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DEGREE OF COPOSITIVE POLYNOMIAL
| APPROXIMATION

Yu XTAMGMING (#7# 5] )*

_ Abstract

Denoteby E,(f) the degree of copositive: approximation to f(%) by polynomials of
degree < n. For function f(z) € O —1, 1] vyhich alternates in sign finitely many timesin
L -1, 1], the author obtains the following Jackson type estimates .

. L L E.(f)<COn *(f®, 1/n)
‘ f'oa. any positive iﬁteger 'k. ' '“
' Letf(w) € 0[-1, 1]. f(v) ohanges sign at y € (-1, 1) 1ff(y) =0 ‘and if {

some >0, f(aa) f(a;a) <0 for a.11 Y- Loy <n<zm<y-+s. Such a'y is ocalled
alternation point of £ ()’ We say that function g(z) is copositive with Flo) if f(
g(z)=0 forallz€ -1, 1]. 'In this’ paper, wealways suppose that f(z) alterna
in sign ﬁmtely many times, tha,’o 1s, the number of the altematlon points of f(
in [—1, 1] is finite." o S ‘ ! o

The purpose of this paper is %o disouss the degree of approximation to suotl
function f(z) by polynomials thab are copositive with f (v).'In fhe past years ma
authors paid their attention to this’ toplo and achieved some results, Denote by
the class of all polynomials of degree not exceeding n, and write ©

E,(f) =inf{]| f (&) — pa(a) | pa(a)-€ U, and p,(z) copditive with f(z)}~

E. Passow and L. Raymon B proved that if f(z) €0[—1, 1] is -proper piecew
monotone with nonvamshmg “peaks, ‘then there is a oonsta,nt & depending ‘on f(
- ‘bub not on n, such that for n sufficiéntly:large :

En(f) <d€0<fr 1/'"')! ’

‘where w(f, t) is the modulus of continuity of f(z). Later J. A. Rou-lier repla
the condition of proper piecewise mono’ﬁonﬁoity by a condition that f(a) is prope
alternating (see [4] for detail). Obviously both conditions on f(z) made these res
not satisfactory. Recently D. Leviatan studied this problem,an,d obtained. Jack
type estimates for the dégree of copositive polynomial approximation..with
restriotions of the above type. He proved thatif f(s) € 0*[—1,1], 0<k<2, altern:
in sign r fimes in [—1, 1], and —1<y3<ya<---<¥y,<1 are the alternation poi
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“hen for all n sufficiently large

E, (f) <G’n"‘w ( f"" 1/n), ‘ (1)

as greably .‘I.IDPI'OVGd the precedmg r ults, but th remé,m or questlon is 1f (1) still
old for k=>3. Here we introduoce : a néw- 1dea and by it give an affirmative answer fo
he above questlon

Theorem.1 Letk bc cmy pos@tfzfve 'mtege/r ;S’uppose that Sunction f(z) €C*[—-1,1]
lternates n sign r times in [—1, 1], and )
Y={y,— 1<yi<ys< <y, <1}
: the sot of au altefmat'l;on pomts of f(@y.“Then for all n suﬁcfl;enﬂy la/rge, o
' B <0n"‘a> (f“" /m), ’
there O only depends on Y. =
The idea is that we first oonsuder the smultaneous polynomial approximation

ith Hermite interpolatory side conditions, and then use the relative result to the
;pos:l sive. polynom.lal approxnnatlon

Ay

- (I) Some a.uthors have studied the deu'ree of polynomJal approxm:a.tlon with
erzmte mterpolatory side oondltmn& (e. g. see. [1]) Let f (a;) €g [11], and .

Y NS A PRE ={:t/4l —1<y1<ys< <y <1}, '

enote, ¢ .

