Chin. Ann. ofiMath.
i0B (4) 1989

A MINIMUM-RATIO-TEST-FREE APPROACH
| TO LINEAR PROGRAMMING™

Wane ZerEMIN (EFR)™*

Abstract

Two non-simplex—type pivetal algorithms are given in th's paper which realize
eonstructively the Farkas Lemma and the strong duality theorem of the linear
programming on purely combinatorial piveting rules, i. e. they ‘involve no process of

minimum-~ratio-test and work purely on smallest subscript principle in accordance with
the signs of the quantities concerned.

Farkas Lemma can be set in various way, the one we take have is: Let A° be an
xn real matrix whers m<n and r(4)=m, b° an m~dimengional real column

stor, P a non-empty subset of {1, 2, -+, n}. Exactly one of the following twe
JSements holds:

(a) There exists an n—dimensional real veotor # satisfying:
A%=0°,
{m,->0, S P.

(b) There exists an m~dimensional real veolor v satisfying:

uoi >0, V6 EP,
ua'=0, ¥4 € {1, 2, -+, n}\ P,
ub°® <0

ere ¢ iy the th column vector of A4°.

It is quite obvicus thal ghatements (a) and (b) can nob hold gimulfaneously. A
1-simplex-type pivotal algorithm™® Iwhich realizes constructively the above Farkas
nma will be given in the following; its pivoting rules involve mo process of
aimum-ratio-fest and work purely on smallest subceript principle™,

Algorith mI

Input and Working Unita: A% 5% A an mXn working matrix with ¢ ag its éth

amn vector, b an m—dimensional working column vector, (41, %, -+, %n) an m-
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dimengional working row vector (standing for “basic indices™).
Outiput: Either a veotor s satisfying the condition seb in statement (a) or a
~yeotor u sabisfying the condition set in statement (b) ‘ '
Step 0: Assume that A° bakes of as ¢t ith column vector and «*, o, -+, o™ ig a,
get ofrindependent column vectors of A°.

0.1: Let :
FOE [O&‘:, a‘?] sy a‘;n],
To=[4° b,
T=(A4, bv];
Set
T:=F'T,,

(84, Bay *+*, Gm)s=1(83, &%, =+, 1%).
(T is called a tableau; 4y, 4q, *-*, %m ave oallcd bacio indices with regpsoct to T'
0.2:If '
36 € {By, 85, ++o tmy NP
Such that
35€{1, 2, «, a} ({é1, 85, =, G} U P) and al0,

then take a] as the pivoting element in T and transform T, through pive
operation, to an up-dated one; seb 4: =3 and go back to Step 0.2. Otherwise, g¢
to Step 1. : '
Step 1: If Vi € {43, 4a, **-, %m} NP, we have 5,20, let & bs guch an n—dimensi
veoctor: o

0 for k{1, 2, -+, n}\ {41 @2 **) Tm},
={b, for k=6, {b1, G ++, Gm}

(it is eagy to see that now x satisfies the condition set in statement (a)).

Stop. Otherwise, assume - ' '

fi=min {4;|5,<0 and 4, € {é1, %2 ***, 4m} N P};

(47 is now ocalled to be ready for becoming non-basioc.)

go on to Step 2. ~ i '

Step 2: If V§ € {1, 2, +-+, n}\ {81, 83, +**, 4m}, We have a}>0, let u ba the ] th
vector of [, a®, -+, o]~ (it ig not difficult to see that now u satisfies the o
ition set in statement(b)). Stop. Otherwise, agsume

j=min{j|a{<0and jE{1, 2, -, n}\{iy, éa, -+, bu}
(7 i9 now called to be ready for becoming basic), then take a/ as the pivc
* element in T and fransform 7T, through pivoting operation, to an up-dated one
472 =7 and go back to Step 1. '

Proof We are going to prove sketchily in the following that the above

algorithm ocan cause on oycling, i. e. can not produce two identical sets of basic
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1dices; therefore, the finiteness of the algorithm. is secured.

