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ON THE 2ND POWER OF PRIME
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Abstract

In this paper, tho author respectively constructs the prime entive function and the
prime non-entire meromorphic function of finite order whose 2nd power and derivativ:
are not psendo—prime so that the answer to the Problem (A) Song-Huang® posed is it
the affirmative. And it is exhibited that none but periodic meromorphic functions has the
property mentioned in Problem (A).

§ 1. Introduction and Statement of Results

A meromorphio function F (z) is said to be prime, if any factorization f(i
F for meromorphio f and entire g may a.lv}ays imply that either f or g ig linea:
1971, F. Gross™ agked whether there exists a periodic, prime entire funclion or
From that time on, such funections of finite and infinite order have been congtru
See references Ozawa™, Baker-Yang®™, Gross-Yang™ and Urabe™, Recently, S
Huang™ and Zheng™ independentely proved that periodic entire funchions

F(2) =ginz-exp(cosz) and G (z) =cos"z+gin z-exp(cos™™* z)
are both prime, where both n and m are non—negative integers. Obviously, F a
have a special property that F? and G* are not pseudo-prime. For example, we
write
F2(z) = [(1—w*)exp(2w)] ocosz,

where o denotes the composition of funotion. This shows an elementary
important result that the product of prime funobions is not always pseudo—p:
But the sbove F and G are both of infinite order, hence Song-Huang™ pose
following problem:

(A) Does there exist a primo entiro function of finite order such that F? i
pseudo-prime?

In this paper, we are to construct the prime enfire funotion and the prime
entire meromorphio function of finite order whose 2nd power is not pseudo-prin
that the answer to the Problem (A) is in the affirmative. And we shall poin
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that none but periodic meromorphic function possesses the same property. By the
y, the first derivative of the function which we shall congtruct is not pseudo-
me, either. Hence ab the same bime, we aldo show such an elementary and impor-
t result that the derivative of prime function is not always pseudo-prime. The
ve assertion i3 contained in the following theorems.

‘We assume that the reader is familiar with Navenlinna’s fundamental theory,
sarticular, with symbolisms n(r, f=0), N(r, f) and O(r, f) eto. And we denote
order of f by p(f) (cf.[8]).

Theorem 1. Let F be a non—periodic entq?fe funciion. Then F? is still psoudo-
. | . : R 4 :

Theorem 2. Let {v,} be a seguanée; of po"z}m,é numbers with 1,3 and Vpp1 >0,
=0, i, ), and {b,} @ sequence of finite comples numbers with b,# b, (ntm) and

41 for each n. If L(z)= f[ (1—2/b,)" forms an entirs Ffunction and p(L(cosz))

-00, then F(2) = sm""z-L(cosz) is prime. .

Theorem 3. Let L(z) be as im the above. I f p(L(cosz)) < +oo, then F(z)=
/L(cos z) is prime.

‘Remark, i) By the same methOd as in the proof of Theorem 2 of Ozawa™, we
easﬂy prove Theorem 1 s0 We omit its proof. '

i) Leb F(z) be ag in Theorem 2, then

F’(z) vosm""'lzcosz-L(cos z) —sin®* 2+ I/ (cos z)
= [wow (1 —w?) /3], (w) — (L~ fw2) watD/2T/ (w)Jocosz,

ot pseudo-prime.

[(iii) The funcion L(z) in Theorem 2 can be found. For example, we may
me b,=expv,. By the method of Hayman™ ?#7,sve can conclude that the order of
osé) is not greater than 3. o

§2. Proof of Theorems

Before proving thooremé, wo need four known resuls:

Lemma 1%%%  Assume that g(z) is an entire function 'w?;th pemod 27m of
ment'ml type o. Then ¢(z) has the form

g(z )— 2 ooxp((ji/B)z)  (O<m<kwo),
constant cs. : S ,
Lemma 271 Let f(z) be an entire function. Assume that there ewisis an
winded sequence {a.; such thai all the roots of f(z) =a,(n=1, 2,-+-) lie on a stfmfbght
line. Then f(z) must be a polynomial of degree at most 2.
Lemma 3(Borel’s Theorem™®*%Y Lot fi(2), -, fu(z) be n ent_fih'e' funct@bns
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such that f,(2) — fi(z) is non—constant for 4+7. Let g1(2), +**, ga(2) be n meromorphic
Junctions of finite order such that
p(gs) <min{p(exp(fi—f)); ¢, j=1, 2, -+, n. 44} (¢=1, 2, »--, ).

i 2. g:(2)exp( fi(2)) =0,

then 91(2) =¢s(2) =---=.(2) =0.