H T
R R AT R

B, (f,Y) =mf {I!f (@) -Pn(w) 1 Ipn(w) Gﬂm P‘” (y;) =f‘”(?/4)’ O
e b=l ey §=0,1, oo BY L
he followmg result is known - iif f (w) €0 [-1, 1], $hen for all n summen’oly large,
L e B <0n"‘w(f"" 1/»0
here o only depends on Y :

‘We now- consider , the. snmultaneous polynomml a.pproxmahon wfah Hermlte
tberpolatory side. oondltlons, and establish - Lo
. Theorem 2 Let k, r.be any positive mtegers I (w) EO"[ 1 1], ’
- Y ={p| -1<p1Cya<-2<yp<1}.
hen thea'e ewists a pol«ynomwl Q.(x) € II,, such that ,
: QP () = W) (§=0, 1, -, kb ?7,=1,, 1)
dfornsuﬁicwntlylafrge, R e T
@) ~QP (z) I<0n"‘*’w(f"" 1/%) 5»=0., Lol
We@omlydependsonY 1 - : i S -
Prao_f “From [B], we know that there exists p,(z) EII such that : e
179 (@) —pP (2) | <O e (f9, 1/,,,), 3 =0, 1, o0, Bi @
petting - - - . , “ . , :
O ()

n

®

Cy=

[



Ko. 3 Yu, X, M. COPOSITIVE POLYNOMIAL APPROXIMATION 411

we have v : :

leu] <Cn o (F®, 1/n), §=0,1, <+, k; b=1, ooy 7. @

Now we are go'ng to modify p.(z) to satisfy Hermite interpolatory side conditions.
For any fixed integer j, 0<<j<k, lob

n,_[y+1] (lc+1)('r 1),v

T.(x) =cos ('n. arc cos ?)’.

20—1
2%’
For any fixed integer 4, 1<é<r, and ;€Y , we can find integer A such that
Y<a,,-1 an(_l

" p=2c08 av,f\. 1, -

provided n is sufficiently large.
Define

1 (a— g

=1

#4 .

\ I Gi—w)™™
i

®E®

1+;

()= (T~ 14 T2 <1+m>) T(wz,))

Py

Then h‘, (a;) isan a.lgeblalo polynmmal of degree not exceedmg n, a.nd h‘, (a;) sa.tL
the followmg cond_ltlons ' v

WP - 3'<1+ ) <T;<wa>> ~, y

B (4,) = 0(ub 6, w1, ey 15 9=0, 1, 5 B,
1hp (2) | <C w, s€[~1, 11, p=0, 1 |
"The estlmates (5) a.nd (6) come from the p10pe1 ties of T (a:) and the ohome of o,
' Deﬁne B

Hy(@) = 3 00hua),

where the b{) are the solution of the equation

hio(y) - O oo 0 b /0
Bo) Baw) 0 v 0 JBp) [0
B @) B (W) --hip <y¢> o |\ w
ORI CARRRERE e \op ! o

‘Since the above’ fitst' matrix is' lower tna.ngular with non-zero elements on
dla.gonal the equation has unique solution. Hence H () €11, and

. H$(yu) =800, v, §=0, 1, -+, & 4, p=1, (M
Furthermore, from (5) and (6), by mathematical induction it is easy to verify
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3] <0,
where O only depends on k and ¥, Thus, by (6), L .
o | HP (@) | <O, € [~1,1], 4=1 50, 15 9, §=0, L, ey ke w0+ (8)
Define ) L v
(‘5) Pn(‘v)“' 1/20 ”’210114' /w(‘v)
We have Q.(z) €I, and, by (7) and (8),
QP (ys ) =pP (?/s)'*‘ciiﬂg) (%) ‘
« —nd L
= () + L2 PO i pirgy), =0, 1, o, By b, ey
Trom (2), (4) and (8), we:have:

R TEE

|f9 (@) - Qm”(w)l‘ilf(”(w) - (@) [+ 2 2 |0w|H§3)(fﬂ)|
< On=~*+3 4oy ( f(k) 1) é ~$1:0n‘-vk co f(k), ;),,,‘5

