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ON THE VISCOSITY SPLITT NG METHOD FOR
INITIAL BOUNDARY VALUE PROBLEMS OF
THE NAVIAR-STOKES EQUATIONS*

Ying LUNGAN (F[&42)%

Abstract

The viscosity splitting method for the Navier-Stokes equations on two dimensional
multi-connected domains is considered. Thec equation is split into an Huler equation
and a non-stationary Stckes equation within each time step. The author proves the
convergence theorem as he has done for the problem on simply connected domains,
and the rato of convergence is improved from less than 1/4 to 1.

§ 1. Introduction

‘We congider initial boundary value problem of the Navier-Stokes equation
twodimensional viscous, incompresgsiable flow

'-3—1:-+(u-V) u+—j’3— Vp=vdu+f, @
Veu=0, @

ulcesa=0y (1
U|t=o=’uo(fv), 1

where u= (u1, ua)T is velocity, p is pressure, f= (f1, f2)T is body force, superse:
T stands for transpose of a vector, positive constants p, v are the density :
viscosity respectively
a b
V(L )
63;1 3173

4=V? 0 ig a domain with boundary 82 in plane R? and V.u,=0.

The question congidered in this paper is: in solving (1.1)—(1.4), is it possi
to split equation (1.1) into two equations at each time step, one is an Euler equat
which has no viseosity berm, and the other one iy a Btokes equation which hag
eonvection term: The motivation of thig consideration ig the calculation for flow w
bigh Reynold‘s number™.
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Beale and Majda™ gtudied the corresponding initial value problem, it was

roved that the approximate solutiong converge o the true solution with rate O(%)
1 time stop & tends to zero. Douglis and Fabes™ also studied the initial value
roblem but with difforenb approach, they gave pblynomial approximate solutiong
r the Buler squation, then proved an existence theorem by meang of the I? norm
timate. With the yame scheme, Alesgandrini, Douglis and Fabass congidered the
itial boundary value problem (1.1)—(1.4) and proved convergence theorems in
t]. We ocongidered this initial boundary value problem too ©%, where Q was
sumed to be a bounded simply connooted domain. In our papers a modified Chorin’s
cheme wag applied, where one more step for boundary value correction was used
ke [1], bubf nonhomogeneous Stokes problems were solved instead of solving
ymogeneous ones. This modification gesms neocessary for convergenoe. We proved
wat this scheme converges with rate O(4¢~1/?), where 1<s<<3/2.
The purpose of thig paper is to consider the same method as [5, 6] with respect to
ulti-connected domaing, moreover we will prove a bstter estimate O(%) for the rate
convergenoce. Because there is no one o one correspondence between vortioity and
jlocity for bthese domains, argument in this paper is more complicated.

Now let us give a brief statement of our main results. Let Q be a bounded
main in R?. We assume that its boundary 9Q consists of N + 1 sufficiently smooth, -
nple closed curves I'g, I'y, «=e: y 'y, N0, where I';(j=1, .-+, N) are ingide of I’y
«d outside of one another. Denote by = (@1, #2) a point in R2. Lot T be any positive
umber, then problem (1.1)—(1.4) admits a solution %, p on closed domain Qx
, T provided functions u,. f satisfy a fairly weak aggumption, and the golubion u
unique, p is unique up Ho a scalar function of # which may be added to p.t
The ugnal notations H*(Q), W™?(Q2) for Sobolev gpaces and |+Js {*|mp for their
rms are applied thronghout this paper, and space L2(Q) = H°(2). Woe introduce a
wed subspace ¥V CI2(Q), such that § €V iff there is a p € H*(Q) and constants o,
-1, «+, N, such that '

—dp=0, @#.5)

op .
-5’7&— een Q O' . ’ (1.6)
‘P'Gefu=01 QDIWEI',':Gi' j=1v <o, N, » (17)

ere n ig the unib outward normal vector. Let P be the orthogonal projection from
D tV.
9. @

3.7]2 ’ 3'1}1
§=Pw, then § €V . Determine function ¢ according to (1.5)—(1.7), set v=(VAp)T

Denota VA =

), lot w= —V Aw for an arbitrary u € (H*(Q))?2 seb
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and denote v=0u. @ ig also a projection operator
6: (H*(Q))*— (Hy(Q))*N X,
where
X =olosure in (L*(Q))? of {u€ (05(2))2, V.u=0}.

