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ON THE REACHABLE' SEMIGROUP OF BILINEAR
CONTROL SYSTEMS ON LIE GROUP*™

Cao Li(¥ 3)* ZueNe YUFAN (FR40E)*

Abstract

This paper studies the reachability and the structure of reachable semigroup of
bilinear control systems on Lie group. In the second section some equivalency lemmas
are given, which not only simplify the proofs of /the main results, but discover some
properties of systems also. Pn the third section some conditions are advanced that the
reachable semigroup of system is weakly symmatric by means of .the study of one
parameter subgroups. This sitndy is discussed by manifold theory and matrix theory,
respectively. In the last section, some topological properties of the reachable semigroup
are advanoced.)

§ 1. Introduction

In $his paper the bilinear control system on a Lie group G is desoribed as
sllowing .

L= tofa) + 30D A (), @
rhero z€@ and w(#), 4€ {1, -+, m}=:m, are piecowise continuous real value
unctions on [0, o). 4;(z), ¢€m or =0, are right invariant vector fields on G.
Chus, (1.1) is also called right invariant system. For our purpose, it is convenient
o write 4;(z) = A, and regard 4; as the element of the Lie algebra of &, which is
lercted by g. Without loss of generality, we assume that A, $Em, are independent
rectors in g, This study ig bagsed on the regults of [2]. In § 2 we advance some
squivalenoy lemmas which will simplify the proofs of our main rosults given in this
saper. § 3 diseribag the conditions that the reachable semigroup from the unit element
» of (¢, denoted by A(e), is a group by means of manifold bhéory and matrix theory,
-egpectively. In § 4 some proparties related o the reachable semigroups are discussed.

System (1.1) can also be describad by a family of veoctor fields. Let I’ be a
iopological (metrio) space defined as follows. As a get, I'Cg, and ity fopological
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gtructure is induced by the Eunclidean norm of gl(n, R), of which a subspace is
isomorphic with g.
Define the admissible control sot Q(I") o ba the set of I'—va.lued funotions on
L9, 00) Define .7,(I") to be the set of differential equations suoh that
FTa(l): ={dw/dt=U )= () /U () €Q()},
where U (¢) x(%) is a time-varying right invariant vector field, i.e. fixed #, Uw is a
right invariant vector field on &, as we have pointed out above. The U can be’
vegarded as a veotor of g In this sbudy, I ig often referred o as an affine suhspac
of g, i. e,
I'i={do+c' Ayt +c"4,/¢ ER, s€Em}.

* Furthermore, we define two admissible control sets: .
Qy(I):={U@®) €Q(I")/U (%) is I'-valued piecewise constant functions}.
‘Ql(l‘) ={U@#) €Q(I")/U (1) is I'-valued piecewise continucus functions}.
Gorrespondmgly, we have J5,(I") and S o,(I"), regpectively. Ingtead of (1.1

a bilinear control system oan be deseribed by 7 o(I" ), or more precisely, Z¢,(I") ¢
TolT).

" Notations: ini(4), interior of seb A; bd(A) boundary of 4;cl(A4) or 4, clogureof £
o, empty seb. Z, set of integers; R, field of reals; C, field of complex; exp{X D, ti
one parameter subgroup of & generated by X of g; exp®, the set {exp(t1X)/X €
icR}.

A irajectory #(¢) from g €G is a piecewise differentiz ble continuous curvye on ¢
which satisfies that dz/di=U ()2 (t) for some U (#) €EQ(I") and #(0) =g. An elemer
g of G is called reachable from g, if there exists a trajectory #(#) and a real numb.
T>0 such that #(0) = go and 4(T") =g. The get of all elements of G reachable from
is called the reachable set and is denoted by A(g). It is eagy to varify that A(g)-
A(e)g:={zg/v€A(e)}. From [2] A(e) is a path-connected subzemigroup of ¢
thus, it is algo called the reachable semigroup of 7 o(I").

