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ON THE INVARIANCE PRINCIPLE FOR p-MIXING
SEQUENCES OF RANDOM VARIABLES

SHAO QIMAN  (BREE)™

Abstract

In this note the author establishes the invariance principle for p-mixing sequences
under combinations of moment assumptions and p-mixing rates. The result answers a
Pproblem from a recent survey paper of Peligrad.

§1. Introduction

Firgt some notation: log denotes the logarithm with bage 2 and log* #: =max/
log #}. The indicator function of a set A is denoted by I ,,. The notation a< b mea
a=0(b). The greatest integer< s is denoted by [z]. The norm in D, is denoted
1-ls(p=1). N(0, 1) denotes the standard normal distribution. {W (%), 0<i<
-denotes the standard Wiener process.

Throughout the paper we suppose that {X,, FEZ} is a strlctly ghationa
sequence of real-valued random variables on a probability space (2, F, P). F

. —ocoim<n<<oo let F}, denote the o-field of events generated by the rando
variables (X3, m<¥,<n). For each natural n>>1 define the dependence coefficient

p(n):=  su [eorr (f, 9) .

JE€ Ls(F2), geL,(F..
The stationary sequence {X,} ig said to be p-mixing if p(n)—0 as n—>co.

For each n>>1 define the partial sum Sy: =0, Sp: = i} X, and denote by S(%):
k=1 .

8y, for each >0, of:=var §(#). Peligrad® proved the following weak invarian
principle:

Theorem A, Suppose {X} i3 a strictly stationary sequence of random variabl
satisfying

HX,=0, EX;<00, 04—>00 as n—>00, .z
Elpl/”(z") oo, (1.:
k=

[nt]
For each t &[0, 1], put W,(t):= 7§1 X /0. Then

- Wa(t)=>W (8) as n—>co. (1.3)
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Shao™ showed that the condition (1.2) can be replaced by

f!lp(z") <eo, @a.2)
k= . R
Recently Peligrad in her survey paper proposed the study of the followfving general
problem: Suppose { X} satisfies (1.1) and EX3¢(| X,|) <oo, where g: [0, c0)—[0,
o0) ig such that

g(x) and 2°/¢(z) are inoreasing funoctions, for some 0<d<1. 1.9
Then, under these conditions, what is the slowest mixing rabe for p(n) that will still
imply that W, ig weakly convergent to W. She conjectured that: if {X,} is strictly
stationary and satigfies .

X39(| Xof) <o and
g(nv2) >>exp(d 3 p(k)) | (1.5)
k= R
ag n—>oo for every d>0, then W, =W.
Fortunately, Peligrad™ has proved-

Theorem B. Let g(v) satisfy (1.4). Suppose that {X,} is a sirictly statwnwry
sequence satisfying (1.1) and

i EX%Q(IXOI)<°° (1-6)0
an .
g sexp((2+87) 3 p(2) ) R

for some 0<8*<1. Then 8y/oa—>N(0, 1) in disiribution as n—>oo,

‘We now can egtablish the following

Theorem. ILet g(x) satisfg) (1.4). Suppose {X+} is a sirictly stationary sequence
satisfying (1.1), (1.6), and (1.6),, then W, is weakly convergent to W.

Thig theorem contains Theorem A. By taking g(z) =congtant for every =0,
we geb the conclusion of Theorem A under (1.2)’. By simple oomputation we get the
following corollarieg: ‘

Corollary 1. Assume {X,} is strictly stationary satisfying (1.1) and for some

£>0, and ¢>0
Xﬁ(log*’] Xol)zo/(i-a)<oo
and
p(n) <clog™n for every n sufficiently large. _ @.7

Then the invariance principle holds.
Corollary 2. Assume {X;} is sirictly statwnwry satisfying (1.1) and for some
0<B<1, e>0and ¢>>0 '

BX: exP(%“;_)_ (2log+|X1|)1“’><oo o (1.8)

and
p(n)<<clog=®n for every n suffitetly large. 1.9y
Then the tnvariance principle hilds.

Corollary 3. Assume {X,} is strictly stationary satisfying (1.1) and for some
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>0, >0 and ¢>0

. .
EX%QXP((1—sfgllsgg+1I(§£{Xo|)')<°° 1.10)
and

p(n)<clog"logn for every n sufficiently large. (1.11)
Then the invariance principle holds. '

§2. Proof of Theorem

‘We shall give first two preliminary lemmas followed by the proof of Theorem

Lemma 1. Suppose {Xy} satisfies (1.1). We can find two positive constar
c1(e") and ca(&*) such that for every n>1

[Iog 1]
oi<emEXG exp( é p(2% <1+—i— s*)) (2.:
N k=1 .
and
[(1—z"og n]
ar=con exp(——(i—k%— s*> > p(2’°)>. (2.
k=1

For the proof of this lemma see Lemma 1 in [4]. The following lemma is a mo)
precise form of Lemma 1 of [5].

