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ERGODIC THEOREMS FOR LINEAR GROWTH
PROCESSES WITH DIFFUSION*“ I
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Abstract

1n this papera simple class 6f the infinite dimedsional reaction-diffusion processes—
the linear growth processes with diffusion is studied. This paper is devoted to the ergodicity
of these processes. Tne exact value of parameters at which the change of pha.ée oceurs is
given, the set of all translation invariant invariant measures and the eorrespondmg domain
of attraction for each translation invariant invariant measure are descubed

§1 Introductlon

~ The reaction-diffusion processes: were proposed firstly bey G. Nieolis and
Pr:.gogme‘:“” Haken™'and others, andwere studied by them, Since 1979, Yan Shi-
jian et al _have systematloally studled these processes. Up %o now, they have solved a
lot of problems abou’ﬁ ‘the emstenee umquenesﬂEs 18,14,361
The lmea.r growth process with dlffusmn Sh\ld.LGd in thig paper ]S a class of the
reactlon—dlﬁusmn processes, In. this paper we study the ergodicity of the linear
growth processes with d1ﬂ’uS1on whieh is useful for studying the ergodicity of other
reaction-diffusion prodesses, , y . e
Let 8 be a finite or a countable set one may thmk of ea,ch U ES as a oontauner
which can contain a,rbltranly finite particles. Suppose each pax_'tlole in ths c_ontamer
+€ 8 ocan independently split from one to two at rate A;, and can die independently
1f ratels, here the evolution of the particlesin each container is ‘like the linear
;rowth model ~proposed by Feller™, Furthermore, suppose that in each container
there is a souroe of particles which produces particles at rate As, and finally suppose
that for each €S there is an exponential clook with parameter one and when the
slock in the container w rmgs, a partiocle from u goes independently o v with

orobability p(u, »), hers P=(p(u, a)))xs a transition prohabmty matrix on S.
This is the model studied in thig paper.
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For the sake of simplicity, we always assume that P is irreducible and satisfies
the Liggett condition: '

sup p(y, o) =K <eo. « @.1n
As mentioned in{9], in this case there exists a positive function a(+) on 8 with

3 2] a(z) <oo
: and consta.nt M >O such that '
’ ' zp@ymwrmmw> 1.2

‘ for all €S, where M is defined to be the smallest of suoh constant. In order t0 avoic
infinite many particles coming to a fixed container in finite time, if iS necessary

impose some restrictions on ‘the initial oonﬁgurahon of the process. We take
o Eam (€ B ] =B n@a@) <} @3
as the configuration space instead of E=2%, Z,={0, 1, 2, .-}, Let B(E,)be the
smallest o —algebra on &, relative to which all mappings n—7(z), « €S are measu-
rable. Lot #(&,)be the olass of Lipschitz funotions on &, Those are the ones fo
which there is a constant U such that
[f () —F O [<On—Lla

for all 5, { €&, where

s In =2l =2n(2) —L(@) |alz),
L(f)is defined to be the smallest of such constant.

“The formal expression for the, generator of the semigroup of our process is a:
follows: for f € % (Sa),

0f () - = SXhan(a) +1s) [f<n+e,> f(n)]
+2 A (@) [f(n—er) —f(m)]
+2"l<w) EP(% ./) [f(77 30""311) f("l)] . o (1.4:

where ¢, is the conﬁgnra.tlon which is zero everywhere but one atb =,

- The existence uniqueness theorem of Markov processes with the generator (1.4
was given by the authors™®? (also ses[3]).Those Markov processes denoted by N 8220
are called the linear growth processes with diffusion, .

For the sake of simplicity, we focus our at baninon on the . case bemg not an;
source, 1. e. A3=0. In this case §(¢ (w) =0 for all wES) isa absorbmg state of th
processes and using the coupling teohnlque, ‘we can prove the statement that if th
process with paramebers A and A, is ergodic, then the process with parameters A
and Ab satlsfymg A, <A: and Mo>>Aq is ergodio as well. Therefore there may exist
change of phase for our process with parameters A, and A, The following fheorem
illustrates this situation. . :
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- Théorem 1.5 (trivial case). Let.S be a finite set and Ag=0. p(¢, m, {) denotes the
tramsition function for the process m, =0 with pammetefrs M and As If O<Mg<<Ag,
then 2y, t20 is ergodic, ©. e. o
lim P(t 0, C) =0

fO')‘ all 'r]EE and C%O and p(t 0, 0) =1; If Ag<<My, them 7y, =0 is nomq‘godw

This theorem suggests the results we want to get for infinite S. U%for’aunately_,
the similar resulls do not hold generally. In fact, if the initial configurabion of the
process is par’alcularly unbounded then the mﬂuence of it to the ergodlclty of the
process is neghglble The critical value o the ergodlclty of the process is quite
different from that for $hé case of finite §. An example is glven in section 4 o explain
it. In order to avoid this case, we furthermore restrict the process to the space which

is called the minimal, oonﬁgurotlon spaoe as follows. For arbitrarily fixed #,€S,
define’ ' ' .

