SOME CONSISTENT RESULTS ON* LINDELÖFNESS AND CALIBRE DAI MUMIN (戴牧民)* ### Abstract This paper gives some topological propositions which are equivalent to the continuum hypothesis. The following results are also given: In the class of 1-st countable Hausdoff spaces, the existence of space which has calibre (ω_1, ω) but no calibre ω_1 is equivalent to the existence of space which has calibre (ω_1, ω) but is not point-countablely Lindelög, the existence of space which has calibre ω_1 but is not separable is equivalent to the existence of space which has calibre ω_1 but is not *Lindelöf, too. A topological space X is called a *Lindelöf space iff for any open cover \mathscr{G} of X, there exists a countable subset $A \subset X$ such that $\bigcup \{st(x, \mathscr{G}) : x \in A\} = X$. X is called a pe-lindelöf (point-countable Lindelöf) iff every point countable open cover of X has a countable subcover. X has calibre ω_1 (calibre (ω_1, ω) , respectively) iff every point-countable (point-finite, respectively) family of open sets has the cardinality less than ω_1 . It is obvious that *Lindelöfness implies pe-lindelöfness, and every space with calibre ω_1 is pe-lindelöf. We refer the reader to [1] for the related results. In this paper, we give an equivalent characterization for CH (Continuum Hypothesis) and two consistent results concerning calibre ω_1 and calibre (ω_1, ω) . ## § 1. An Equivalent Proposition of CH First of all, we give a lemma which is easy to prove by pigeon-hole principle. **Lemma.** If X is a first countable space with calibre ω_1 and \mathcal{U} is an uncountable family of open sets, there exists an uncountable sub-family \mathcal{U}_0 of \mathcal{U} such that Int $(\cap \mathcal{U}_0) = \emptyset$. Theorem 1. The following are equivalent: - (1) CH, - (2) Every T_2 space which has calibre ω_1 and cardinality $\leq 2^{\omega}$ is separable, - (3) $(R, d \lor c)$ does not have calibre ω_1 , Manuscript received April 27, 1987. ^{*} Department of Mathematics, Guangri University, Nanning, Guangri, China. - 4) $(R, s \lor c)$ does not have calibre ω_1 , - 5) Every T_2 space which has caliere ω_1 and cardinality $\leq 2^{\omega}$ is *Lindelöf. Here R is the set of all reals, d, s, c denote the open interval topology, afrey topology and co-countable topology, respectively. $d \lor c$, $s \lor c$ are topologies ated by $d \cup c$ or $s \cup c$, respectively.) For $(1) \rightarrow (2)$ see [4] (Proposition 3.20). Note that $(R, d \lor c)$ is a non-able Urysohn space, $|R| = 2^{\omega}$ and $s \lor c$ is stronger than $d \lor c$, $(2) \rightarrow (3) \rightarrow (4)$ $(2) \rightarrow (5)$ are obvious. 1) \rightarrow (4). Assuming CH be falfe, let $\mathscr G$ be an uncountable subset of $s \lor c$. Every $G \in \mathscr G$ denoted by $G = U_G - A_G$, here $U_G \in s$ and $|A_G| \leqslant \omega$. By the lemma, there exists $U_{\alpha} - A_{\alpha}$: $\alpha < \omega_1$ $\subset \mathscr G$ and an open interval (a, b) such that $(a, b) \subset \bigcap_{\alpha < \omega_1} U_{\alpha}$. we have $\bigcap \mathscr{G}_0 = \bigcap_{\alpha < \omega_1} U_\alpha - \bigcap_{\alpha < \omega_1} A_\alpha \supset (a, b) - \bigcup_{\alpha < \omega_1} A_\alpha \neq \emptyset$ because of $|\bigcup_{\alpha < \omega_1} A| = \omega_1 < 2^{\omega}$. ays that $(R, \$ \lor c)$ has calibre ω_1 . o prove (5) \rightarrow (1), it is sufficient to construct a counterexample under $\neg CH$. $_0 = R \times \{0\}$, $L_1 = R \times \{1\}$, and $X = L_0 \cup L_1$. We define the topology on X as ing: $\subset X$ is open iff if point $(x, 1) \in G \cap L_1$, then there exists $n < \omega$ and $A \in [R]^{<\omega}$ such that $((x, 1) - A) \times \{1\} \subset G$; if point $(x, 0) \in G$, then there exists $n < \omega$ and $A \in [R]^{<\omega}$ such that $((x-1/n, 0) \times \{1\} \subset G)$. ## Two Results Concerning Calibre ω_1 and Calibre (ω_1, ω) **Leorem 2.