The following scheme ig considered: We devide the interval [0, T'] into equal
subintervals with length %. Then we solve u,(t), px(t), u(t), (3), $=0, 1, - on
each interval [4k, (¢6+1)%), according to the following procedure:

First step, solve a problem on interval {4k, (3+1)k) as

~

P | (o V)i V=, (1.8
ot P

V=0, 1.9

Uz *n] ges0=0, (.19

ux (3k) =y (3k —0). @.11

Second step, projection, construct @ w;,((4+1)k—0).
Third step, solve a problem on interval [¢%, (6+1)k) a9

%%+% Vp,,=pAuk+%(I—@)&k((w'+1)7@—0), (1.1
V=0, (.12

] vesn="0, (1.14

i, (6%) = Otz ((64+1) k—0). (1.1

In (1.8)—(1.15), I ig the operator of identity, us(—0) =1, and the spatial variak
o ig omitted since there is no confusion. We always assume that f, w, and
solution « of (1.1)—(1.4) are sufficiently smooth throughout this paper.
Our main result is the following
Theorem. If u és the solution of problem (1.1)—(1.4), Uy, u 4s the solution
problem (1.8)—(1.15), 0<s<.3/2, then '
max (| ue(?) lopr 16x(E) Jorr) <M, 0<t<T, @.u
max (Jut) —u (@) o 1w —w@) ) <Mk, 0<i<T, a.r
where constants M, M’ depend only on the domain Q, constamts v, s, T, knot
Sfunctions f, up and the solution u of (L.1)—(1.4)(in fac t, M’ is independent of s)
‘We digousy some properties of the operator ® and Stokes operator A in sectic
2. In gection 3 we consider a special case, i. e. the cage when the conveoction term
(1.1) is dropped. We give some estimates for the Euler equation in sechion 4, a
some estimates for problem (1.8)—(1.15) in section 5. Finally, the main theoren
proved in. section 6.

§ 2. Preliminaries

In this paper we always denote by O aAgeneric constant which depends only on
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the domain @ and constants », s, T, by C, a generic constant which depsands only on
the domain Q, constants v, s, 7, the known funchions f, u, and the solution u of
1.1)—(1.4), by Gy, Cs, -+, My My, --- some other ganeric constants which are
determined according fo spacial requirements.

Lot w € Z7(Q2), thon =Pw &V . Sinee # is given, consbants ¢;, j=1, +--, IV are.
datermined by (1.5)—(1.7), which are written as ¢;=c¢;(w).

Lsmma 1. . ey | <Olole §=1, «, N.

Proof We consider a boundary value problem with part of the boundary
conditions (1.6) (1.7). )

: —dp="Po,

@|eer, =0 g—(z asP4=O’ j=1, «, N, »
which i well posad. From the I norm estimatse jfor the solutions of elliptic boundary
value problems™

lol.<O| Po|,.
But P is an orthogonal projection _
[Pl o<sfeo]o 2.1
By the frace theorem™
l0:(@) | <Clols.
Then this lemnma follows.
Lemma 2. The operator P maps H*(Q) in H*(Q) for any s=>0, and
) |Pols<Ofols. (2.2)
Proof Denote by (s, +) the inner product of L?(Q2). We construct functional
R(6)=(6, 0)/2— (0, ),
then Po ig the solution of the following problem:
BR(Pw)=min R(F).
BETV

We considsr a subset V' ,V, such that 6V, iff there is a funcbion € H(Q)
which satisfies (1.5)—(1.7) and ¢;=¢;(»). Then Pw is also the solution of

B(Pw)=min R(6). (2.9)
Let Yw={(P€Hl<'Q>; (Plael"u=o1 (plmel',=aj(@)) .7=17 M) N}-

If € L?(Q), then €V, iff thore iga p &Y, such that
-(Vo, Vo) = (6, v), Vo€ H(Q).
Let o bo a Lagrangian multiplier, and consider a functional
B0, ¢, v)=(8, 0)/2— (8, o)+ (Vp, Vo) — (4, v)
in the set L?(Q) x ¥, x H*(2). Then (2.3) is squivalent to: find P, ¢, v such that
Ri(Pw, p, v) =0, that is ~
| (Po—w—v, 6)=0, YICIXQ),
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(Vo, V) =0, Vyx€HQ),
Vo, V) — (Pw, w)=0, Ywe HYQ).
Thus Pw, ¢, v is the weak solution of the following boundary value problem:
' du=0,
—Ap=Po=ow-+v,

9p
an' le ean
pleer.=0, @leir,=0j(w), j=1, -+, N.
Eliminating v we get 4%p= — dw.