Lemma 4°7, If cos 2=P(g(z)), where P is a polynomial and g(z) an entire
Sunction, then g(z) =A cos(z/k) -+B, for some positive integer k and constants A and

Proof of Theorem 2 Let F(z) =sin"zL(cosz) =f(g).

‘We treat several oages, separately.

(I) The case when both f and g are transcendental entire funchons By Pol
Theorem™®, p(f)=0. Since F(z) 1s a periodic entire function with period 2m,
also a periodic function with period 2%kw for some iaoqitive integer 50,1081

Let {w,,} denote the get of all the zeros of f. Since g ig entire, there exigt a’ﬁ 1
two positive integers mo and my such thabt g —wn, (¢=0, 1) only have multiple ze
If g—w, has a simple zero for some natural number s, then since v, v, (n#m), -
a vy, multiple zero of f, where #(s) is a non-negative integer corresponding 1
further since all v,(n=1, 2,--+) are prime numbers, we may get thab b—w, only
simple zeros. Thus we can choose two distinet positive integers my and n, such
g—w, (=1, 2) only have simple zeros. And we can find out two natural num
t(m) (4=1, 2) corregponding to n,(¢=1, 2) such that the zeros of g—w, (i=1, 2)
ones of (1—c082/byny) (1—c082/bs) *sinz. Then .

T(r, )<N(r, Wny §)+N(r, W 9)+00gr)
SN, by, c082) +N (7, biay, c0o82) +N(r, ,0, sinz) +O0(log r)
<Ar, (A>0).
Hence g is of exponential type. By Lemma 1, ¢ has the form

9@ = 3 oyexp((i/k)z)  (o<m, v<hmd),
ji=-v

where ¢,°¢_,%0. Put P{w) = 5;2':; c;+w’, hence we have g(z) =P (exp(¢z/ 70))._ Th
follows from Z (z) = f(g) thab
F(Pw)) = (1/28)" (W~ w ) L((w*+w™)/2) = — f(P(1/w)).

- Let A(r, M, f(w)) denote the number of the zeros of f(w) in M<|w
(counting multiplioity). If m+# v, we may agsume that m>v and take a .sufficie
gmall >0 such that |c,| —8>>0 and |o_,| —&>0. Ag w—>o0, we have the forms

P(w) =caw™(1+0(1/w)),
P(1/w) =c-w’(1+0(1/w)).
Obviously, (2) and ‘(3) imply that for sufficiently large n, P(w) —w, has and only

\~/
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has m distinot zeros whose modules are between [ |w,|/(|ea] +2)]1¥™ and [|w.|/(|eal
-g)}*™ while P(1/w) —w, has and only hag v disbinct zeros whose modules are
stween [|w,|/(|c-o|+ &)1 and [|w.|/(|c—s] —8)]*/". Hence there exists a
ificiently large M >0 such that r—oo,
A(r, M, f(P(w)))>rmm(r™(|en| —8) M ({om| +8), f(w))
= (m+o(L))n(r"(|cal —8), f(w)),
ut
o, B, FCPC/))) <om (5% Clooa] 8, H™(loce] 8, 7))
= (@+o(1))n(r*(|ov| +8), F(w)).
learly, from (1) and m>v, we have a contradictory inequality. Hence m=v, If
'(w) —w, has a simple zero, thon ¢g—w, also hag simple zeres, and by the previous
\soussion, g—aw, only has simple zeros, which implies that P(w)—w, only hag
mple zeros. Since for each n, %, is prime number with v,>>3, ¢ is entire and
ipliz/F) —a(a+0) only has simple zeros, there exists at most a w, such that every
ro of P (w) —w, has corresponding mulbiplicity ¥; nob greater than deg P. Thus we
1 choose a v; such that P(w) —w, has no v; multiple zeros. And let {w,}I-,(1<p
.+ o0) be the set of v, multiple zeros of f(w). Of course, for each J» W, #wy. Then
follows that v; multiple zeros of f (9(2)) only consist of the zeros of g(z) —w, (j= "
2, o5, p), 1.0,

