is by Striated or stra,tlﬁed Wa.veé mtrodueed a,nd studle
by T "Rauoh'& M. Reed m [7 8] The %hlrd one 5By i .w1se smooth solutlon
aneh is studled in’'[9, 10] for one spaee—dunensm 1 oa.se, and studled 1n [11 1z
for 2x'9° systems in lngher spaee—djmensmnal caso Usmg funotlons Wlth JU]I]
dlsoon’omultles to’ dlsonbe smgulantles of solutlons 1s a classmal Way, bat the problel

on propa.gatlon 'snd interaction of such progressmg Waves for hyperBohe Systems Wlt
more 6quations is still 6pen In this paperwe are going to' deal with  bhis problen
We restriot our discussion to semilinear striotly and symmetrio hyperbohc system:
Existense and uniqueness for 3 X8 systems and discontinuous data are establishec
and a clear understanding on.. pgopagahm?nand intieraction of piecewise smoot
progressing waves is obtained. These regults are known only for 2x2 systems (sc
{11]). In latter case-the.ihberaction’ oﬁprdgressmg Waves doésnot appears
_Liet us consider fw 0w
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PuE<A13t+A23¢+é A"@W =F<t’ a;’ y’ u)’ (1 ‘1)

=
where P is a hermitian’symmetrio hyperholic % X & operator of first order, F and all
oofficients are smooth Suppose thaﬁ, the Qaupbg d@,’ua am %lVGIL on #z 9, which are

: i
>lecewise smooth Wlth Jump - on over a submamfold‘ o-C{t O} Wrth dimension

v—2. Let 2‘1, Ea and 23 be the: charactensbm snffaces o’f*the system throuO'h o. The
nain results in this paper aré i GRS 3

Theorem 1. For each ;pomt pEa, there evists @ umque local plecewise olution u
f the Cauchy problem for (1 1), whore i 4 has Juimp “only’ over E;UE UZs. Moreover,
f the initial data are smooth at @ point poC o, then the . olution 43 al 0 smoo'h on the
haracteri tic curves on3y, 3y and Iy pasisniyihrough p.

Theorem 2. Suppo ¢ {hat u i3 a bounded solu don of (1.1)-in Q, whichts divided
nto Q% by a space-like mani~fold 3, and QF 4344 the domain of de erminacy for:Q~.
luppo e that u & pé. 3oew'z, 6 mooth in'Q”, Biand "2y are chcm acterd tic hypersuo' 083

or P, which inter 6‘” ”‘7’"’3’”9"' ally m,‘ cr"m Q*‘ 23 fbs a fm‘wwrd chwfmc emstw
yper urface thr ough a. A N

D Ifin Q he olution u has jump only over 3y, tken w &3 pfz,ecewo‘ 8 smoo’ h in Q
th jump only over 2.

%) If in Q- the solution u has urip oWl bver 35U Sa then u & pieosws 8 smooth
v Q with jump only over 21, 25 and 23 o . e g

In order to prove Theorems 1 a,nd 2, we reduee the Oauohy problem of (1 1) to
Goursat p1 oblem m e, domam Wlbh edge o, By the property of ﬁnlte inflyence,
Jﬁidin for hyperboho sys’oem, we may assume that F in (1.1) and Oauohy data.
a,msh ou’oS1de a bounded domam, and We may resbrm’s ourselves to dlscusswn in &
slghbourhood of the orlgm In §2 ‘by q];a,ggmg, the eoordma.tes (1 D, ,1s reduced;
¥ smpler form In § 3 We compute all jumps of v and its direvatives ab the origin,
1en in § 4 we oompute all Jumps alontr 21 and 22 (1f 23 ig in betwaen 21 and 2a),
here we use the transport equaiuons esta.bhshed in [11] In § 5 by folding the

)Ina.m between Ez a.nd s o the domam bel;ween 2‘1 and X3 we eslablish Apriori,

trma’ses fOl' piecewise SOIQMODS of (1 1), and then we oqmplete the proof of ’I‘heorems
and 2 in § 6
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§2 Prehmmarles bt

Assume tha’u the equa,tron of o on i=0.i3 5= p(y), and the equatlon i
z=(t, y) E (2. 1)

with ¢,(0, ¥) =@(y) for t=1, 2, 8. Obvrously, all ; are smooth functions, and alt
0. (4, v) tend to 0, when ¢—0. ’I‘ho strlctly hyperbohsrty ‘of the syebems a]low us
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10 assme <3<y and