au(w)=§._°] /M”b‘”‘(qo, @), M>K.,
Usmg (1 }‘1‘), we can prove tha o o

Sp V@) <Meax@ (@6

for all z€ 8, and | co T

Dau(z) <eo, M>K, - .7)

Define R : . s I
Eu=E€B: Bn@au(@) <o}, . (L 8

Olearly ey (z)is decreasing for all #E€ 8, when M increases, Hence é’y, M>K, is
nondecreasing set sequence when M increrses. Let :

CIearly & includes all bounded conﬁgurablons by 1.7 ) Let

L= Eln@) ~L (o) (), for m, L€, ©(.10)
and T R T S
| pn, O = 2 /2~ Clsan/ (1+llv7 Cuk+1/n)7 ' @.11)

for 7}b le é" It is easy o0 check that p( -,; +)is a metric and(é”, p) 1s a Pohsh space Le’G
P(&)be the set of all probability measures on &, The sob of all bounded oylmder _
functions on & is denobed by Z(&).

. Definition 1. 12. The process {”h} 8 szmd t0 be er godmc zf t%e're emsts w,u.E P(éa )
such that foo' all v€ P(€), fEF(F),

limyP (t)f wf .

erte lim »P (t) 73 Here (t)Js the semigroup determmed by generator Q deﬁned
by(1.4), : :



No.3 Ding. W. D. & Zreng, X. G. ERGODIC THEOREMS FOR GROWTH PROCESSES 389

One of the main theorems of thig paper is

Theorem 1.18. (i) If A ~Aa+ K —1<0, then {n:} is ergodic; (it) If Ma~2a>0,
and P satisfies

t>0

ianp(t u, w) B>0 foq' some m, R (1.14)
where ' o

2, u, 2) = 2{- oy, 2), @
then {n;} 4s nonergodic. ‘ -

Remark. If P is doubly stochastio, then K =1=B, It follows that the proc
{m:}is ergodio if A; —Aa<0; and the process {n} is nonergodlc if x1—7»3>0

Besides, whon the K is less than 1, Theorem 1. 13 (1) means it is possuble Bk
the process is ergodio even if A;>Ag. By companson Wl'bh the ergodloﬂry for the proo
when § is finite, this means that diffusion mﬂuences the ergodlclty for the proc
heavily,

Suppose S =Z¢, (d>1) and P io be random Walk on 7% 1. e. p(z, ¥) =p(0, y -
for any %, ¥y € Z°. In this case (have supposed As —-O)Q is translation invariant, so
the semigroup P (¢). Therefore we return to s’oudy the transla’olon mvana.nt oa
Let & be the set of all probab:h’ﬁy Ineasures on & which are translablon invariax
and let S be the set of mvanant measures for the process {m} and P;(é") {,u, S ¢

J“'flﬂ‘ul-"(d’n) <oo, VM>K}, b= 1 2. Smce randon walk must be doubly stochast:

according te Theorem 1.13 the process {m} eventually dief if A;<<As. Hence on
invariant measure is 8,; If Az>>As, then the process {m} is .nonergodio, but there
not any nentrivial (+3,) translation invariant invariant measure in Pl(@@) The
“the interesting case to study is ‘Al=12a. For the branslatlon invarianb case, we have
Theorem 1.16. Assume that S = Z°, p(:v y) =p(0; y—2) foq' amy 7, yES, @
A=A, Ae=0, and the symmetrized chaem. pP- (p (a; ¥)) of Pt tq'mswrut whefre p(
) =1/2[p(z, ¥)+p(, 1. Then
(i) For each p>0, thea'e exists @ umque v,.G.S" C.f whwh scms ﬁes

[r@wiay=e,  @a

[ n(@m@)»,(any = p<p+aw>+2>uj P(s, 2, )ds, (L1

where p(s, o, y) is the Q-pfrocess 'w‘bth Q-matriz 2[p—I], ;

(ii) Supposs weS n .7' n P,_(é"), then thsq'e i3 a pa’obab@l@ty measure Aon [0, o
such that . S

w= I: vpk‘(dp);

(iii) If w €S, the set of all translation md}q;am orgodio probability messurcs,
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- [n@uan -p<es,

tken hm pP@)=v, Mofreoruezr q,f peyn Ps(é’) thon, for all @, :I/ES
| tim [ (e ()P &) ) = | (oo Can);