If the algorithm causes cycling, then during period of cyeling, any basic (non-
agio) index if onoce becoming non-basic (basic) must onoe again become basic (non~
agic); of all these indioes, let g be the greatest one. Suppose, on the one hand, that
i basic with respeot to some tableau 7 and ig ready for becoming non-basic; and
ippose, on the other hand, that g iy non-basio with respeot to some other tablean
and is ready for becoming basic. Now, assume that, with respect to the tablean T,
bagic index 4, ig ready for becoming non—basic. With respect to 7, let A= (As, Ag
‘s A Auy1) be such a veotor: ‘ ‘

0 for k€ {1, 2, +, n}\ {81, %2 ***; %},
Ju=1b; for k=3, {83, 43, ***, S},
—~1 for k=n+1
1d 1ot 3 be the sth Tow veotor of 7' (obviously, A is orthogonal to evory row vector
7T'; therefore, X is orthogonal to 8). Now, it can be shown (mainly due o the sma—
egt subscript principle set for pivoting) that instead of :X=0 a contradiction 3+X
0 can be derived.

The strong duality theorem of the linear programming can be gebt in various
1ys, the one we take here is: Leb A° be an m X n real matrix where m<n and »(4)
m, b° an m~dimensional real column veotor, ¢® an n—-dimensional row vector, P a
m-empty subset of {1, 2, ++:, n}. Then, for the following two linear programming:

LP: max ¢’z . DLP: min ub®
5 {A°a:=b° o b {ua‘>c?, Vi E P
“lo>0, Vi€ P " luat=0, VEE {1, 2, -, n}\P,

- where &' is the $th column vector of 4°.
sher at leagt one of them is mfeamble or they have optimal solution = and u such
at e® z=u%. (It is well-known thatb if one of the two programmings is infeasible,
en the other oms is either infeasible or unbounded).

A non—mmplex—type pivotal .'al,lgorﬂilrmum %51 1T, which realizes construotlvely
e above strong duality theorem will be given in the following, its pivoting rules

volve no process of mmlmum—raho-test and work purely on smalles'b vubso
o6 principle™? .

Algorithm II

Tnpub and Working Units: 4°, 3% ¢% A an m Xn working matrix with of as ite
v column vector, ¢ an n—dimensional working row vector, (44, 9s, ***s Gm) an m-
dimensional working row vec'or, (standing for “bagio indices”), » a working real
-value unnib, ' :
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Output: Either

(1) an unbounded-augmenting veetor B8 of the LP, (henoce, the DLP ig infeasible
and the LP is either infeasible or unbounded) or an unbounded-augmenting veotor
v of the DLP; (hence the LP is infeasible and the DLP is either infeasible or
unbounded)

Or :

(2) an optimal golution @ of the LP and an optimal solution u of the DLP (such
that ¢®z=ub°) together with an optimal value h.

Step 0: Assume that A° takes o' as its column vector and a¥, off, «-., a'™isa .
of independent column vectors of A°.

0.1: Let
Fo=[o¥, o, -, o™ ],
(1 —¢® 0
To= 0 4° bo]'
W= (o:’:, c:’,,, .es, c;’;' s
_ (1 ¢ A '
T=_o A b]'
Set '
1 woF5t
T:E[o 7t ]'T°
(81, bay =+, )= (40, 83, -+, 0).

(T is called a tableau; 4y, 4s, +**. %m are called bagic indices with regpect to 7')
0.2: If o
36, € {61, G2, 6m} NP, and TFE {1, 2, +-+, n}\ ({61, 6a, ---} U P), we have al0,

then take o! ag tee pivoting element in T and transform T, through pivot
operation, to an up-dated one; seb 4;: =7 and go back to Step 0.2. Otherwise, go
to Step 0.3.

0.3; If

Fe{l, 2, <, n}\({&y, %2 +++3m} UP) and ¢;%0,

then let B8 be yuch an n-dimensional vector:

if ¢;<0, 1ot
1 for k=]
- Bu=10 for B(£7) €12, 2, ++, n}\{éx, b *+*, G}
—af for k=6,€ {43, bs, +, Gm};
if 6;>0, let

—1 for k=7,
Bk—‘——‘ 0 for k(#i) E{l) 2) M) ""}\{'?./11 5’2) Y i’m}r
af for k=4 {1, %2, ***) Gm};



476 CHIN. ANN. OF MATH. Vol. 10 Ser. B

Stop. (It ig not diffioult to prove that now 8 is an unbound-augmenting vector of
» LIP; therefore the DLP is infeasible and the LP ig either infeasible or unbounded.)