** If there exists a first countable T_2 space which has calibre (ω_1, ω) not have calibre ω_1 , then there exists a first countable T_2 space with calibre (ω_1, ω) ch is not pc-lindelöf. - Proof (1) Let S be a first countable T_2 space which has calibre (ω_1, ω) but oes not have calibre ω_1 . Let T be the Sorgenfrey line. $Y = S \times T$ is the product pace. Y is first countable T_2 space. If $\mathscr{W} = \{u_a \times v_a : \alpha < \omega_1\}$ is a family of basic open ets, $\mathscr{V} = \{v_a : \alpha < \omega_1\}$, there must be $t \in T$ such that $\operatorname{ord}(t, \mathscr{V}) = \omega_1$. Let $A = \{\alpha : t \in v_a\}$, $\mathscr{U}_A = \{u_a : \alpha \in A\}$. Then there exists $s \in S$ such that $\operatorname{ord}(s, \mathscr{U}_A) \geqslant \omega$. Let $y = (s, t) \in Y$. It is easy to see that $\operatorname{ord}(y, \mathscr{W}) \geqslant \omega$. This shows that Y has calibre (ω_1, ω) . But Y has not calibre ω_1 since S is the continuous image of Y. - (2) S is see with character $\chi(S) = \omega$, then $|S| \leq^{o(x)\chi(x)} = 2^{\omega}$. Let $S = \{s_x : x \in E\}$, $(E \subset R)$. $X = E \cup Y$. We select a decreasing neighbourhood base $\{W_n(s) : n < \omega\}$ for every $s \in S$. For $n < \omega$, if $y = (s, t) \in Y$, we define $V_n(y) = W_n(s) \times [t, t+1/n)$, if $x \in E$, we define $V_n(x) = \{x\} \cup [W_n(s_x) \{s_x\}] \times (x-1/n, x)$. With the base $\{V_n(y) : y \in Y, n < \omega\} \cup \{V_n(x) : x \in E, n < \omega\}$, the topology on X is first countable and T_2 . Y is an open dense subspace of X. By (1), X has calibre (ω_1, ω) . - (3) Let $\{U_{\xi}: \xi < \omega_1\}$ be a point countable family of open sets of S. Then $\{U_{\xi} \times T: \xi < \omega_1\}$ is a point countable family of open sets of Y. Let $U = \bigcup_{\xi < \omega_1} U_{\xi}$. $U \times T$ is an open subspace of Y, hence $U \times T$ has calibre (ω_1, ω) but does not have calibre ω_1 . For all $\xi < \omega_1$, we choose $s_{\alpha_{\xi}} \in U_{\xi}$ and $n_{\xi} < \omega$ such that $W_{n_{\xi}}(s_{\theta_{\xi}}) \subset U_{\xi}$. Since $$V_{n_{\ell}}(x_{\ell}) = \{x_{\ell}\} \cup (W_{n_{\ell}}(s_{\alpha_{\ell}}) - \{s_{\alpha_{\ell}}\}) \times (x_{\ell} - 1/n_{\ell}, x_{\ell}),$$ we have $V_{n_t}(x_f) \cap Y \subset U_f \times T \subset U \times T$. (4) Let $Z = \{x_i: \xi < \omega_1\} \cup (U \times T)$. The subspace Z of X has calibre (ω_1, ω) because $U \times T$ is open and dense in Z. $\{V_{n_i}(x_i): \xi < \omega_1\} \cup \{U \times T\}$ is a point countable opencover of Z which has not countable subcover. **Theorem 3.** If there exists a first countable T_2 space with calibre ω_1 which is not separable, then there exists a first countable non-*lindelöf T_2 space with calibre ω_1 . Proof Let S be a first countable non-separable T_2 space with calibre ω_1 , T be the Sorgenfrey line, $Y = S \times T$. It is easy to see $|[Y]^{\omega}| = 2^{\omega}$. Let $\{A_{\alpha}: \alpha < 2^{\omega}\}$ be an enumeration of $[Y]^{\omega}$ such that for every $A \in [Y]^{\omega}$, $|\{\alpha: A_{\alpha} = A\}| = 2^{\omega}$. Let P be the projection from Y to S. Obviously, $P(cl_YA_{\alpha}) \subset cl_S(P(A_{\alpha}))$ for all $\alpha < 2^{\omega}$. $|P(A_{\alpha})| \leq \omega$ and S is not separable. There exists $s_{\alpha} \in S - cl_S(P(A_{\alpha}))$. Choose a decreasing neighbourhood base $\{W_n(s_{\alpha}): n < \omega\}$ of s_{α} such that $W_0(s_{\alpha}) \cap cl_S(P(A_{\alpha})) = \emptyset$. Let $u_{n\alpha} = W_n(s_{\alpha}) - \{s_{\alpha}\}$. Let $X = \{x_{\mathbf{a}} : \alpha < 2^{\omega}\}$ be the set of all reals, $Z = X \cup Y$ be the disjoint union of X and Y. We define a topology on Z generated by the base \mathscr{B} described as following: If $y = (s, t) \in Y$, $V_n(y) = W_n(s) \times [t, t+1/n) \in \mathcal{B}$ for all $n < \omega$. Here $\{W_n(s): n < \omega\}$ is a decreasing neighbourhood base of s in S. If $x \in X$, $V_n(x_\alpha) = \{x_\alpha\} \cup u_{n\alpha} \times (x-1/n, x) \in \mathcal{B}$ for all $n < \omega$. It is **not** difficult to check that the topology generated by \mathcal{B} is first countable and T_2 . Y is open and in Z, and X is a closed discrete subset of Z. The subspace Y is homeomorphic T, the product space of S and T. Therefore Z has calibre ω_1 . ow we claim that Z is not *Lindelöf. For every $\alpha < 2^{\omega}$, let $G_{\alpha} = (Y - cl_Z(A_{\alpha})) \cup \mathcal{G} = \{G_{\alpha}: \alpha < 2^{\omega}\}$.) \mathscr{G} covers Z. Let $y=(s, i) \in Y$. Since $Y=\{y\} \cup [\bigcup_{n<\omega} (Y-V_n(y))]$ and Y is ntable, there exist $n<\omega$ and $\alpha<2^\omega$ such that $cl_Y(A_{\sigma})$ is contained in $Y-V_n(y)$. $y \in cl_Y(A_{\sigma}) = cl_Z(A_{\sigma}) \cap Y$ and $y \in G_{\sigma}$.) G_{σ} is open for all $\alpha < 2^{\omega}$. It is sufficient to show that $x_{\sigma} \in \text{Int } G_{\sigma}$. Note that $(1) \cap Y = cl_Y(A_{\sigma})$, so $(1) \cap Y = cl_Y(A_{\sigma}) = Y - cl_Y(A_{\sigma})$. Since $u_{\sigma} \cap cl_S(P(A_{\sigma})) = \emptyset$, $u_{\sigma} \times I$, $u_{\sigma} \times I$ is disjoint with $cl_S(P(A_{\sigma})) \times I$. But $cl_Y(A_{\sigma}) \subset I^{-1}(cl_S(P(A_{\sigma}))) \cap I$, we have $I_{\sigma}(I) \subset I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ are $I_{\sigma}(I) \cap I$ and $I_{$ $\{st\ (z,\ \mathcal{G})\colon z\in Z\}$ has not countable subcover. Let $A\in [Y]^\omega$ and $A=A_a$. $A\cap G_\alpha=\emptyset$ and $x_a\in U\{st(y,\ \mathcal{G})\colon y\in A\}$. Because $\{\alpha\colon A_\alpha=A\}$ is uncountable, $\{st(y,\ \mathcal{G})\colon y\in A\}$ is uncountable. On the other hand, $st(x_\alpha\ \mathcal{G})\cap X=\{x_a\}$ for $\in X$. This shows that for any $M\in [Z]^\omega$, $U\{st(z,\ \mathcal{G})\colon z\in M\}\neq Z$. is known that the space \mathscr{K} in [2] is 0-dimensional first countable Baire eco with calibre (ω_1, ω) non-separable space. Assuming CH \mathscr{K} has not calibre ssuming $MA + \neg CH$, \mathscr{K} is ω_2 Baire and has calibre ω_1 ([5]). As the tries of Theorems 2 and 3, we have orollary 4. (CH) There exists a first countable T_2 space with calibre (ω_1, ω) is not pc-lindelöf. prollary 5. (MA+ \neg OH) There exists a first countable T_2 space with calibre ch is not *Lindelöf. 1 the other hand, the result of Efimov [3] tells us that CH implies that every untable T_2 space with calibre ω_1 is separable. Then the statement in Corollary lependent of ZFC. But we do not know wheather the statement in Corollary dependent of ZFC. #### Reference ii Mumin, Some counterexamples concerning calibre and *Lindelofness, (Chinese) Acta Mathematica nica, 29 (1986), 399—402. n Douwen E. K., Tall F. D., Weiss A. R., Non-metrizable hereditarily Lindelöf spaces with point untable bases from CH, *Proc. A. M. S.*, **64** (1977), 139—145. imov, B., Solution of some problems on dyadic bicompacta, Soviet Dokl, 10 (1969), 776-779. II, F. D., The countable chain condition versus separability-Applications of Martin's axiom, G. T., 4 (1974), 315—339. ll, F. D., First countable spaces with calibre x_1 may or may not be separable, 353—358 in Setwortic Topology, ed. by G. M. Reed, Academic Press, New York.