SOME CONSISTENT RESULTS ON* LINDELÖFNESS AND CALIBRE

DAI MUMIN (戴牧民)*

Abstract

This paper gives some topological propositions which are equivalent to the continuum hypothesis. The following results are also given: In the class of 1-st countable Hausdoff spaces, the existence of space which has calibre (ω_1, ω) but no calibre ω_1 is equivalent to the existence of space which has calibre (ω_1, ω) but is not point-countablely Lindelög, the existence of space which has calibre ω_1 but is not separable is equivalent to the existence of space which has calibre ω_1 but is not *Lindelöf, too.

A topological space X is called a *Lindelöf space iff for any open cover \mathscr{G} of X, there exists a countable subset $A \subset X$ such that $\bigcup \{st(x, \mathscr{G}) : x \in A\} = X$. X is called a pe-lindelöf (point-countable Lindelöf) iff every point countable open cover of X has a countable subcover. X has calibre ω_1 (calibre (ω_1, ω) , respectively) iff every point-countable (point-finite, respectively) family of open sets has the cardinality less than ω_1 . It is obvious that *Lindelöfness implies pe-lindelöfness, and every space with calibre ω_1 is pe-lindelöf. We refer the reader to [1] for the related results.

In this paper, we give an equivalent characterization for CH (Continuum Hypothesis) and two consistent results concerning calibre ω_1 and calibre (ω_1, ω) .

§ 1. An Equivalent Proposition of CH

First of all, we give a lemma which is easy to prove by pigeon-hole principle.

Lemma. If X is a first countable space with calibre ω_1 and \mathcal{U} is an uncountable family of open sets, there exists an uncountable sub-family \mathcal{U}_0 of \mathcal{U} such that Int $(\cap \mathcal{U}_0) = \emptyset$.

Theorem 1. The following are equivalent:

- (1) CH,
- (2) Every T_2 space which has calibre ω_1 and cardinality $\leq 2^{\omega}$ is separable,
- (3) $(R, d \lor c)$ does not have calibre ω_1 ,

Manuscript received April 27, 1987.

^{*} Department of Mathematics, Guangri University, Nanning, Guangri, China.

- 4) $(R, s \lor c)$ does not have calibre ω_1 ,
- 5) Every T_2 space which has caliere ω_1 and cardinality $\leq 2^{\omega}$ is *Lindelöf.

Here R is the set of all reals, d, s, c denote the open interval topology, afrey topology and co-countable topology, respectively. $d \lor c$, $s \lor c$ are topologies ated by $d \cup c$ or $s \cup c$, respectively.)

For $(1) \rightarrow (2)$ see [4] (Proposition 3.20). Note that $(R, d \lor c)$ is a non-able Urysohn space, $|R| = 2^{\omega}$ and $s \lor c$ is stronger than $d \lor c$, $(2) \rightarrow (3) \rightarrow (4)$ $(2) \rightarrow (5)$ are obvious.

1) \rightarrow (4). Assuming CH be falfe, let $\mathscr G$ be an uncountable subset of $s \lor c$. Every $G \in \mathscr G$ denoted by $G = U_G - A_G$, here $U_G \in s$ and $|A_G| \leqslant \omega$. By the lemma, there exists $U_{\alpha} - A_{\alpha}$: $\alpha < \omega_1$ $\subset \mathscr G$ and an open interval (a, b) such that $(a, b) \subset \bigcap_{\alpha < \omega_1} U_{\alpha}$.

we have $\bigcap \mathscr{G}_0 = \bigcap_{\alpha < \omega_1} U_\alpha - \bigcap_{\alpha < \omega_1} A_\alpha \supset (a, b) - \bigcup_{\alpha < \omega_1} A_\alpha \neq \emptyset$ because of $|\bigcup_{\alpha < \omega_1} A| = \omega_1 < 2^{\omega}$. ays that $(R, \$ \lor c)$ has calibre ω_1 .

o prove (5) \rightarrow (1), it is sufficient to construct a counterexample under $\neg CH$. $_0 = R \times \{0\}$, $L_1 = R \times \{1\}$, and $X = L_0 \cup L_1$. We define the topology on X as ing:

 $\subset X$ is open iff

if point $(x, 1) \in G \cap L_1$, then there exists $n < \omega$ and $A \in [R]^{<\omega}$ such that $((x, 1) - A) \times \{1\} \subset G$;

if point $(x, 0) \in G$, then there exists $n < \omega$ and $A \in [R]^{<\omega}$ such that $((x-1/n, 0) \times \{1\} \subset G)$.

Two Results Concerning Calibre ω_1 and Calibre (ω_1, ω)

Leorem 2. If there exists a first countable T_2 space which has calibre (ω_1, ω) not have calibre ω_1 , then there exists a first countable T_2 space with calibre (ω_1, ω) ch is not pc-lindelöf.