Otherwise, go on to Step 1.

Step 1: If

>0, V3, € {#1. 9 -, I} NP; and ¢;=0, VIE{L, 2, -+, n}\ {81, %9 **+, T};

« e such an n—dimengional vector:
 (Ofor ke{1, 2, -, n}\{éw, €y -, B},
a’k={b; for k=4,€ {41, %3, ***, ¥m},
11et
u=wxF-2, where w=(cq, i *-+, C;,) and F= (o o -, a'").

Stop. (Now, it is known that & and u are optimal, and A iz the optimal
ue of both the LP and DLP). '

Otherwise, let

t=min{i, §|5E {is ta, *+*, Smy NP and 5,<0; jE{1, 2, -+, n}
\{é, %3 -+, 6} and ¢;<<0},
=4; (47 is called to be ready for becoming non-bagio “actively”),
n go o Step 2; ‘ .
=7 (7 is called %o be ready for becoming bagic “actively’),
n go o Step 3. A

Step 2: If ai>0,Y§ € {1, 2, ++-, n}\ {84, %3, *** G}, lob  be the [ th row vector of
! where F=(a™, a* -+, a'); stop. (It is not difficult to see that v is now an
nounded-augmenting vector of the DLP; therefore the LP is infeagible and the
P ig either infeasible or unbounded).

Otherwige, let

j=min{a{<0and jE {1, 2, «-, n}\{bs, b2 -+, Gm}}
is called to be ready for becoming basic “passively”);
e a as the pivoting element in T’ and transform 7, through pivobing operation,
an up-dated one; set ¢;: =7 and go back to Step 1.
Step 3: If al <0, Vi, € {44, %y =*+, 2w} NP, lot 8 be such an n-dimengional veotor:
' 1 for k=7,
Bu=130 for k(+7) €{L, 2, -+ w}\{éx, 8y, +-, b},
—a] for k=0,€ {41, 42 ***, tm}-

Stop. (It is nob difficult to vaﬁfy that now B8 is an unbounded-augmenting
Yor of the LP; therefore the DLP is infeasible and the LP is either infeasible or
oounded).

Otherwise, leb

$i=min{4,|a{ >0 and 4,C {41, s -+, Gmr NP}
(4; 19 called to be ready for becoming non-hasic “passivoly™);
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take fa as th pivoting element in T' and transform T, through pivoting operation,
0 an up-date one; set 4;: =7 and go back to Step 1. : _

Proof We are going o prove that the above algorithm can cause no oyoling,i.
. can not produce two indentical sets of bagic indices; therefore, the fini-teness of
the algorithm is seoured. : :

If the algorithm causes cycling, then during period of vyoling, any basic (non-
basic) index if once becoming non-basic (basic) must once again become basic (non-
bagio); of all these indices let g be the greatest one. At leagh one of the follow:
four cages would occur:

(a) g is, on the one hand, non-basic with respect. to soms tableau 7 anc
ready for becoming bagic “actively”’; and, on the other hand, g is basic with resy
o some other tableau 7’ and is ready for becoming non-bagic “passively”.

(b) g is, on the one hand, bagic with respact 0 some tableau 7 and is ready
becoming non-basic “actively”’; and, on the other hand, g is non-basic with resj
some other tableau T and is ready for bscoming basie “pa,ssively”;

(c) gis, on the one hand, non-bagio with recpsct to some tableau 7 and is re
for becoming basic “passively”’; and, on the other hand, g¢ is baéic with respes
10 some other tableau T' and is ready for becoming non-bagic “passively”.-

(d) g¢'is, on the one hand, non-basic with respsct to some tableau T an
ready: for becoming basic “actively”’; and, on the other hand, ¢ is basic with res
o some other tableau T' and ig ready for bacoming non-basic “actively”.