17 €S L

| [n@ ntan =<,

then

SRR hm l_l’m P (®)n: n(z) >k}>0

For the case havmgvpartlole source, we have '

Theorem 1.19. (i) If xl—x9+K 1<0, tmd 7~3>0 then {m} is e'rgodw Hefre
the umque mvarmt measure is ,wo=11m 69 P(t) ‘

(i) If M—Aa=>0 and As>0, and P satisfies: fm some a;, o

‘ it p(4 u, 8) =B>0, | | gi;zo)
‘and,vt" : . 3>0 T4 T | e . ; o
: ' ‘s}iyZp(i,‘ u, 3)=A<o0, B ~(1.21)

RN TN

‘ihen {n,} s noneq'godfw
In order 10 | give some Jmpl‘eSSIOD o readers, we g1ve an example in seotlon 4, it

means that the ergodlelty of the same fransition meoha.mes on different conﬁgurahen
space is different, o : : Ll ‘ :

§2 Flrst and Second Moment

The firsp a.nd seeond moment of the proeess a.t tlme i play a.n 1mpor’cant role in
provmg the main theorems In order ‘to compute, the firs, and second moment, we
want to-use the method of constructmg the semigroup of the process, i. e. we firstly
compute the first and second moment for finite S, then by taking hmlt ‘we geb the
expressions for . countable Su"’ In virtue of the construction of the semigroup, take
a ﬁmte subset sequonoce A, n>1 of § suoh that 4,18, let

oz y), ©  m yE4, a#y,
Pﬂ(a’f ) = P(m’ :1/)+ 2 P(‘Ua 2), o= ?!GAm
| 1’ . - &= yéAm
0, o 0therw1se,

andJet - ° -
9 f(n) = 2 (hn(w) +7&a) [f(n+ea) —f O

+ 3 an(2) [f (n=60) =f ()]
2 (@) Dpule ) Fr—eeta) ~F )]
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Lot P.(t) denote the semigroup determined by Q,; then
P@)f(n) < lim Po(8)f (n) for S Lo LIS

For arbitrarily fixeds, y€S, deﬁne the functions Jor f,, on &, respectively as
follows,

(e - fa(m) =n(®), »€ Ea; fas(m) =1(2) (n(y) = Bzv) nE&y.
Lemma 2.1. For arbitrary «€S,

 PORm) e Snwnt, w )

"7+xsf e 22’(8» w'o)ds, .

Pfroof We firstly prove (2.2) for the case of IS[ <oo. Because fae L. wo ha;
5 PO

"P(t)Qfa(’ﬂ) (M—?\a 1)P(t)fa(°7)+2P(t)fu('n)p(u, %)+ Ag.
Let u:(w, n) P (t)fm(n) ’vES then

H .:v- 3
{ (red Ly

{ 7 ut(a;,['n) (7\.1' 7“3; 1)’“:(97: 7)) +2;ut(y’ n)P(y, w)+hs,
uo(z, ) =n(z), €8, SR v A AT

By the theory of the mininAl nonnegatwe ‘Solutions ([T]. Chap.- 3), -the System
equations

T, i

.

u:(w, 'o) (?»1 7»2 1)uz(fv, n) +2 w(y, n)p(y, o),
uO(m’ ")) 77(17)! mGS
has a unique solution e%~*» 2 n(y)p(t, , a;) ‘Thus (2. 3) has umque solution

| am =4S p(, v5)

i jo e NI S p(t-5,'y, 2)ds.
v
Substituting s for ¢—s:in the sssond term above, we get (2.2) for finite S,
Now let S be countable. Because f¢ E Lo, WO have

e P (t) f a(n) hm P (t)fc(n)
By the result proved above

) P (t)fm(n)-e‘ ) 3 n(y)p»(t y, %)

b i r '5)'\? R +Ao3.[ G(A‘ *’”an(sy y) W)ds

(%, ¥, m)-<e'p(t y, ) and m(l, 9, 2)-p( v, a;) asnro0,
By 'the dominated convergenoce theorem (2.2) follows Fora the above. equatlon
Now we discuss the computation of the seoond moment of v, at time ¢,
Lemma 24. Let S be finite, then ‘
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PPEE ST A

P@)f wv("?) =% _M)tEP@ u:’w)P(t o ?J)f ML("I) sl avonah (5 G ad

+ﬁ‘3 2 j [P (3)f u(?]) -I-P (s) f 0("1)] es(a. —m(t—t)

A xp(t—s, u m)P(t-s, v, ?/)cls P e beal gl
3 +2K12j P(s)f.)('n)e”“" ‘?"’f":’p(t-s, o) plEss % ¥ )ds (2 5)
Proof By definition (1.4) of 2, and notmg phit S"is Anitte AT E
Q foy(m) = 20~ Ka) F s (1) + Bsyha fo () F A CFs() +Fo(m))
S +§{f w("]) Eg(ur @) = 8“93 +fue(n) [p(%, ¥) —3u]}.
Thus | ) )