- Proof (1) Let S be a first countable T_2 space which has calibre (ω_1, ω) but oes not have calibre ω_1 . Let T be the Sorgenfrey line. $Y = S \times T$ is the product pace. Y is first countable T_2 space. If $\mathscr{W} = \{u_a \times v_a : \alpha < \omega_1\}$ is a family of basic open ets, $\mathscr{V} = \{v_a : \alpha < \omega_1\}$, there must be $t \in T$ such that $\operatorname{ord}(t, \mathscr{V}) = \omega_1$. Let $A = \{\alpha : t \in v_a\}$, $\mathscr{U}_A = \{u_a : \alpha \in A\}$. Then there exists $s \in S$ such that $\operatorname{ord}(s, \mathscr{U}_A) \geqslant \omega$. Let $y = (s, t) \in Y$. It is easy to see that $\operatorname{ord}(y, \mathscr{W}) \geqslant \omega$. This shows that Y has calibre (ω_1, ω) . But Y has not calibre ω_1 since S is the continuous image of Y.
- (2) S is see with character $\chi(S) = \omega$, then $|S| \leq^{o(x)\chi(x)} = 2^{\omega}$. Let $S = \{s_x : x \in E\}$, $(E \subset R)$. $X = E \cup Y$. We select a decreasing neighbourhood base $\{W_n(s) : n < \omega\}$ for every $s \in S$. For $n < \omega$, if $y = (s, t) \in Y$, we define $V_n(y) = W_n(s) \times [t, t+1/n)$, if $x \in E$, we define $V_n(x) = \{x\} \cup [W_n(s_x) \{s_x\}] \times (x-1/n, x)$. With the base $\{V_n(y) : y \in Y, n < \omega\} \cup \{V_n(x) : x \in E, n < \omega\}$, the topology on X is first countable and T_2 . Y is an open dense subspace of X. By (1), X has calibre (ω_1, ω) .
- (3) Let $\{U_{\xi}: \xi < \omega_1\}$ be a point countable family of open sets of S. Then $\{U_{\xi} \times T: \xi < \omega_1\}$ is a point countable family of open sets of Y. Let $U = \bigcup_{\xi < \omega_1} U_{\xi}$. $U \times T$ is an open subspace of Y, hence $U \times T$ has calibre (ω_1, ω) but does not have calibre ω_1 . For all $\xi < \omega_1$, we choose $s_{\alpha_{\xi}} \in U_{\xi}$ and $n_{\xi} < \omega$ such that $W_{n_{\xi}}(s_{\theta_{\xi}}) \subset U_{\xi}$. Since

$$V_{n_{\ell}}(x_{\ell}) = \{x_{\ell}\} \cup (W_{n_{\ell}}(s_{\alpha_{\ell}}) - \{s_{\alpha_{\ell}}\}) \times (x_{\ell} - 1/n_{\ell}, x_{\ell}),$$

we have $V_{n_t}(x_f) \cap Y \subset U_f \times T \subset U \times T$.

(4) Let $Z = \{x_i: \xi < \omega_1\} \cup (U \times T)$. The subspace Z of X has calibre (ω_1, ω) because $U \times T$ is open and dense in Z. $\{V_{n_i}(x_i): \xi < \omega_1\} \cup \{U \times T\}$ is a point countable opencover of Z which has not countable subcover.

Theorem 3. If there exists a first countable T_2 space with calibre ω_1 which is not separable, then there exists a first countable non-*lindelöf T_2 space with calibre ω_1 .

Proof Let S be a first countable non-separable T_2 space with calibre ω_1 , T be the Sorgenfrey line, $Y = S \times T$. It is easy to see $|[Y]^{\omega}| = 2^{\omega}$. Let $\{A_{\alpha}: \alpha < 2^{\omega}\}$ be an enumeration of $[Y]^{\omega}$ such that for every $A \in [Y]^{\omega}$, $|\{\alpha: A_{\alpha} = A\}| = 2^{\omega}$. Let P be the projection from Y to S. Obviously, $P(cl_YA_{\alpha}) \subset cl_S(P(A_{\alpha}))$ for all $\alpha < 2^{\omega}$. $|P(A_{\alpha})| \leq \omega$ and S is not separable. There exists $s_{\alpha} \in S - cl_S(P(A_{\alpha}))$. Choose a decreasing neighbourhood base $\{W_n(s_{\alpha}): n < \omega\}$ of s_{α} such that $W_0(s_{\alpha}) \cap cl_S(P(A_{\alpha})) = \emptyset$. Let $u_{n\alpha} = W_n(s_{\alpha}) - \{s_{\alpha}\}$.