SE T : A2 (0, ) <at4’a(0 ?/) <3t¢'1(0 Y). .
- Nsar the or 1gm, the characteristio surfaces through ¢ lelde the whole domain
Yo several parts I, II, III; and III, (see Fig. 1). Assume that the initial data’ only,
have jump on ¢. Then by the property of finile influence domain for hyperbolic
systom, we may obtain smooth solution in I, II, which is determined completely by
the initial‘data on #=0 for >0 and a:<0 respeobively. Therefore, we only need %o
consider .a Goursat problem in the domain ITI with bounda.ry value on 3, and 3
which could be determined by initial data. ‘

For the convenience of oomputatlon, we introduoce some tramjformatlons to ﬂatte
the surface 33, 2, and Ea Fu'st by .a coordinate transformatlon, Wwe may assun
=0, and the equatbion of 3y (resp. 3,) is #=¢ (resp. a=—1t) (see [11]). Denote i
equation of T3 by o= (¢; %), we have |f’| <1. Therefore, let ‘

m’=-\-/—2(t+ba;), = -—(t a;)

.l w *L, i

(hers and later, we keep the ooordlnates y uneh;mged and omit them in I
expressmn of transformatlon) 21, Zaand Zjdre expressed by #'=0, a’=0and -

BT - Fae ol i

o Ee e =Y (i, )= @

Since ' . TS v-'_‘f],‘;:"‘ e e EEAE IR SR ! »"E"_if'!(
3F a2 T

3.7;’ 2 ~f: 2 >0}' ' : ] ’
! : -_—..,_",:n ",',.‘;f' R IR F TR
the equa.tlon of 23 oa,n be ertten in tHe form l

| @ —y(t’ . jex:
Then by the transformation =~ , _
t .
o=t o' o |
gt y) SR

21. 22, 23 become t” 0 #'=0, #' =4, Furthermore, by S
t"'= 5 (t”—i—m")',: ':z;"'= 2‘ (‘—'t"-l—-w")',‘
these surfaces are ochanged to o '
) t"’ Nl t","‘ _mlll t”’—O

Let us still denbte ”’ t’” by , t, the surfaces 271, Ez. 2‘3, wﬂl be t o t—."
t=0 respeotively. After these transfm mat:ons the ongmal system has the form '

XW!’*‘EZbuy»ui—fbl 1 2 3 (2.4

where X,;=28,+ M2y, and Ay=10n 2, Ag=—1o0n 33 A;=0 on .Z;. Without loss «
genelarity we may assume the initial plane is sbill #=0, because outside the domain
111, the solution has been determined. In this way we have flattened the charaote—
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... Bince anyone in {Xy, X5 X3} can be linearly expressed by other two veo’oors,
we have for I, ¥, I, being differential from each other, v :
X t”uz}z;*, =0{X tul}zi, F-0{X z'uz}s,, known

¥ As for the terms With the foi'm {Xvu}s, for 147, we have
' {X aw}so = [X 2 ' =0 :-tg - {X 2“1}22 - {X 2u1}2° =

= [(M M) ’Lha] o= [61,,3,,, ]o+ [f 1]0 {X 2u1}z- -~ {X 2u1} 3
=known,

and similar caleulation for others. - . o
o Tt is obvmus thab 6’3{X ;u,}z,, are known Beoa.use [3,,, ] oan': be oxpressed
X3, X9, X3 with smooth coefﬁcmnts, it is ea.sy to compute all terms {X«aﬁu;}z,,
induotion with, respeot.to |8} R ‘ .
3) When all jumps {X %904}, with: |a| <m-are. determmed, We ocan’ comp
{X "} s, with |a[ m~+1 asiin step 2). R S
(e Beoause of [X X “] (le|= m) —combma’alon of d].ﬁ’erenbml operators of a’
orde‘r (] {’<m) by the- hypo’ﬁhesm ‘of indvotich a.nd the Sysbem 1tself We ha.ve
s R (X ) Y, = {X“(qul)}zn"‘{[xb b ]ul}Ey
For I+, noticing a.nyone of X3, X X;o0an be expressed by other bwo, we hs
{X ,'X u;}; ={sX ""’lu;} ,,,+{X wy ;u;} z,,+10wer order terms :
=g Xt i)y, +known'= O+known, 17 i
Henoe for different 1, ¥/, ', the jomp {X X%y}t are alsé known. Using the init
data once more, for different I, ¥, 1", G T .
{X v XU} = [ Xp X% im0dor {XvX “ut}z;}"'{x z'X“uz}s,,,‘»—known
., Similar to sbep 2), we can defermine all jumps {X *uitsy, for (o] =m+1, |
<co by induction with respeot. io;, A Bl S e o