By thy I? norm estimate for the solutions of elliptic boundary wval
problems ® if ¢ is an integer anl m=>2, » € H™(Q), then p € H™*2(Q), and

1\7
[#hnss<O (1 40]n3+ Sles(w) |).
Thanks to Lemma 1 ,
lplnia<Olo|m. ' @.
Therefore
[Pola<|plnia<Olo|m 2.
For 0<s<m, by (2.1) (2.5) and the interpolation theorem ™, (2.2) is obtained.
Lemma 8. The operator @ maps (H***(2))? in (H**(Q))? for any s=>0, ar
16uls11<O0fufssa. 2.
Proof By (2.4) and the definition of operator 8,
10ufme1<|plmra<Olola<Ofulmss
for any m>2. Then (2.6) follows from the inferpolation theorem like Lemma 2.
‘We now congider a decomposition of the space X N (H*(Q))?, equipped with nor
I-11. We construct a subspace X, X (H'(Q))? such that u€ X, iff there
a fanction @€ H3(Q) NH2(Q), such that u=(VAg@)?. Consider the followir
boundary value problem ™%
dp®=0, §=1, - N,
o® Imel’;=8ﬁv 4, =1, -, N.
Lot u® = (VA@®)7%, then «®€ X (H*(Q)) Set {u®} is linearly independent, ar
is orthogonal %o space X, with respect fo the inner product of L*. We orthonormali:
it, still denoled by {©®}, such that
(u(i)v u(j)) =6¢I’ y j=1’ -, N
Lemma 4.  An arbitrary element u ¢n X (H*(R2))? can be decompossd uniquel

. N
u=1u+ 2 Au?, : (2.1
=1
where u=(VA@)T, and p is the solution of
—dp=w=—VAu, (2.8)
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@ |acon=0. | (2.8)

Proof By the I? norm estimate of the solutions of elliptic boundary value

woblem®™ o< H{(2)cH*(Q). Let the stream funchion corresponding to u be s

hen — 4=, henoe 4(f —p) =0. We may assume thab |zcp,=0. Since fr—p are

onstants on I';, §=1, 1, -+-, N, il can be developad uniquely as a linear compo-sition
£ p®

N
l'b —p =j§1 A“¢(D.

Applying operator VA to it, we get (2.7). By the orthogonality of « and u?, we
conw the expression (2.7) is unique.

In what follows we consider some properties of the Stokes operator “%, Set

G={Vp; p€E H' (D)},
jhen we have the Helmholtz decomposition
(I(D)*=XDG.

Let P’ be the continuous projection from (Z*(Q))? o X associated with this
Jecomposition. In virtue of [7], we have the following

Lemma B. The operator P’ maps (H*(2))? in (H*(2))? for any s=>0, and

1P fl<O|fl..
The Stokes operator is defined ag A= — P’4, with domain
D(4) =X N{u€ (H* (D)% ©|desa=0}.

It is known that {¢~4, {>>0} extends uniquely to a bounded holomorphic semigroup
in X, and inequality

[A%e~t4]| <Ot™%, a0, >0, 2.9)
holds. We denote by D(A%) the domain of operator A% then
D(4%)=[X, D(4)Ja=X N [(L* (D))" D(—D]s (2.10)

for 0<<a<<1, where [, +]4 are the in termediate spaces’,
D(—~4)={u€ (H*(2))*% ulecso=0}.
In D(4%), az>0, the norm | 4%, and |ulas are equivalent, namely
[ A%u]o<Clu|:q. (2.11)
and -
ful <Ol A%ulo, (2.12)
for any u€.D(4%). Stnctly speaking, constant U depends only on the domain and
constant a.
Lemma 6. If 0<s<1/2, u€ X (H*(Q))? then u€D(A¥?); %f 1<s<3/2,
u€D(4) N (H*(Q))?, then u € D(AEF/2),
Proof If 0<<s<1/2, then H*(Q)=H?(2)®. By (2.10)
D4 =X [(ZAQ))% D(—D)]we
SXN[(TA@)% (H32))oa=X N (HHQ))
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If 1<5<3/2, u&€ D(4) N (H***(2))? by the definition of operator 4, Au€ X. By