Foowsawiddo o (800G s el M0 e

P (t)f cy(‘ﬂ) P (t)Qf w(ﬂ) fyr
) ‘}—2(?u1 )P (t)fw(n) +(Mds ,-H\.a) [P(t) f,(n) + p(t) fy(,,)]

+2 {P (t)f uy (77) [P (u, m) am] +P\ (t)f M('ﬂ) [P(ur y) .Buﬂ]}

A gbraight check demensirates that the right ha,nd side of (2 5) sa,tlsﬁes the above 1
gystem of equations, By’ ‘unlqueness ‘of fte solution; (2 5) héldsy

Lemma 2.6. For arbitrary «, y€S, BT el oy
hm‘P»(f')fwg’?) em' ‘“"21)(# % @) p(%, i3 y)fW("?)m S e g 75

+a3 |, [P(s)f«(n)+P(s)fu(n)]6““""‘""" o
Xp(t-s w)P(t 5", y)dt Ay i g
+2)‘12 I P s) f (\n) sﬂ(a.l-h)(t—s) . i

7 B nouhirlon i

Xp(t s, u, w)p(t-—s, u, y)ds - (27)
Proof When z€ 4,, w4, p(i, u) #)=0., By Lenita'2.4
Pt{(f)-fﬂ(ﬂ) =oUT 2p u, *w),pﬂ(t 0, ) fun()

syt e e

B .H‘:’ZJ’ TP (s)f u("l)+P;,(s) fv(ﬁ)]eﬂ(m~a.)(t-a)« Ags Tk
| Xp”<t -8, 'l&, m)pn(t 8, 'D g)ds A
+2K15‘_,J- P, (s)fu(n)gﬂ(“l- -i.,)(t-s) ’

e T oy vimany o g
: Xp,,(t—s, Y w)p,.(t —8 U y)\ds, 7

bub p.G, 4, 2) <& p(t, w, w) and P, (t %, m)—> p(t, 1, u), asn—>co, P.(f) fu(n) <6’P(#)

Su(n) and P,() fu(0)—=>PE) fu(n),. as >0, -Let n—>c0, by dominated oonvergenoe

heorem, we geb 2.7).,

: i ..... I ST € WL S
In order %o got ’she expresswn of the seoond moment natura,lly, we. equaii’
"~ prove :

SaEte gy e f e

;l‘j_}é.P;u(bfm;(ﬂ;%fG) f,,,,(n) o |
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But f., & Za. Therefore we have to prove that this equality holds for 1a.1-ger funobion
olass which contains the function f,, than ¥%,. Let - o
La={f: Ea> B [f()—FDI|"
<La(f)bln-Cl+2 Ifw(n) fw(C)la(w)a(y) for all n,
(€&, and ')7<Cor 77>C} '
It is easy to oheck thab Qf (n) is well defined for f G.,%, and
C1RF @) < (atFha+ M) ] 2l +1).
Lemma 2.8.  Let S be a fitnite sét and .f € La; then P()fE€ Lo
v i-Proof 'We prove the conclusion: only for %y n*E&és and n*=>n® The proof fo
n*<7n®is similar] Using eoupling argument, there. exist two proocesses ni, ¢=1, 2
defined on the same probability spade :with;'\initial oconfigurations »', %=1,
respectively such that xl=>np for all -#>0.i/The. expeota,tion operator on thi
probabﬂaty spaoe is- denoted by E. Thent v\ brion b gumis oo 0
Foden . POy - P(t)f ¥yl o S
= [Ef (i) =~ Eff(n?)‘f-»<Elf ('f/ )=fadt
<Ls(f) BLZ (i (8) ~0i () )a(z)
Sl U +E'(f«w(o7%) ﬁu(n?))a(w)w(y)]‘
From (272 it ‘follows that 0 *C IH! l‘ o I o
EE(ﬂ%(w) —‘m(m))a(w) A e
—E[(Z n‘(U)P(t %, w) Z'nﬁ(u)P(t u, w)]a(w)e“ e
- thamd] et/ TR
Aga.m from (2 5) it follows that
S B A@D ~fati)a@a) e
<6”“ B 2 | fuo (") f«m('n’) Ia(U)a(v)
e +)‘32<2 a(fn))eﬂ(" —)..+M—1)t",n _.,7 u )
2@ MLt ) e '
, <01(t){lln '+ Ifw»(nl) fw(nﬂ)la(u)a(ﬂ)},
hele Oi(t)ls a posﬂnve a.nd 1ooa.11y bounded funotlon on [0 ), Thus
|P&) ()~ P(t)f(ns)l | v
<Ls(f)M(t){lln n +2 ]faw( ) fu(nﬂ)la(w)a(y)},
here M (- )1s a posutlv‘e fa,nd looa.lly bounded funotlon on [0 oo)