. Therefore, all jumps of derivatives of u over ¥y, X, 23 at the ‘origin can
'detenmned by.induetion with respect to |a] ¢

R e sy

§"‘4."”Jtiihps over Chéiracteristic'Surféces L

© Tn' this seetion we determine jumps 6f w and its denva.tlves over the oharaof:enm
surfaces 3, Ss. From shem the value of all oomponents ‘of  and its denva,mes on'3
can be obtained. Here we still compute these quanhtles by mduot ion.,
First, by the system itself, o :
{u;};, = {ua}x. = {162}». {“s}s. = 0
Then along %, by substracking the equa,hon L
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veo b regbio it b Xauz+2‘bm,a,,u,_fa T - 1(4.1) v
b ]ower gide from the equatmn at apper: Slde, 'we Obtam e
X a{us} 5ib- Bbaafy fusys, T LT |
,=fa(t z Yy {u2}2|+U2’E-) fa(t @, 9, uﬂ,z_) | (4.2)

his is a nonlinear equation.. of first order for the vanable {ug}z. along 22 with
1itial datum {uz} 2 it oan be solved by elementary mtegratlon Therefore, {ua}s,
known, a.nd so is {ul} 2 Beoause all 6!,, are tangeniual to Em on 21,9 {0w}s.,, are
nown. .
Suppose that all {X “aﬂu,}z,,, for ]a|<m and a.ny B are lmown. We can
otermind them for Ja<m+1 and any B as folIows ' o

By the’ hypothems of ifduction - « * + 1 :
{XIX u"}x‘ XZ{X ull}zl kD-OWn (l 1 2 ll 1 2 3} o
iy the system itself, forl=1, Zand ¥'=1, 2,'3" E AR A

{X v X upts,={X* Xy} 5, +{[Xv, X ]W}z, T m
g : —{X M2 bryydy) o+ { [ Xy X¥]uw} s —known e (4. 3)
'v the mdependence of X 1, X 2 X Weknown {X 2 X “ug} S {X 8 X! u;,} P {X 3X U} 50
X 1X u3} a0 Actmg X ,,X, @ on. the ﬁrst equa.tmn in the system a.nd then ta.kmg the
mp over Ei, we haye - EPR
co {meiui}ﬁz {xzx bu,ay,u;}s, {sz'” fl}m U we

X 1{X zX u1}z. +HIX .‘I—X * X 1] ui}z;'l"s‘ bu:@u,{-x 3 X %1},
+2{ [ XiaX'? 01150, ]}t 5+ 2 2 {X 2 X" biuau,“c}s: RS I

—{sz'”fi}z, DT e T L e o
i tXi{fXBX ul}).‘i»‘-*‘» E b a”J{XQXm’Mi}zi’l“ {Xa-l'lul}z‘ = kn0wn i (4 i 5)
: 5

inoe {X7* u}s, i8 Known, the systerd’ composed 'of equations with thé form (4’.'5) for
11 & (|a| =m) is the one of first order with ths"samie principal part for ‘wnknown
ariables { X5 X %i;}: Therefore, tsing. the iriitial ‘data’ at the origin} {X X %u}s, .
rith |&| =m can be determined lo cally. In the same ‘way; all {X 1 X *us}s, are known:
umming up above considerations we obtain all quantities { X “u}s,,, with {a| =m+-1
really. Finally, in, i W,of the faot. that all a arenqu,qgegtgia,.lf,-to 212 on 3y,a We
now all {X"‘a ,}2,,, wﬂsh la[ —m-Fi R R
By mduchon, all Jjuraps of w and Abs demvah:ves over .are..known, . henoo the
of u a