Lemma 2. Suppose {X;} satisfies (1.1) and B|X,|***< oo for some 0<<3<:
Then there is a positive constant cs such that for every n=>1

{logn]
E|8,|2< c3(0,2,+° +E|{ X o|**nexp (30 D @+ (9F) )) (2.3
k=1

Proof of Theorem Shao™ hag established the invariance principle under th
agsumption ; p(2¥) <co. We shall treat here the case when }k] p(2%) =00, when w
shall consider that g(z)—>cc ag a~—>oc0, Without logs of generality, we can assum
that

p(n) = (log n) " (log~2log n) (2.4
for every n sufficiently large. '

In order to establish the theorem, by Theorem 1.4 of [3] and Theorem 1 of [4]
it suffices to show that for each posifive & there exists A>>1 such thab

P(xﬁﬁx,[ S;| =>6A0,) <6s/A. (2.5

The proof of (2.5) is somewhé,t gimilar to the proof of Lemma 2 in [5]. W

ghall truneate at level J:=n"2/T', where '

= exp(%o 538 PP ). (2.6
Put -
Xli= XiI(IXd;J)-EXiI(|X‘I<J}’

Xm’—_XiIc!Xsl>J}‘EX"I{IX.-DJ);
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S (8 =§: X.i,' Sha (k) =é X,

bVlOllSly, 8= ;S’,,i(w)+5’,.2(w) a,nd

P(max|8,| >6\cn) <P(1‘nax| 8u(3) | =Aaw) +P(n‘1ax [ Sna(d) | =>5Aaw)e

i<n < <
We first note that Co o A

40 [lo; 9/@48) (o 40 —6/(2+6) ( n )[log‘n/’l’l] . 40 27248 ( _be_ [Iognl
g 7= B (@ < S oo o)+,
:4_(2- _6/(2+6)<l>[10g(n/1'=)] ; 90 “/(2+a)< )1
<% °F ) & PN o T
[ence we have for every n sufficiently large

i=1+[login/T®)]

@_ ;a/(zéa) .ﬂ‘_)mg(n/m] J
log T< 5o/ ix) 31 () | @.7)
ud .
[ogn] [log(n/T*)] .
3 < (1+20) "8 o2, | 2.9)
'rom thig and by (1.6), and the fach that g(a:) ig increasing we have
|  g@moxp( 22 S o(20) 2.9)
T & P '

nd by (2.1), (2.2) and (2.9) for every k<n and n sufficiently large
flogn] .
ot (B) <oRBX zionexp( 2 (143 27) o(2))

01021013EX09(|X0|) 9.3 noffn]' .
< een((pr ) 3 o)

* [logn] X
<eiei'oREX39(| X)) exp(—§-2— 3! p(2’)).

Trom thig and because > p(2") = oo, we deduce that

max —1277 2 (k) =0(1) as n—>co,
l<k<n. Oy

Whence it i9 eagy to see that for k=1, 2, --+, » and » sufficiently large
o1 (k) <20%. 4 . (2.10)
By Lemma 2 and (2.10)
) Loz ]
B {801 (k) | <o 0+ BE| Xo| **Laza<noxp(30- 31 0(2)))-

From this and by (1.1), (2.1),(1.6). (1.6),,(2.6), (2.9) and Corollary 3 of Morio
we see that there exists a congbant ¢, such that
E max|S, (k) |2+
1<k=<n

{logn]
<o (037 +n10g™ 2 n B | Xo|*¥ Tz, oxp(30 3 p7C40(2) )

, . 2+510g2+5,nEX g(I XOD ( e )
< +8 2/(2+8)
04( ou g(J)T® csexp (35 2 P~ (29 )

<co; P (I+BX3g(| Xo[))
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=B (Y| Gr-v), k=1, 2, e, py;
T8 = 3w T = T2(®) ~Uo().
svicusly
I;<P(max|T*(3) | =hoy) + P(max|Us(4) | >Aaw)
LI,

sause {I"*(4), 4=1, :++, p1y 19 a martingale sequence, we have

D1
?\;‘,,EE‘

1 a way somewhat similar to the estimabion of I3 we also have for every A>1 and

I,0<

r every = sufficiently large
I /A2 * (2.18)
Finally, we shall prove that for every ¢, &, n, by induction on %

{logn}
BT () <eddip®(r)og?® 26B X 3Tz 1 y+7+6XP ((1 +.i. s*) ’gl: p(zi)). (2.14)

Vhen k=1, by the definition of p-mixing
EU?(1) = BB (41| G) = B (Y301 B (0:4] ) <p () | Yse1la* | B W42 | G [ 2
hug (2.14) is true for k=1 and for every 4+1<p; by (2.1). When %>2, assums
2.14) holds for every integer less than 4. Pub ky=[%/2], ka=Fk—F,, then
BU(k) = BU; (k1) + BU: 10 (ba) + 2BU (k1) Usiia ()

-—EU; (701) +E¢ +i (7‘72) +2EU (l‘;i) 2 yl
<EUi(hy) + BU} 1 (Ba) + 2| Ui(lﬁi) [a° “? Yilap ().

3y induocbion hypothesis and (2.1)
EU; (k) <oy(k110g? 21+ kalog? 2y + 2(k1ks) /2 log 2Fy) .

020 rexp((1+367) S p(2))EX iz

<cik(log® 2k) s +exp ((1"‘? 8*) E P(25)>EX<2>I<IX.1>J)’P2("')'

which proves that (2.14) holds.
From (2.14) we obtain by Corollary 4 of Moricz
E max U3(3)
1<p1

[log 7] )
<Beurpie(r)log* (2p) -oxp((1+5 6*) 3 () )EX 3T azaon

2 of T 4
<~3010,,p <£;(>;;g (2p1) exp(<2 +2 s*) 521 p(2f)>EX g(IXoD

20039 Jlog* (2p2) o
< eXp<

37 (2))BX39(| Xol)

Ca =1
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By (2.7)
TR _52)‘ a/s(_%_ U oy
P ( pi) log 2p1<< 5-) ¢\ ) 2 (@)
hence we finally gel that for every A>>1 and for every n sufficiently large
I,¥<e/A?
therefore
I;<<2s /A% (2.15)
Similiarly, we have
I << 28 / A2 (2 .

(2.5) now follows from (2.11)-(2.12) and (2.15)-(2.16), which proves
theorem.

I would like to thank M. Peligrad for her preprinta.
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