Using the same argument for constructing the semigroup P(t), we can prov
that .,

(LSS

..
s
QD

AT

I

PO -POIG, @)
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Br Ll f € Lysiy@&abi viliire e il ey e e e
Proposition 2.10. ILet Sbewcomtable set. Then foa' nEé‘,, Cdnre i

P an) =5 Sl 9065 9) )
T s [P(S)fu(ﬁ)+P($‘)fu(n)]e""‘ e

uwv :) H

1’;‘ ' tz

Xp(t 8 %, :v)P(t $.Y, ?/)d3 o c
+27\,12 P(s) f (n)e""“ __’(_'T”p(t—s, }t, m)p(t 8 %, y)ds.

Proof Because- f¢,,€$g, ‘the donclusion follows from (2.7)and: (2:9). .
‘We had proved the existence unigueness theorem for the process with sta.te space
&y in which the-function ¢lass usedito determine theisemigroup.of the proocess is

L= fe b > B ~f OV <Ta(hn=Lhu - o

for some constant and:all n, { € &uf.’ S S

The oorrespondmg semigroup is denoted by Py () Now: we restriot the. process to! the
minimal state space &, the set of funébions in-Fy, restnoted fo & is denoted by
Zu(é). Clearly Zu(é?)ch(é’)~1f M>N>K. Lot~

» =N Lulé).

% includes all bounded: oylinder. funotions:and all f, #€8. Using the same
fechnique as used in [16], we can prove that the semigroup of the Progess {fq,}
restricbed to & satisfies: for f€.% and n€S . . .. : e

P(t) f(n) PM(t) f(,,) for all M>K I (2.11)

\‘r

§3 The Proofs of the Mam Theorems
In this section, the proofs of the main vtheore_ms .mentloned. sm"r‘ﬁh&_ introdunotion
are given, o A
_ Proof of Theowm 1. 5 When S is a ﬁmte sab, the state space &=25 is

. L
YR

ountable. 2 determines a Q-mahnx(q(n, C)),, cesl

A-1"7(“0: C =N+6a e
A - 7‘427)("5): Y Q Y 8y -
m {)= ) - 8.1
9( . n()p(2, y) {=n—0sto, n(w)>1 L :
Lo, otherw:se for C%n, L .(

' ~9(n, )= q(n) Zq(n, 0.

p(t, 9, {) denotes the transition fnnctlon for the prooess {m} By [16] p(t L C) is
bhe minimal Q-process as well, ' 7" ! :
" Note the following faots at first: »

(i) @is the unique abso*'bmg state of the prooess, i. e, p(3, 0, 0) 1 for all 0.
Therefore 8, is an invariant measure of tho process; -
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(ii) All other states exoept 6 are’ transmnt therefore

hmp(t, 7]; Z) 0

for arbitrbry n€ & and {+6;
(iii) By the forward differential equa.’alon, p'(4, n, )=0, therefore for any
9 €&, the limit . o ‘
‘ ‘p(t, 1, 0)1 pyast > 00 (8.2)
exists. Thus the @-prooess is ergodlc if and only if p,=1, Usmg the theory of ti
minimal nonnegative solation™, we can show ‘that {p,; nE€E} is the minim:
nonnegative solution of the followmg system of equatlons _

Y,=2 9(11, C)/q(n)Ya n#9
{Yo— o ' - v 4 ;
" Thus, it suffices to show that the _system of equa.hons (3 3) has the umqu
nonnegative solution p,,_l if 0<A:<Ag and has other solutlon exoept p,,._l ifA>A
The technique‘o-check this faoh éan be found in [14]. ‘8o we'omit the 'détails.

Remark. When Ay>2,, the process {7;}.is nonergodio, but.the set of invariar
measures is yet singleton.

Proof of Theorem 1. 13 We complete the proof of Theorem 1. 13 throug
proving some lemmas. e

Lemma3. 4.° Supposs that i n3'1 i @ sequense of probability - ébsures on(R,
AB,), here R, = [0, ), and %, is Borel field on [0, )., If

'

"

(3.

" ,l:"‘ -

i‘ (

_sup Ji,w,‘.(dr)o‘=,13<oo, o o (35

-

then there exists a subsequence P, W21 weakly converges %0 some probabilif;
measure w, and

‘ j‘:y(dr)r<3.
Moreover assume

supI ,u:,.(dq‘)fr —A<oo, ' (3.6
then

‘l‘

hm P’n’(d’f’)’l’ J‘ u«(dfr)'r.