- w 1 )
<G’rn ) ( J®, —~)-
Chis completes the proof. .\

(II) Now wecan solve the problem of coposﬂnve polynomlal ‘approximation
yith the help of Theorem" 2 Before proving Theorem 1, we establish the following
. Theorem. 3 Let k. be any poszt'zxve dnteger. Suppose that functwn f (@) GO"[ 1,
] alte/mates Qm s'bg'n. 3 tfbmes im [~ 1 1] and Y = {y,l —-1<y1<y5< y,-<1} is tlw set of
1 alternation pmnts of f(@). If foq' each fiwed 4, 1<é<r, there ewe;si om'q'espmdmg
nteger 5, 1<ji<<k, such uhat f‘”(y,) 0( j= =0, 1, e, .7‘ 1) and f(y;) #0, then, far
 suffictently large, : : e

. EWY <0n"‘w(f"" 1),
;kefre O only depends (m Y. ,
Proof Noticing that fo) ohanges S1gn at y;, we have f (y,) =0, and on the
ssumption that f‘”(y,) 0(j=0, 1, -, §;—1) and f‘“(y;)aéo we know that {h mush
¢ odd numbers. Suppose &, f‘”(y,) >O &= 1. Then g=~1, if f(2) changes sign
b g, from positive 10 negative; and & =+1 if f (a;) changes sign ab y; from negative
> positive. Since f® (x) €O[—1, 1], there are posmve numbers & and 8 sneh thab
JP(2) >8>0 for 5 € (y;—e, y;+2) and 6=1, s i
By Theorem 2, for f(z) €0°[~1, 1] and ¥ = {y;} we got Qu(a) EH satisfying
QY (y) =) |
|f9 () — Q‘”(w)l<0n"‘+’w(f"°’ 1/ﬂ) (ﬂ =0, 1, +, by §=1, 4, ). . (9)
I'heorefore, for §=0, 1; -, §;—1; §=1,--, r, we have P
Q" (g =0 . eV

and
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|799(a) — @9 (&) | O+ 402 (f%, 1/m).
For 1<4,<F, the term in the right hand side of the above inequality converges to
zero uniformly about « &€ [—1, 1] and j; as » — oo, Thus for n srifﬁeienﬂj large we
2ave _— ' .
5QY(2)>8/2>0, o€ (yi—8, Yi+8), 4=1, ;7. = (11)
According to the above statement about the relation between &, and ‘the a,lternatmn
of f() in sign at y,, from (10) and (11), we can affirm that

Q.(2)f (@) >0, 5€ (vi—s, yii-s), 6=1,
Define .

p=min {If[ (m—;h) I, ﬂ-;G [—1, 1]\0(?)6"3’ ?/r"s)},
and |

P (w) Qn(w)+2p"||f (@) - Qn(m)ll er (@=9).

:The second term on the. nght hand side of (13) is eopositive with f (o:) in-[—1,
Moreover, for. ; : S :

' 476[ 1, 1]\U<yl 3, ?lrl'S), ‘ o
the absolute value of the seoond term is la.rger than 17 (a;) Q,.(w)l Henee, f
(12) and (13), for m suiﬁmently large we have - ’
P, (m)f(a;)>0 w€[-1, 1].
‘On the other hand, from (9), we obtain - DR .
17 @~ Pu@) <1/ (@) ~Qu(o) | +20f@) ~ @@ -5 ||11 -]
<0On~ co(f"" l/n)
This completss our proof, .

Lemma Let & be any pomwe mteger Then tkerre ew%sts 2 (@) € I, which is
increasing amd samﬁes

|sgn 2—g.(a) | <O (1+Im=l"“1,w€[ 1,13,

. v “ N=[—n;]"

P3y(z) be the Legendae polynomial of degree 2N t. ('a==1, . N) be posifixéé 7
of P3y (o) in inoreasing order
Define

Proof  lLey

qu(i)
M) = oa t”) E T

where c,isa oons’oant such that

L e a1
By the simlar method of proving Lemma 1 in [6], we can prove that
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) = f 1 Sg“(””)*sg“(“ D auayar |

e PRSI PP T I o I RI TSN R T RTINS AETRN

‘an algebra.m polynomlal of degree < n.in: [ 1 1], a.nd el
|sgn @ —ga(2) | <O+ |na|) -1, a;E[ 1, 1]

inoce sgn & is odd.and moreasing- in [~1, 1},
0. : ' ‘ .» : ) ERRIN LTI
Pfroof of Theorefm 1 Wn’ae y : ;