o }3(9 () —w,,) =exp(uiz/k) (1 —cosz/b;) (O+0), 4)

here u is an integer. Since the right side of the above equality is periodic, of ‘
ponential type and ¢ is poriodic, by Lemma 1, p is finite. We rewrite (4) ag

o f_[( 3! oot —w,, ) =t (L~ @+ w) /26,),

J=1i\d=—-m
that we imply that pm=u+§ and — pm=u—4#, further x=0. Therefore from (4),
» have cos =N (g(z)), where '

N(w)=—0 él(w—wm)btﬂ.

r Lemma 4, we know g(z) 1s oven, so is f(¢g) =F (z), which is a contradietion.
» (II) The oase when f is a polynomial and g is a transcendental entire funection.
e denote all the distinot zeros of f by {4;}{. Assume that f has two dislinet -
1liple zeros, say A, and A,. Since v,(n=1, 2, ---) are prime numbers and v,% vn
#m,), there are b, (4=1, 2) such that all the zeros of g— 4;(4=1, 2) Are contained
the set of zeros of (1—cosz/d,,) (1 —cosz/b,,) -sinz. It follows that
T(r, g)<N(r, A1, ) +N(r, 45 g)+0ogr)
<N(rr, mr €082) +N (7, b, cosz) +N (v, O, sinz)-+ O(IOgo')
. (K>0),
‘namely, g is of exponentlal bype, so is f(g). Bub f(g) =F is not of exponential type.
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Thus f has at most one multiple zero. We need only treat two subcases for f,
sepai‘a’ﬁely:

(IL 1) f(w) =0(w—Ag)--(w— An_z) (w—Am)™

(IL 2) f(w)=0(w—A4y)--(w—A4q).

We may assume m>>2. In faot, when m=1, the result is trivial. For subease
(I1. 1), since the roobs of g= A, are ones of cos z=25, fo;‘ some 8, we have

N(r, Am, 9) <N (r, b, cosz) <T(r, cosz) +0Q) =o(T(r, f(g)) =o(T (s, 9)),

(ef. [13]), so that ©(4,, ¢)=1.

Put D(z) =L(cosz)/(1—cosz/b,)*. Since 4, (k=1, 2, :+, m—1) are mutt
disbinot, we have '

m—1
PR 1/(g—A4A))=>N(r,.0, sin™2) +N(r, 0, D(z))
_ >, (u, 0, sin 2) +8N (s, 0, D)
>3’"§"§N(m, Ao )+ (v—3)F(r 0, sinz) —3N(r, 0, 1—ocosz/3,),
k= .

m=1 __ m—1
namely, (m—1+0(1))T(r, 9)>3 5 N(r, 4y, g). Honoe we have 3\ 0(dyg)>
k= k=

~—1)/3>2/3. Since g is entire, by Navenlinna’s Theory, this is impossible,
For subease (II. 2), by the same method as in the above, we can get

§; O(4y g)>2m/3>4/8,
k=

since m>>2. This is also impogsible. Hence m=1, i. e. f(w) ig linear.

(III) The case when f is a transcendental entire function and g is a polyno
Since f(g) is periodic, by the theorem of Renyi“*! the degree of ¢ ig at most 2,
g=a(z—b)2+¢. Then from F =f(g), we have

sin®(z-+b) + L(cos(¢+b)) = —sin®(z—b) « L(cos(z—b)).
Since v,(n=0, 1, ---) are prime numbers and v,%va(n¥m), it follows from
that
sin(z+b) =sin (2 —b) -exp Eo(2),
1—cos(z+b)/b,= (1--cos(z—b)/b,) +exp E,(2),
(n=1, 2, +-+), where each E.(z) is a linear function, By Lemma 8, we immed
see that X, are constants. Differentiating both the sides of (6), we geb
cos(z-+b) =cos(z—b) rexp H,.
Combining (7) and (8), we have
1—cos(z+b)/b,=1—cos(z—b) exp(Eo)/b =exp E,—cos(z—b) »exp E,/b,,
(1/0,) (exp B, —exp Hy)cos(z—b) =exp B,—1,
expEo%expE,.=1 (n=1, 2, +),
This is a contradiotion o the equality (5).