Remark. By our definition of A(e) given above, the unit element e is n«
necessary to belong to A(e).

I" is given, then define I™:I"U (— T) We call I p(I") the symmetrized syster
of T o(I"). The weakly reachable set of 7 o(I")is defined by the reachable set of i
gymmetrized gystem 7 (™), and denoted by W A4(g), for g€ @.

‘We rewrite the results of [2] in following

Proposition 1. (1) WA(e) is a Lie subgroup of G. If I" is given, T'=X +
where X 4s a vector tn g, L=I"—X is a linear subspacs of g, thon WA(e) is &
smallest connected subsemligrdup of @ containing exp{X ) and exp L.

(2) int(A(e)) #s not empty dm the relatine topology of WA(e). Moreover,
int(A(e)) is dense in ol(A(e)).
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§ 2. Some Lemmas Relevant to Equivalence of Systems

In this section several lemmag relavant to equivalence of systems are advanced.
/e call them equivalehey lemmas. Sometimes there are several approaches to study
problem. By equivalency lemmas it might be possible for us to choose a simpler
ay to deal with the problem that we are inferested in. '

I' and I are two different topological subspacss of g. Q(I") and Q(F) are two
ifferent adimissible control sets, and we denote the reachable semigroups of 7 o(I")
nd 73(I") by A(e) and 4 (e), respsctively. '

Deﬁ_n_ition 9. 1. Jo(I") and T5(I") are weakly equivalent o each other if

@=4@.

Leb %8 be a linear subspaos of g and 4,Eg. Write P=span{ds, -, A./4LE
, €m} and I'=A4,+%P, which is an affine subipace g. Thorefors, (1.1) can be
escribed by Jo(I"). When I ig fixed, there exists the smallest closed Lie subgroup
7 of G, which containing expB. Let n be the Lie algebra of H. 7

Lemma 2.2. For any vector Ay(E€g), T (do+B) and Tp,(o-tn) are weakly
quinalent to each other.

Proof The reachable semlgloups of 7 g,(.Ao+ PB) and 7, p.(Ao-l— 1) are denoted
)y Ag(e) and A4,(e), respectively. By definition, By, thus, Ayz(e)=4,(e) and
hen Ax(e) =4 4.(e).

For each BE'B, exp B= hm((l/n) (4o+nB)) € A%(e), i.e. exp ‘BCA,B (e). Smoe

A%(e) is a oclosed semigroup, <exp B>, the smallest semigroup generated by
xp B, is contained in An(e). Therefore, H—=<expP)>TAz(e). For each OEy,

>xp< O)EH cAy(e) and ex_p( A(,)EA;B(G) when #>0. Thus, for >0, expt(4,

+0) =lim (exp(-ﬁ- A,J)-exp(-;z— O)) € Ay (e). Notice the condition Q=Qy A,(e) is

n~s00

the closure of the yemigroup generated by the set {exp (¢(4,+0) />0, O €n}. Recall
A5 (e) is a closed semigroup, hence, A,(e) =4y (e).

Lemma 2. 3. Lot I'=A;+B, and I={4o}UB. To(I") and To,(I°) are
weakly equivalent to each other.

Proof Let Ay(e) and A(e) be the reachable semigroups of T2, and I'p,(I" ),
respectively. We show that 4 (e) =A,(e). Let BESD,

oxp(#(4o+B)) = llm (exp( A )exp( ¢ B)) €4,4(e).