Yi(f) =l €Y; f2¥) =0, §=0, 1 R e f(")Q’/c)ﬁ“‘O 1<J«<7"}

obviously:gi(») is.odd and increasing

H

TTET LA

nd
; » Yﬂ(f) {?/:I%EY .%EY1(f)}
[ence Y=Y1\f) UYﬂ(f), and’ '
Yi(f) ={wl f®@w) =0, j=0, 1. -, 70}

Ve shall prove this theorem by mathemahoal mduotlon It Yg.( f) is an empty set,
ken:Theorem 3" gives the desirséd ‘conolusion. ‘Now sippost’ we have established
'heorem 1 for the case that ¥'a(f) has s pombs we shall show that Theérem 1 isstill
alid if Ys(f) hass+1points. . ... /; .

Wlthout loss of generahty, we assnme tha.t z= OEY 5,( f) Deﬁne e
o B ‘ a;, 1<w<0 v )

(a;), ‘ 0<w<1

lecause f(w) € 0*[-1, 1] and f‘” (0) =0, j= o 1, ,k we have. F(2)€0*[—1, 1]
nd : '

m(f(k) 8)<2w(f"‘) 3) SRETERLT L A (14)
JIso F (=) alternates in sign ﬁmtely many fires, and o
Yy(H= Fi(f), Yo(F)= Ya(H\{OF"
'hat means ¥'s(F)' has s pointd.'By the induchion’ assumpblon, there ems’m
F (a:) EH :»/2: .
ach that _?(a;)fs,.(w) 0 and : R o B
[F (@) - Pu(a)| <0n~*w<f°‘> 1/n) <0n"’w(f"”’ VR €1}
On the other hand, from Lemma, we have ¢.(s) € I, which is odd and
ncreasmg, a.nd satlsﬁes . '

[sgn a— qn> <Ot wo] 5, w1, 9. @
Define -
P,(2) = Po(2) ga(2) -
"hen P (@) €I, f (@) Pu(w)= (f () sgn )+ (P, (a;) Q»(m)) (f (@P (‘5)) (sgn 24.())
. =0. We only need to prove
HOB lz’n(w)|<0n”"w(f“‘) l)

Since
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 f(@) —Pu(z) = F (2) sgn o — Pp(2)g.(2)
= [f(a) = Pu(2)] sgn o+ P, (w) [Sgn z— Q..(w)] Ii+1,,
and from (1), . - = . - e
RO |11|<On"‘m(f(") 1/'n), |
it remains 1;0 show the smﬂar estimate for Is. S
Noticing that f(z) €0°[—1, 1] with f(”(0)=0, §=0, 1, =, k, and (14), we
have , . I o
[F@[=17@~FO) | =]s|-|F(82) | =] 6z) - F (0) |
< <|of* lf("’(gw) ?‘”’(0)|<IWI”0)(?("’ [=])
<2zl (P, ).
If |o|<1/m, it follows by (15) and (17) that .
P, (W)l*ilf (w)|+0""w(f"" 1/%) <0ﬂ""w(f"" 1/%)

whioh implies

L[ <On (/).
If |#|>1/n, from (15), (16) and (17), we have
|Ta| <{sgno—gu(@) |+ [ (@)~ Fa(@)| +- P42} | - |sgn 2~ gu(2) |
=0 o (fP, 1/n) +0|o[*'a(f¥, [a]) [na| ™
KOFw(F, 1/n)+0|mlk(1+nlmlyw(f0‘) 1/“)|”W|-k"' .
—’<0"‘m(f(’" Efmy, o e I g Do
Comblmng the above mequa.hty with (18) donfpletes’the proof. - -~

A Mt v
¥ ‘ - X'.,‘
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