‘We are going to show sketohily in the following that each cage leads 10 a con:
diction. : : : » :

(1) Suppose case (a) ocours. Assume that, with respect to tableau T, a r
bagic index f is ready for becoming basic “actively”™. Let § be the first row veeto
the tableau 7, and wibh respeot o T, 166 A= (Aev A1, ++-, Ay Anga) bo such an (n+
dimensional vector:

[— ¢ for k=0,
_ 1 fork=f,
M0 dor B ELL 2 oy 10 b TP\ fi, by - Gy
—af for 70=7},€{?}1, B2, ) 7"1»}-

(Obviously, A is orthogonal to every row vecior of the tableau 7', therefore,
orthogonal to §.) Now, it can be shown (mainly due to the smallest subseript |
oiple get for pivoting) that instead of §-A=0 a contradiction §-1>>0 can be derix
(2) Suppose cagse (b) occurs. Assume that, with reépec'bv to tableau T, a
index 4, is ready for becoming non-basic “actively’. Let & be the (s--1)th row v
of the tableau T', and with respeot to T,1et A= (ke A, ---, A Xn +1) be such an (n+2)~

dimengional vector:
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(h  for k=0,

B for k=i, € {is, Gar v Gmbr -

0 for KE{L, 2 o w}\{bs, 4oy ++, b}y

—1 for k=n-+1. :
Ybviously, X is orthogonal to every row vector of the tableau 7'; therefore, X is
thogonal to 8). Now, it can be shown (mainly due fo the smallest subsoript
inciple seb for pivoting) that instead of 8-A=0 a contradiotion 3.A>0 can be
rived. - .

(8) Suppose case (¢) ocours. Assume that, with respect to tablean 7', abagio
dex 4, i ready for becoming non-basic “activelyr. We also assume that, with
spect to tablean 7', a non-basic index f is ready for becoming basic “actively”.
w, let' § bo the (s+1)th row veotor of the tableau T, and with respect to T, leb
= (Aor Ay ***y Ap A1) -be such an (n+2)-dimensional veotor:.

: —e¢p for k=0,
1.« for k=f,
0 for k(£f) €{L, 2, +++, 1, n+1}\ {1, b2 *>*, im}s
—af for k=6, € {és, b2, ***) bm} .
tbviously, A is orthogonal to every row vector of the tableau 7’; therefore, A is
shogonal to-8). Now, it can be shown (mainly due bo- the smallest subsoript
inciple set for pivoting) that instead of 8:A=0 a contradiction §-A>0 can be
rived. . .

(4) Suppose case (d) ocours. Let & and & be the first Tow vectors of tableau T
d T respectively, and with respsot to T and T, let A= (Ao, Ay, -+, 2 X,,_Fi) and A=
» My **%; Aw Ang1) be respechivoly two (n+2)-dimensional vectors as follows:

(A -for k=0

Bz for 7‘7'—"’&";6{’1;1» gy %y é’m})

|0 forkE€{L, 2, -, n}p\ {8y, G2 -, m}s

{ —1 for =k=n+1; '

(B for k=0

b, for k=4,€ {ix, m -, im}

0 forkedl, 2 AR n}‘?{i’b g, ooy 'zm},

( —1 for k=n+1, :

bvionsly,X is orthogonal %0 every row vector of the tablesu 7 and A is arthogona¥:

svery row vector of the tableau T'; therefore, A and A are orthogonal to § and 8)..
Now from (§—8)-A=0, it can be verified (mainly due to the smallest subseriph-

M=

g}

i

'}‘,k _

principle set for pivoting) that the last component of §— 8 must be non-—positive, this-
conclusion would therefore lead o a contradiction (mainly due to the smallest-
subsoript principle set for pivoting): instead of (5—8)-A bheing zero, (§—38)-A.
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becomes positive.

The minimum-ratio-testfree approach taken in this paper when being
technically modified can be further applied to linear feasible problems and linear
programming problems with arbitrary upper and lower bound consbraints on the
-variables without necessarily transforming them to the standard forms set in bhis
‘paper. These have been discugged in {6, 7} and [8].
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