»oundary valg eriv 1ves on 3, aTe obta, ined, -

i e ‘;"""'“r ey Al rv‘;-:,‘r;,‘r‘ PP A T R

§5 Apr10r1 Estlmate

Now we are going to estlmate % in domam IIL. Let &%%u be 8}, ,87(48,) 0% Wi’ﬁh
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a+')‘+|,3l=s', Ilu"H:,ube A I SN
| (.3 fanrulhre

r<s,i’<s’
for s, s € N. Moreover, we denote

e 3 el
o G.1)
“u"B' 2 “’M "H"“ 2-2r-1, . L

Lemma 1. If s>n, then 1he space B‘ 48 mwao‘wrnt under 0°° camposfbt@on |

Proof According to the embedd.mg theorem, H" H"’CL"‘ ifr=1and s—r>n
Therefore, B*C L™ if s>n/ 2+1 By tho proposition 5.8 in [6] H %N L~ lS mva.n
under nonlinear composition. By the results m § 1 of [13] H n,s-3 i3 invari
under nonlinear composition, if r+$— 2fr>n/ 2 and rr\1/2 Therefore, Jif s>n,
Hr % with r>1 and H%* L~ are invariant, it means tha,t B’ is also invari
under nonlinear .composition,

Lemma 2. There 48 vo>>0 such that for any v<wo be plecewise smooth
compactly supported solu:on u in IT1, satisfies

Jusl sty |4l Becun, + “ v, 2l focrrrey + |4, 2fl Bocrr, _
<O. E ||3'u "j:-r(z,nuz;‘n), (5
where s>n S v ' '
Pr oof et s begm with foldmg III, to IIL by tra,nsformatlon T—>— a; Set
u,_,s(w, t) (=, t) (i=1, 2, 3), "
we have AU . o
ZU+$ Ba,U=F inlIIL, . (5
where U= (u;, Ua, Us, u4, us, ue) A= dJag(X' 3, ' Xg Xa XU, v 2, X73) with
L0 Ky =0p—MGE, —m, YO, S
for 4=1, 2, 8, B,=diag(B;, B)) are still symmetrio, F=(f1, fa, fa, fli» for 5T W
'@ U)=ft —a, gy Ugy tg) fOr =1, 2, 3. On 'the boundary Z,, we know
" components of U and their denvablves, ‘but on the boundary 23, we only have
condltmns S '

K2 —u1—-0 u,r,—ug—O___ » G

Mu1t1plymg . 3) by U and then mtegra’amg in IT1,, we can obtain

Uﬂda;dy<j (Uﬂ+1rﬂ)wmdy+_-f U*as

Hn‘ .
| +I (—- u1+u2+u2—u5)d;5’

N I
2

The lashterm vanishes by the boundary oond.lhons, thus by Gronwall’ s inequal.

L" U3 dwdy <0 (f Pt do dy+L{fU’ as). (5.5)
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" 100 6,, 2d,, 9y, aTe tangential to 2, a.otmg the operator 6“('.7:3,) 798 with ' ;-

TGty ,3 <s
(5.2) we obtain | l

(A+2 Ejaw)aa(w@z)Ya"U alneah wur novore T e e 0 g
= [A+2§ay,, 6"(:1;3 )"3‘*]17-1—6"‘(@3,)76,,17' (5.6)

tmmg 31; (28z) 76”U on 21 ig already known, and on 3, A , 7
‘ L 6“(w6¢)7ayu4 3“(9)3@)735%1—',:; B ‘ '(5 7
3“(:1;8‘,) 6"u E“(waﬁ)Yayuz—O et v ‘»7

ce E! R - O . -
SRR AT SR A R oo e

on in the sa,me way as above we obta.m

j (6"‘(403,)73"U)2dw czy<of F2dtdwdy+J (a“(waﬁ)vaﬁU)ﬂds) (z;.sj

10T® SREERS .
([A+§§aﬁ, 3“(cva¢)”fa"]U) +(3‘(m6,)"a‘*F)f’ N X))
In view of the form of the operator’ ; ' ' D
| A+2 B, ay,,
>know . .t oo ok
(A+ZBa )U

ntains tangential differentialg of ws,¢ with respeot to 23 and dlﬁ'erentlal of w1,9,4,5
ong-the direction transversal to 2;, The. labter can be expressed by tangenhal
forentials of U by means of system (2 4) Therefore, we have