(IV) The case when f(w) is a transcendental, non-entire, meromorphic
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function and g(z) an entire function. Then we can write f(w) =f*(w)/(w—wy)" (n
a fixed positive integer), ¢(z) =w;+exp (M (2)), where f*(w) is an entire funotion
ith f*(wy) #0 and M (z) ig entire, too. Therefore
F(9) = (f*(ws-+ oxpw)exp (=~ mw) ) oM ().
ocording to the above discussion, we know M-(2) =0z+.F and O=4p/q, where both
and ¢ are integers and K is a constant. And we may assume p>=0 and ¢>0 withou
g9 of generality, then :
S (wi+ePexp(ép/q)e) =sin™z- L(cos 2).
36 w=exp(é2/q), then the above equality becomes ‘

S (wsteu?) = (1/20) " (w —w ) "L ((w*+w ™) /2). - ®
he left gide of (9) is entire, but the right side of (9) has an essentially singular
int ab w=0, which ig an abgurd equality.

(V) The case when f is a non—polynomial rational. function and g a
eromorphic funobion, We may write

f(w)=P(w)/((w=a)"(w=5)"),
nere » (=>0) and m(>0) are both integers and both @ and b are complex numbers
d P(w) -is a polynomial with P(a)#0 and P(5)#0. Making a linear
ansformation A(w)=(w—a)/(w—>), we reduce the factorization f(g) to
AT(AM(¢))), where A(g) is entire. By the same method as in case (IV) and case
I), we can imply that f(A™*) ig linear so that f(w) is linear.

Thus Theorem 2 follows. _ -

Proof of Theorem 3 Let F(z) bo f(g(z)). Here we only state the proof of the
lowing cages. In fach, for the other ocases, the method is similar to thal in the
oof of Theorem 2, ' '

(I) The case when f is a transcendental meromorphic function and g a
inscendental entire function. By Edrei-Fuch’s Theorem™? p( ) =0. Put f=f1/fa,
1ere both fy and f, are entire functions of zero order without common zeros.

7(g) =Fa(9)/Fa(g) —sinz/L(cosz).
en there exighs an entire function M (z) such that
f1(g) =sinz-exp (M (z)), A ' (10)
J2(9) =L(cosz) -exp(M (2)). ’ 11)

If f, is franseendental, then by p(fi)=0, fi hag infinitely many zeros. By.
mma 2, ¢ is & polynomial. H:nee fy ought o be a polynomial. Then it follows
m (10) thab there exish two distinet integers m; and ms such that g(2muw) =
2mam). Pub A (%) =g(z) and B(2) =g(z+2(ma—my) ). Then A(2mymw) =B (2mym).
100 2maw is a simple zero of F(z), f'(A(2miw))+0. And f(A(2))=f(B(2)).

A(2mymw) is an analybic point of f and both 4 and B are entire functions. Therefore
by these conditions, one can conclude that 4 (z) = B(z), namely g is periodic. Then
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the remaining proof is similar to the proof of Theorem 2, so we omit its proof.

(II) The case when ¢ ig a polynomial. By the same method ag in the above, we
can get (10), where M (z) is an entire function. f; certainly has infinitely many
zeros, Turther by Lemma 2 g ig a polynomial of degree at most 2. Then the
remaining proof ig similar to case (III) of Theorem 2, so we omit its proof here.

Remark. In the factorization theory of meromorphio functions, so far ke -
present auther knows, few prime meromorphic functions have been listed ahd when
dealing with meromorphic functiong, one often assumed that there are oniy finite
many poles. In 1981 Urabe™® found out a sort of special prime meromorpl
functions but required that the lower order and order of the functiong are betweer
and 2. Thus the function of Theorem 3 also hag a special significance in this sense,
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