Let $X = \{x_{\mathbf{a}} : \alpha < 2^{\omega}\}$ be the set of all reals, $Z = X \cup Y$ be the disjoint union of X and Y. We define a topology on Z generated by the base \mathscr{B} described as following:

If $y = (s, t) \in Y$, $V_n(y) = W_n(s) \times [t, t+1/n) \in \mathcal{B}$ for all $n < \omega$. Here $\{W_n(s): n < \omega\}$ is a decreasing neighbourhood base of s in S.

If $x \in X$, $V_n(x_\alpha) = \{x_\alpha\} \cup u_{n\alpha} \times (x-1/n, x) \in \mathcal{B}$ for all $n < \omega$. It is **not** difficult to check that the topology generated by \mathcal{B} is first countable and T_2 . Y is open and

in Z, and X is a closed discrete subset of Z. The subspace Y is homeomorphic T, the product space of S and T. Therefore Z has calibre ω_1 .

ow we claim that Z is not *Lindelöf. For every $\alpha < 2^{\omega}$, let $G_{\alpha} = (Y - cl_Z(A_{\alpha})) \cup \mathcal{G} = \{G_{\alpha}: \alpha < 2^{\omega}\}$.

) \mathscr{G} covers Z. Let $y=(s, i) \in Y$. Since $Y=\{y\} \cup [\bigcup_{n<\omega} (Y-V_n(y))]$ and Y is ntable, there exist $n<\omega$ and $\alpha<2^\omega$ such that $cl_Y(A_{\sigma})$ is contained in $Y-V_n(y)$. $y \in cl_Y(A_{\sigma}) = cl_Z(A_{\sigma}) \cap Y$ and $y \in G_{\sigma}$.

) G_{σ} is open for all $\alpha < 2^{\omega}$. It is sufficient to show that $x_{\sigma} \in \text{Int } G_{\sigma}$. Note that $(1) \cap Y = cl_Y(A_{\sigma})$, so $(1) \cap Y = cl_Y(A_{\sigma}) = Y - cl_Y(A_{\sigma})$. Since $u_{\sigma} \cap cl_S(P(A_{\sigma})) = \emptyset$, $u_{\sigma} \times I$, $u_{\sigma} \times I$ is disjoint with $cl_S(P(A_{\sigma})) \times I$. But $cl_Y(A_{\sigma}) \subset I^{-1}(cl_S(P(A_{\sigma}))) \cap I$, we have $I_{\sigma}(I) \subset I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{$

 $\{st\ (z,\ \mathcal{G})\colon z\in Z\}$ has not countable subcover. Let $A\in [Y]^\omega$ and $A=A_a$. $A\cap G_\alpha=\emptyset$ and $x_a\in U\{st(y,\ \mathcal{G})\colon y\in A\}$. Because $\{\alpha\colon A_\alpha=A\}$ is uncountable, $\{st(y,\ \mathcal{G})\colon y\in A\}$ is uncountable. On the other hand, $st(x_\alpha\ \mathcal{G})\cap X=\{x_a\}$ for $\in X$. This shows that for any $M\in [Z]^\omega$, $U\{st(z,\ \mathcal{G})\colon z\in M\}\neq Z$.

is known that the space \mathscr{K} in [2] is 0-dimensional first countable Baire eco with calibre (ω_1, ω) non-separable space. Assuming CH \mathscr{K} has not calibre ssuming $MA + \neg CH$, \mathscr{K} is ω_2 Baire and has calibre ω_1 ([5]). As the tries of Theorems 2 and 3, we have

orollary 4. (CH) There exists a first countable T_2 space with calibre (ω_1, ω) is not pc-lindelöf.

prollary 5. (MA+ \neg OH) There exists a first countable T_2 space with calibre ch is not *Lindelöf.

1 the other hand, the result of Efimov [3] tells us that CH implies that every untable T_2 space with calibre ω_1 is separable. Then the statement in Corollary lependent of ZFC. But we do not know wheather the statement in Corollary dependent of ZFC.

Reference

ii Mumin, Some counterexamples concerning calibre and *Lindelofness, (Chinese) Acta Mathematica nica, 29 (1986), 399—402.

n Douwen E. K., Tall F. D., Weiss A. R., Non-metrizable hereditarily Lindelöf spaces with point untable bases from CH, *Proc. A. M. S.*, **64** (1977), 139—145.

imov, B., Solution of some problems on dyadic bicompacta, Soviet Dokl, 10 (1969), 776-779.

II, F. D., The countable chain condition versus separability-Applications of Martin's axiom, G. T., 4 (1974), 315—339.

ll, F. D., First countable spaces with calibre x_1 may or may not be separable, 353—358 in Setwortic Topology, ed. by G. M. Reed, Academic Press, New York.