We omit the proof, because the main idea for the proof can. be found in [6].

The process with initial conﬁgura,tlon 1 (here 165’ 1(:0) 1 for a.ll a;ES) i
denoted by {n}}. When(1.14)holds for some z& 8, then Em (a:)>0 by(2 2). Let p
denote the distribution of 1} (z)/En; (o). .

Lemma 8.7.. Suppose that (1.14) holds and As>>Aa. Then thers exists a sequencs
tayoo and a probability measure w on(R,, £,) such that w;, weakly comverges to pw and
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| L u(dr)r=§f_§ L' pa,(dr)re
. Proof From Lemma 3.4, it suffices %o prove

: i 52? I: .“t(d'l‘)'t‘=B<oo

and .
S mgj y(dr)r® =A <00,

In fack o
SO | J I-"t(d'l‘)'r E(")’:(‘”)/E’q,(w)) =1.. .

and o

[ £ ST

[} m@@nye~ B, (ﬁ)]’/E’[m @1

= P(0)fu(D)/ P (t)fa(l)]""'l/ [P Ofa(DIN
By (2 2) a.nd Propositlon 2.10,

o P(t)f.(l) e(z. )t 22)(#, u, a;) and >,

So- under the assnmptlons of the Jemina, = s

SUPJ y,,(d'r)r” -A<°°- T‘

43

Now we arein a p051tion bo prove Theorem 1 13
(1) From assumption 7\.1— M+K —1<0 we can take M >K suoh tha.t

gt M 10,
Thus : L . :
| P() |- bl = B % Snw)p(ts w5 2)au(@)en -y,
Noting ‘that Z(&) C.&, ‘then for arbitrary » € P(&) and fEZ (&), "'
O=2sup |f(n)|,
|| 27 v dn) = [ 7 y2utam |
=|[ 207 Gre@n -1 )|
<[POIFC) £ ® (@ oo

 <Tu) [ POU- LA ).
Bocauso P(2) (lnl\0) <P(D]rleAO and P() Inlu<Inlud 1450 g5 4-5c0
by the dom.ma’ﬁed oonvergenoe theorem we have ‘ \
|pors@man ~[ rmaen |50 58 t-ocm,

- Thus the process {n,} is ergodioc and the unique invariant measure is 3,,
(11) Suppose that (1.14) holds and Ay —As>0, If the process is ergodie, then
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lim 3:P(¢) =3;. On the other hand, from Lemma (3.7) there exists a subsequenoce
e =1 of distributions e, $30 of 7, () /By (#) which wea.kly converges 0 some
proba.blhty measure u on{R,, %,) and

j /w(drr)fr 1.

It follows that there is some constant ¢>>0 such that u((o,, oo)) >0. Beoa.use Mo,
weakly oonverges to u,. . :
1 (o, °°))>1/2 /w((o, 9°))>0 _
for all sufficient large mn. Write A(3) =Ex, (2), (2.2) and the a.ssump’ﬁlon impl
A(#)—>00 as t—>o0, Partigularly cA(%,)>1 for all sufficient large n. Thus
o P@)(feAD Q) ?P (&) (feAL) I (q:n(e)>c¢4<t..))(1), ‘
=P (&) Lipoymoactan 1) ) :
=P (v, (=) /B .(z) >c) '
= tie, (0, ©0)) >1/2u((s, 20))>0.
Note f, A1EF(L), the above fact contradiots that 3,P(z) converges to 8, Th
implies that {.} is nonergodio. -

The Proof of Theorem 1.19 is 31m11art0 the above proof of, Theorem 1 13. ‘W
only point out thab for the case having pariiole source, i. e. 4,>>0, 8, is no longe
‘invariant measure of the process, and the invariant measure which pia.ys the role «
3 is that one given in the following lemma. Here aséume 23>0,

Lemma 38.8. If)u—hg+K —1.<0, then

' P'o=llm 60P ON

exists and frwariant. - : - :
Proof Ohoose M>>Ksuch that A, — 7\.:.+M 1<0. Usmg the oouphng argumer
can prove that if f € F (é") is nondecreasmg, then so is P(t) f. Therefore

| P dnf o) = PnEd) P(n€am fn)

[ PacPacmim
| - 'Pé<n‘."e anf o). |
On the other hand, by (2. 2) ' '
| S|, P’(medrn)fz(n)

<A:3 2 au(m) j as: e(l- —l-n+ll—1)g<°°

By Prohorov theorem and Markov mqua.hty, {P*(xn,€"), s>0} is relatwely oompac
in- the sense of convergence for all finite dimengional distributions. Using tt
monotone argument, we can prove that wo=1lim §,P(¢) exists and is invariant
measure for the prooess,



398 A CHIN. ANN. OF MATH. . .= w0, Vol. 10 Ser. B

By the way, we point out tthat (1.20) and . (1.21) hold if P is-doubly stochastio
trapsition matrix, In $his;case the line A —2As=0 is also the, oritical line between
ergodic domain and nonergodio domain, and the process is nonergodio on this line.