Thus, 4(e) =40(e). . :
Lemma 2.4. Lot I' be an arbitrary topological (metric) subspace of q. Fa(I)!
s weakly equinalent to T o (I') (where Q.(I') és the set of picewise contimuous I'~
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nalued functions) . :
Proof Given v(i) and w(¢) in £24(I"), assume that v and % are defined on [0, -
T for a real number T(>0). |v—u|g: =—-t§1[10pﬂl|v(t) —u(®) 7. Lot x(3) and y{t) be

the trajecteries of 7 o, (I') with #(0) =y(0) =e¢, which are driven by v(f) and u(?),
respectively. Thus, we have ' '

do/dt=u()a(£), ©(0) =8, @2.1)
‘ dy/dt=2 )y (%), y(0)=e. (2.2
Let 2(¢) =a(#)y(¢) %, then ' -
da/dt=u(#)z(t) —2(®)(3), 2(0) =e. (2.3
‘When u=1, the solution of (2.8) is z(#) =e. Rowrite (2.8) in the form 4
dz/dt =u(t)2(t) —2()u(®) +2(t) W) —v()). 1.4

The term z(u—v) i8 regarded ag a perburbation when |u—aoj<r, where r is
small positive number. For any v € Q,(I") and >0, there exists a v€Qy(I") suc
that Ju—v]g,<r. Therefore, the solution of (2.4) can remain in an arbitrary unit
neighborhood if the pertarbation ig small enough. |
Lemma 25. The system T a(T") is given. Then A(e)=W A(6) if and only §
eCA(e). o ‘

Proof 1f e € A(e), then there exist ¢y, --«, #>0 and Xy, -, X, €T, guch tha
exp (44X ) ---exp (41X 1) =6. Then exp (— X 1) =exp (4 X3) --exp (1. X 2) €A(8). Asfo
each ¢ € I there exists n€ Z and #,>0 such that é=nly+1, exp(¢X,) =exp (o Xy)
(exp (t1.X1))"€ A(e), i.0. exp<X s> A(e). Since WA(e) i3 the vemigroup generatec
by exp{X ;> and expB, we have WA (¢) =A(s). This proof is completed.

§8 The Classification of One Parameter Subgroups
and Weak Symmetry

For a connected Lie group G with its Lie algebra g, let X €g(X #0), and

define a d“—map: , _ :
exp(., X): BR—G@, texp(iX) ' 3.1)

which is an immersion of R into G. We claim that:

(1) If X =0, X and/or exp{X) i of tpye 0.

(2) X and/or exp{X) is of type I if exp(., X) is an immersion, but not an
embedding.

(8) X and/or exp{X) is of tiype ILif exp(., X) is an irregular embedding.

(4) X and/or exp<{X) is of typse III if exp(., X) ig a regular embedding.

Remarks. (1) let M and N be O~-manifolds, f bs a O=~map from M to ¥, f
is an immersion if df. (the differential of f at m) i3 nonsingular at any mEM, f°
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' an embedding if f is an injective, an embedding f is regular if f: M—f(M)<N
' a homomorphism.

(2) When X =0, exp(., X) must not be an immersion.

(3) If X ig of typo I, then exp{X) is one dimensional period group which can
e regarded as the embedding submanifold of one dimengional torus R/ Z into Q.
‘hus, exp{X ) is a compact subgroup (of cause, a cloged group too) of G.

(4) Recall the well known theorem given by E. Cartan that a Lie subgrop H of
*ig cloged if and only if H ig a regular embedding submanifolds to G'. Therefore the
ne parameber subgroup of type III is closed (but not compact) and bhat of type II
1ust not be closed.

Lemma 3.1. If exp{X is of type II, then exp{X y is a Lie subgroup and dim
xp{X xpl X > >1.

Proof The first conclusion is obvious. We show that dim exp{Xp>1. As
xp<{ X is conneocted, exp{Xy is connected too, and ib ig also a Lie subgroup. Since
xpl X » Dexp{ X, T;, exp{X»y>T, exp{X>. Then dim exp{Xy=dim 7', exp{X »>
im T exp{X>=1.

Lemma 3.2. If exp{X) isof type 0, I or 11, ithen there ewist t,,ER ncZ*,
uch that lim ¢, = + oo and limexp(¢,X) =e.