,[m,, Fidtdody< | F | iy, + U |iroscrrn, o
hich yields - Gl mea
. N U5 <OUF syt [T lZonsta)s
wd by virture of the transversity of Xi, X4, Xa, X5 to 35,
10™2 20,0055 B+ 0% %0006l 3, -
o e - SO F | osarn, it UﬂHa:(s 1))-.. ] L (5.10)
For ﬁxed s Teb us prove the meqwality TR :

P21 (| &"*2u, GHH,,+ fortoee-ar=2y, o 4 13

<O, (HF HB-"(IIL ,)+ HB*U 13 ) (6.11)
y induection Wl'bh resp‘bct o r first. Obvmnsly, (5. 10) shows the Vahdlty of (b. 10)
r r=0. Now suppose (5.11) is valid: for some .7 Wl_th §/2=1>r>0, we prove its
ilidity for r+1. Acting L= X}3"19"(28,)” 9; with at+y+ |B] <s—2r—2 on the third
{uation in (2.4), we have o "
X oLz baai@y Lris+ [ Ly Xaus+[L, bas,a,j] Ug

) -+ Lbsﬂay,’ul + Lbszzau,uz L f 3
“'or’ ‘
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) . XaL’LGs"l- basja,,‘Lus"*'. a;Lus =0 : K (5 ‘ 12)
where

V91 2o,y SO Fal rmasmsam o+ o, af H'“:"""(.mn)) .
Applying the energy method as above showed to (5.12), we have L
|| Luy| n,f<0<“ Js " Frsemsraqmny + | u1,2|| Frasaraimg for+tse=2r=tu, " ). 5. 13)
Obviously, for ug in IIIi, (or for ug in III,,) the estimate with the same form is valid,
hence
1o a-2=2ug, o}, <O (| P | Becary+ 18T 1 310) -

Thus in view of the transversity of X;, X3 with respeot to 23, by using the first
equabions in (2 4), we can estimate |97~ 3’!01,2,4,5“ B by the right hand sid
(6.11). Henoe (6.11) is proved by mduotlon - :

Having esta,bhshed ‘the estl_ma.te (6.11), we only need the faot that ﬂFll B-’(III;
dominated by 10U} %amy in order to obtain Lemma 2. The fact holds due to Lex

1, thorefore, substituting it into (5.11) implies the validity of (5 2) immediat
The proof is then complete. :

Remark If we denote

m ms(f) = "u" H'(In(t‘f))_l- "u“ H!’(nn(t—v))"l' "ullzﬂ’(ﬂu)_l_ “u" 2E‘(11|1); (5 .
the oombmmg (5 2) with the estimate of U in doma,ms I, I1, we have ' ‘
Bulan<gs(Nullasgnsa) . . . : 6.

for all piecewise'smooth solutions v of (2.4) with initial da.ta fimo=ul

. §6. Existence and Propagatlon of Smgularltles

- After esta.bhsh.mg 1he apriori estimabe (5.2) or (8. 15)), we oan prove Theor
1 on existence and uniqueness of local piecewise solution as in [11].-Here we o
g1ve the sketoh. Substltutmg derlvatlves 3,,,u 1n (2.4) by

(u(t T, y+h95> u<t @, Y— hei));

tho system is then ohanged 10 a striotly hyperbolio system I, with parameter & in
space—dimensional case. Sinee the increase of the unknown variables does not oz
any new trouble, we can use (5.2) to obtain a uniform estimate for the solutior
Lyu=f with the same initial data. By choosing a convergen¥ subsequence and pass
$o limit, we obtain the existence of the solution for the Goursat problem. Combin
the consideration in the domain I and II, we obtain the loeal existence for Cau
problem. The uniqueness comes from the apriori estimate obviously, then Theo
1 is proved.

For Theorem 2, we only give the proof of the conclusion 2). Choose a space-like
hypersurface % containing 34 Zs. By a coordinate transformation, we may assume



3G is on £ =0. Tt is showed: in [11] that ‘the solution w is piecewiss smooth Ip to
). Then by Thoorem 1, u 1s pleoewlse smooth in. Q exoept 21 U 2‘2 U2, and only
r21, Za gy the SO].U.thD “ or its denvatlves are allowed 0 have Jump T}us derlves

conclusion in Theorem 2.

"The eonclusmn in Theorem 2 is a Versuon of mteraotlon of procrz essmg waves in

sowise oategory of Bony’s oorrespondmg ooncluswn for oonormal dxsbnbutlonb
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