Proof of Theorem 1,16 From now on, we return to the translation case, i.e.
suppose S =Z4, p(z, y) p(O y—m) for any x, yES and suppose As=0.

Ths proof of Theorem] .16 'is similar t6 the proof of Theorem 1.9 in 18]. “Two
parts of the proof of Theorem 1.9 in (8] are coupling result based on a monotonicity
property of the prooess and the first and second moments of the process, Beoa,use the
first and secon'd moment have been given in seotioft 2, ‘the parb remammg ‘o be
done is o give the'génerator of the somigroup for the ooupled proocess Tequired here,
and to point out the nesessary modifieations in carrying out the proof. Particularly, ,
we got Lemma 3.10 instead of Lemms 4,6 in- [8]. Readers interested in the details of
the proof can refor to the sections 4 and 5 of [8]

Lst o ' )

B AR PO DR (SN O IR
<Oulln* ~CHu+In"—{®lx] for all (n ) n”) (C1 ”) Eé’x é'and all M>K} ’
ForfEZ“” (7, N2 EEXE, deﬁne S
- Q(s)f(,n ,,7) A Y R TR IR S 1) S LS P PP B S P S
- &3 Mt (@) NP() [f (0t e ‘P +e) —f(n Y91 [
> Ml (@) =n*()) Lf (ot +6m 7") —f (n' 77)

eUE)>n (=)

> (@) - nl(m))[f(n, g +ea)—f(n,n)

zit (@)<n? (@)

+ 3 har* (@) An*(@) [f (o —ey 2 ) = (s 7]
ERTD M(nl(w) n“(w))[f(n —e.,, nﬂ) f(n 'n)

0@ 1> &),

+ 2 hs(n”(w) n”(W))[f(n,n —ez) —f(n,'n’)l

oin (T)<n3(x)

+27 (w)/\vf‘(w)Z plo y) [f(n —3¢+3w *—e,+6y) —f(n » 1]
> (n‘(w) n“‘(@)Zp(w, y) [f(ﬂ —e.+6y, n°) —f (0% 1)

@i @;>n%E)

+ 2 (@) n(w))ZP(w, y)[f(n n—em+6y) =f (% 901,

& ﬂl(l' <,12/

We can prove there exists a ooupled _process- (n:, L&), ; =0, with generator Q‘ﬂ)( [16]
or [3]). Each of the marginals of the coupled process determined dy Q® is a version
of the basio proocess. The coupled prooess possesses the property as follows:

I n, { €&, n={, then for all ¢=0, P (n,>],) =1,

 As Lemma, 42 in[8}, for arl‘:gitra.ry'ﬁxed u€S, let
ceoe F Oty 1) = |t () =} [
Then f € ¥ and
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Q¥ flt, 0.
=2 [7" (=) ~n"(2) |P(<v» u)
F (A—Aa—1) |7t (w) — ns(“)l
~ 3 B @) =n*@), plo, ), 7 () =n°(w)), (3.9)
where
H(n'(2) —9*(=), p(o, w), n*(u) — n”(U)) TR
_ {o, | ) n”(w))(nl(U) n"(u))/O
2|7t () =1 (@) |p(zw), if (7 (8) ~n°(2)) (it (w) <P (w)) <0."
Here H does no$ belong to % in contrast with [8]. Thus we have tp. modlfy +)
~ Lemma 4.6 in [8] as follows .
Lemma 3.10. Lot G, (n'(2) ~1*(2), p(@, w), (ni() r-nﬂ(u)) H (@) - —1*(z
p(@,. w), (W) (u). A2. Suppose € k74 (the set of alj tmmlat'wn tvariant, measur
on EXE) and for alZM>K

f g(d/nixn”)§ﬂnilli+ljn”llu) <ooL [

.—51 oy L.
R Jd

Let

9(z, &)= JMP“"(t) (dnlx'rz“)G‘ (n‘(w) n"(w), P(wv u), .l(u) n’(U)),
where P(“’(t) 48 the semigroup determined by Q, If ;&1—- hg, then

limg(e, H=0, 3.1
for each €8,
: P’I'OOf Set L ST e e
ha )= [ 1 PO @ ) H (P (a) - 'nﬂ(w),P(ws D7) =)
By (3.9) and noting f€.®, ' " : . TS
0<L§h(w, 9ds O R LT

= —J t J“’ (dn* X0 ) P& () QEf (o, 1) ds
= —J PO f (nty 7)) wl{dnt X5®), +I w(dn' X27) I’?l(“) —n’(w].