Proof If exp{X i of type 0 or I, then there exists T'>>0 such that exp(TX) =
, let ¢{,=nT, then lim?,=+oo and eip (8, X)=e. If exp{X) is of type II, then
xp{X» is a Lie subgroup with dimensisn more than one. Let exp*{X>={exp(:X)/
#} >e>0 for some ¢}, then exp*{X> is dense in exp{X », in partiouiar, there exists
. sequence s, such that hm exp(s,X)=e. It is obvious that the sequence i3
inbounded. Let £,= |s,], then iy ig eagy to varify that lim ¢, = +oo and limexp(t,X)
=6.

Lemma 3.8. For any vector g if X is not of type 111, and exp(iX) C A(e) (t>
), then exp{X > A(e).

Proof By Lemma 3.2 there exists {{,/n=1, 2, ---} such that limexp({,X) =e,
wnd lim#,= + oo, For each T € B, there exisis an integer number N >0 such that £,
+7'>0 for any n>N, thus, exp(TX) =limexp((t,+T)X) € A(e).

Theorem 3.4. If there ewisis A € Ao-+n(n is defined by Lemma 2.2)and A is not
f type IIf, then A(e) =W A(e). '

Proof By Lemma 2.1, exp(t4) € 4(e) for each $>0, thus exp{A>cA(e) (by
lemma 8.3). Now we claim that WA(e)=4(s). In fact, WA(e) is the smallest
subsemigroup containning exp{A» and exp®$ (by Lemma 1.1). But, both exp{4d>

“and exp P are contained in A(e) (by Lemma 1.2), thus WA(e) =A(e). Jurdjevio
and Sussmann pointed out (in Lemma 6.3 of [2]) that if A(e) is dense in WA(e),
then WA(e)=A(e). The other way %o verify that A(e) =WA(e) is fo adopt
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Proposition 4.3 of this paper, which claims that int A(e) =int 4(e). WA(e) =
int WA(e) Cint A(e) =int A(e) CA(e), i.e. WA(e) =A(e).

Corollary 3.5. If WA(e) is a compact group, then A(e)=WA(e).

Now we study the one parameter subgroup defined at the beginning of this
section by matrix theory. Let G=GL(n, R). The Lie algebra of G is gl(n, R). For
any X €gl(n, R), we give the matrix characteristics of exp{X>.

Lemma 3.6. For any X Egl(n, R) if there ewists a smooth map f: GL(n, R)—>
R such that the composition of f and exp(., X), feexp(., X):R—>R, ti>f(exp(tX)
is strickly monotone increasing (or decreasing), then X ¢s of type III.

Proof is omitted. For X €gl(n, R), X is called semisimple if X ig similar to
complex diagonal matrix (of. [8]).

Lemma 3.7. If there exists an eigenvalue s of X suoh that Re s#0, or X s n
semisémple, then X és of type I1I.

Proof We prove only that if there exists an eigenvalue s=¢a-+ b4 of X suoch tha
a, b+0 then X is of type III. Let {+¢ be the the eigenvector of X related to :
Thus

, cos(bt) —sin(bt)
eI En = ) i) o D

Let '=(§n) and f: GL(n, R)—>R, gi>det(T"¢gT). Thus,

b) —sin(bs
Fexp(430)) =det((T’T)( o ((bt; ::Ebt;) (exp (at))) = oxp (2at) det (T'T),

which is strickly monoptone. By Lemma 3.6, X is of type IIL.

Lemma 3. 8. If X (#0) 4s semisimple and non—zero eigerwalues of X a
tmaginary numbers, then X is of type 1 if and only 4f its non—zero eigenvalues as
pairwise rationally dependent to each other (%.e. for any si, s3, which ars two non—zes
etgenwalues of X, s1/s, %3 a rational number). . .

Proof Let the non-zero eigenvalues of X be {éwi, —éwy, -+, fw, -—4w,}, the
there exists @ € GL(n, B) such that . ,
[Tcos(wsd) —sin(wyt) ]

T sin (wyt) cos (wt) .