I IC T OR O

Let t—>oc0, we get . BT VPR . i
Sk, 8)d8<Ju(d’r: Xn’)lnl(u) @<
BeoauseO<G’<H Wehave' ' o -

f Zy(w, s)ds<°° o ” (3.12)
~ By the fact that G, as a bounded eylinde function belongs to ¥, '
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D - m—_ -

(@, ¥ = JMP‘”(t) (dn*xnea w(w)— (@) play ;7@ =7P()
= | mant x G @) o, p(w, u), o8 —1)

i + I ds f HPD(8) (dnt ) QDG (o7 (@) 17 (=),

(@ %), 74(w) =r*(w)),
o that g(a;, t) is absolutely eontmuous 1n t and -

L g0 = j PR (dnlxnw.(nl(w) o, 2o 0, 8) —n”(u))-
Hfollowb thab - L e SR
- ~|-§’7 (o t)l<fﬁbP"’(t) <an1xn’>0<nn11|u¥ihﬂn ), MK,

vhere the constant O depends on'gand M but not £, On the other ha,nd 11; follows
'‘rom p €. that . T .

j WEO() @) (b bl

= nanx e PO £ T o6 w v Daue)
<%2w@, o R

- . . e . X :
R At AT e e

1070 :

L p1= i\alljﬁb(dnlxn’)f ")

Thus

supl -—g(w, ?) l < oo,

(3.11) follows from. above-and: (3 12)s- L :
Using Lemma 3.10 instoad of Lemma 4.6 in [8], we gan complete the proof of

Theorem 1.16 along the way of the sections 4 and 5-in[8].

§4. AnExample’ '

Theorem 1.13 and Theorem 1.16 ‘ean; generally speakmg. when P is a doubly
stochastic transition matbrix, the ergodlolty for the process restncted to the minimal
sonfiguration space i3 almost the same as the ergodloﬂ;y for the linear birth and death
Q-process “, In this section an example is givon which shows if there is not any
restriotion imposed on.the oconfiguration space, then diffusion may influence heavily
the ergodicity for the process even though P is doubly stoohastio. In fact, there may
. exxsb some seriously unbounded configurations on the configuration space.
‘Throughout this section we assum that §=2%, P is the simple random walk on
Z8 i, e. ’ :

.
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[N -

Ty, y—o=0, i
P(mr y)= P

Qi Yy—o=-—8,

Y=o @1
0, . ‘ctherwise, BN
where r>0, p, ¢,>0 and s 4
a Py ! L Ty s Talt e g U
T+ 2 (pi+g)=1; and 6, €2% i=1, 2, 4, 6(f) =1 if j=i, =0 ifj#d.
We choose a fixed a(+) as follows: for each z=(ay, +-+, 25) €Z9, let
v‘ . a(w) =[[ slml
here 8=p; if ,<0, =g if z,=0.
‘ Stra.lght oomputatlon shows that
' T M= d+fr+[2p4q¢. o
As in the introduction o R
' o é’.‘={n€E: gln(ag')a(w)<oo}"J.: S e T
‘We have ~ » T Py : , i
- Theorem 4.3. Assume tlmt S =279 P is deﬁned by (4 1), and),s—o If';\,l—-)~£|

M- 1<0, then the pa'ocess 48 efrgodw of: 7«1—&.+M 1>0 tlwn ke pfrocess 2] n’b

ergodio. . L
" Proof - The proof of the ﬁrst pa.rt is the same as. the preof of Theorem 1 13 (1

The outline of the proof of the second part is similar to that of Theorem 1.13 (11)
For a.rbltra.ry 1<c,<1/p; and 1<c;<1/¢;, let

o (z) = c]:g.{h.‘ (2, 0) i,
where h(w, 0) =¢; if 2,0, =c; if 4,<0; let '

ol

! .
P¢)=‘§1 (dtq; +P£/0:) (G£P¢+Q¢/0‘) +r.

Then .
| sup {ps: 1<e,<1/p, 1<d, <1/g;, =1, 2, «, @}
.8
=d+”'+§ pgi=M,
and A
; Wo(w)a(a’) <oo, (4.
g %o (2)p(@) ¥) Z=peme(y)s 4.

It follows from (4.5) that .
. 2 T (w)P (t) @, y) =6 F°_1”Wo(y) . (4 .

Taking n,() = [o,()} +1, z€ES, (4.4)» implies that 1,E€ &. From (4.6) and (2
it follows that

=7

P(8)fo(me) ZeN PV, (g) . (4.7
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Jeing (4‘.7 ), to complete the proof of the second part of Theorem 4.3 is almost to
sepeat the proof of Theorem 1.13 (if) for the process with initial configuration 7.
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