"co.s(w,t) —gin (wt) .
gin(wgd)  cos(w,t) i
. . ;

If X is of type I, then there exists T(>0) such that Q*-exp(7X)-Q=
Therefore, for each 4, sin(w,T) =0, i.e. there are I, € Z such that w1 =lm, s0 w,/w;=
L/l is a rabional number. In other hand, when {w,;} is pairwise rationally dependent

@'-exp(iX)-Q=
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0 each other, ib.is easy to find out a 7'(>>0) such that sin(wT) =0 and cos (w I =1.
Cherefore, exp(I'X) =¢, X is of type I.

Lemma 3.9. When X és semisimple and éts non—zero eigenvalues are imaginary
wmbers, X @s of type I 4f there is @ pair of etgenvalues, e. 9. twi, %wa, which are
‘ationally depedent to each other. '

Proof By Lemma 3.8, X must not be of type I. Assume that

0 — w4 N
2wy 0
0 —Wa
Wa 0
X~ 0 — Ws *
w, 0
0
_ 0_
und leb
O —wy -0 -
Wy 0 0 —ay
Xi= 0 ' y Xe=]" W, 0 .
_ 0 0

hen X =X 4+ X, Sinoe {X,/¢=1, :--, s} gonerates a compact commutbative s-
imengional Lie.group K, and exp{X} is a non-compact subgroup of K (as exp{X)
s not of type I), it must not ba cloged, therefore, X is of type II.

Summarizing above lemmas, we give following

Theorem 3. 10. Let X Cgl(n, R) and X 0. exp<{X > s not of typs III én QL
n, R) 4f and only ¢f X is semisimple and iis non—zero eigenvalues are ¥maginary
umbers. In this case, exp{X és of type 1 4f and only of each pair of eigenvalues of X
s ratéonally dependent to each other.

§ 4. Some Torological Properties of A

In this section we assume that 4 (¢) =W A(e), otherwige all results given here
re meaningless or trivial. We offen denote A(e) by 4 and WA(e) by §.-
Lemma 4. 11. f 2C€ol(4), yE€int(4), then oy Eint(4), and ys€int(4). In
-other words, c1(A) -int(4) Cint(4) end int(4)-cl(4) <int(4).
Proof Asy€int(A4), there exists an open neighborhood ¥ of ¢, such that Vyis
oontained in A(e) and V=V . As o € A(e), there exists sy CaV A(e). Henoe, &
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&V, 7y EzVycA(e). Thus, 2y is contained in int(A(e)).

Corollary 4.2. (1) bd(4)-int(4)int(4), int(4)-bd(4)<int(4).

(2) ins(4)-*cS\4.

(3) Hchd(A).

(4) Both inb(A) and ol (4) are semigroup.

Proof (1) It ig trivial by Lamma 4.1.

(2) For z€int(4), if o ¢ S\4, ie. a7 €ol(4), then e= ﬂ/'lcr€1nt(A) By
Lemma 2.5, we have A(e) =W A(e), it is contrary to the assumption of this sech ¢
Hence, for any s €int(4), a1 €S\ 4.

(3) It is known to us that H iga subgroup of § and HCel(4). If o€ H a
& Cint(A), then s * € H and z7* €8 \4 (by (2)), that is a contradiction..

(4) It is trivial.

Lemma 4.3. We consider the system as following

da/dt = —w(t)( Ao—l“;é1 ui<t).Ai) (4

and denote its reachable semigroup by D(e). (4.3) is a loft invarent system. It is
difiiculs to varift that:

(1) If o(t), y(¥) ars the trajeciories of (1. 1) and (4.8), resrectively, with
same input u(t) and the nitial condition ©(0) =y(0) =e, then y(&) = (@) for s
tER,

(2) D(e)=(4(e))7

(3) int(D(e)) = (int(A(e))) ™,

Theorem 4.4. int(4) =int(A4).

Proof It is obvious that int(4) cint(4). For the inverss inclugion, leb ¢
int(A4). As int(A) is dense in c1(4), there exists an open unib neighborhood ¥ st
$hat V1=V, Voacel(4), and int(4) NV is dense in Vo. We denote D= 47, tl
int(D) =int(4)~*. By inb(D) NV =(int(4) NV) 7+ 3. (int(D)NP)e is an o]
neighberhood of =z. Let g& (int(4) NV) N (int(D) V)2, then tnere exisis
int (D) NV such that g=za, hence w=z"g. Since 27 € (inb (D)) t=inb(4),
int(4) NVacint(4), by Lemma 4.1, s € int (4). Therefore, int(A)Cint(4).

Corollary £.5. (1) ba(4)=bd(4) =Dbd(4),

(2) S\A=8\cl(4),

(8) For each z& bd(A) and a unit neighcerhood U, aUN int(4)+ Z,aU NS \ol(
* .

According to foregoing discussion, bd(4) divides § into two parts, int(4)
S\4. int(4) is a gemigroup. It is a natural question: Is S\4 a semigroup too?
geneaaal, if is not true. Bul we have

Theorem 4.6. S\A4 is a semigroup if and only if (S\4)*=int(A), i.e. if and
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oy if (S\4) =int(D(e)).

Proof (only if) If there exists &S\ 4 such that m‘1€S \4, then zzt=¢€8\

. It 38 contrary fo the fact ¢ € A. Thus, S\4)*c4d. (S\A)*=int((S\4)™) <
$(4) =int(4). By Corellary 4.2(2), (S\4) = (inl(4))-t=int(D).

- (if) In fact, it is easy to verify that S\4 is a semigroup when (;S’\A)'lcz

Theorem 4.7, S\4 is a semigroup off bd(4) is a group.

Proof (only if) It is trivial to verify that c1(S\4) is a semigroup when S\4

bd(A4) =cl(S\4) Ncl(A4), hence, bd(4) is a semigroup. Again, let-w€bd(4). If
'€int(4), then e=2""» €int(4), which implies A(e)v=WA (e), it is contrary o
T assumption; if #~* €S\ 4, then 2~'s €8\4, but we know that e €4, therefore,

! must be in bd(4), i.e. bd(4) is a subgroup.

(if) When bd(4) is a group, we show that (S\4) *cint(4), or equlvalenﬂy
NAYN(S\4)*=(. .

Let ¥ be a small path—connected open unit neighbornood such that ¥ Nbd(4)
4 V' N(S\4) are path-connected, and V1=V, If there exists €V N (S\4} N
"\4)~, then both z and z™* are in S\Z. As V Nint(4) + J, there is y such that
1gint(4) NV, thus y must be in (S\Z) NV. Let r(£) be a path such that r(0)=
r(1) =y and v (¢) € (S\A) NV (FE€[0, 1]). Thus r~*(¢) is a path such that +~(0)

2 E€8\4, r (1) =y *€int(4). Then there is ¢ € (0, 1) such that r~*(c) €bd(4).
tb that bd(4) is a group implies that r(c) €bd(4). It is a contradiotion. Thus, V
B\DNE\AD) =0, i.e, ¥V N (S\4) =V Nint(D).

Let W=int(4) Jbd(4) Uint(D) (U denotes the union of sets which have no
nmon element). It is easy o show that bd(4)=bd(D). Thus W=_int(4)y
(A)) U (int(D) Ubd(D)) =cl(4) Uel(D), W is closed. On the other hand, V= (V
int(4)) U P Nbd(A) U@ N S\Z) =¥ Nint(4)) U (F Nbd(4) U(¥ Nint(D) U -
W. By Lemma 4.1 and its dual results that bd(D).int(D) cint(D), int(D).
(D)cint(D). For each +Chd(A4), let V,=azV NV, then V,CW. ¥V, is open,
(4)< | V.. Therefore, W =int(4) Uint(D) U( U ’V.) W is open, t00. As 8

scbd(A)
connected, W =48, i.e. int(4)Ubd(4) U (8/4) =1nt(A) Ubd(4) U int(D). Thus,
A =int(D) is a semigroup.
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