Lemma 5, Au€ X ) (H**(2))2 By the first pari; of thig Lemma Auc D(AC D2y,
Hence u€ D(A6H/2),

§3. Some Estimates for Solutions of the Stokes Problem

In this section we consider the linear counterpart of (1.1)—(1.4), that is
ou 1

E—_l-? Vp=vdu+tf, : €
Veu=0, 3
’Uflzem=0; (3

Ul o=t (®). ‘ 3

"We assume that f, 4, and solution % are sufficiently smooth as before. We introd
vorbicity @w= —V Aw and stream function ¢, such that u=(VAy)T, then equat
(8.2) is satisfied automatically. We may take iy such that {|,cr,=0. Lot = be
unit tangent vector along 99, such that n, v form a right—handed system. Then
solution of (3.1)—(8.4) satisfies

% —vd0=VAS, G

o ~o. ' : (3

3‘": €I 2 0, (

'-Mcer..=0: '-I’IGEI';'___Giv j=1r ‘% Nr (3

0| o=wo=—V Ay, © (8

,[r (v——i—f v)ds=0, j=1, - N, 3.
El

where ¢; are unknown scalar functions with indepsndent variable #.
Lemma 7. Ifuc€ (HL(Q))? w= —V Au, then

lul1<Clelo. 3.
Proof Let s be the stream funetion corresponding to v and
4’ l el = 0'
Wl o =1, -
then 6’"; ecer; O) ‘7 17 ’ N’ .
. and
— M=o

By the L’ norm estimate of elliptio equations

Ipla<Olwlo.

Then u=(VAy)T yields (3.11).
Lemma 8. If o is the solution of (3.5)—(3.10), then
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d 1 ‘
i leld <§7"f"3- (3.12)
Proof Differentiating (3.6) with respaot to #, we get
3([1 _ o ‘
?t_ at (3.13)

ubstituting it into (8.5), we get
o _
A—é—i———vdw VAS.
[ultiplying it with —%—f-, and integrating it on domain 2. by Green's formula and
oundary condition (3.7) we get
(v o, v ) is(Vo v 2F)
B 34’ ( %)
VJ’:D “on 2¢ B+ VA ot

+ Lﬂ PR | (3.14)

fultiplying equation (3.13) with w, and integrating it on domain £, by Green's
ormula and boundary condition (8.7) we get '

2 Ge=(-22
(V at,Va)) (3t , w). | (3.15)
t is known bhab%’l’- are constants along I';. By boundary conditions (3.8) (3.10)
xnd (3.14) (8.15) we obfain "

(v 5 5+ (a”rw) (fVAa‘b)

=)

Jouce

|7 2 + % Lloli< 15
whioh is (3.12).
Lemma 9. If u ds the solution of (3.1)—(3.4),
ue€ D(A) N (H**(Q2))?, 0<s<8/2,
hen
) Loss <O(Huglsa+ max- £ () 1), 0<w<T.
Proof By means of Stokes operator, » can be expressed as

u(t) e~ g+ [ 6P (3)d. (3.16)

Wo estimate the terms in (3.16). By Lemma 6, u,€D (4¢*D/%); by (2.9) (2.11)
(2.12), we get
"e-'vf,d,ulo IIS+1<01| A(8+1)/2e-vfﬁ,u,o "0 — Of"e—vaA(s-{-l)/ﬂuo "0

SO} A2y, [0 <O thol 41
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Take a positive constant r, s—1<r<1/2, then by Lemma 6, P'f(z) €D (473,
V7€ [0, T]. By (2.9)(2.11) (2.12) and Lemma 5, we get

—v(i—%)A P’
"J’; ) P'f(v) dmLi
<0 [[ 4o rorig =P f () e

o J‘ " | A GH1-n/25-v(t-)A 4r/2 D/ f (1>n .;d’r
[]

o f: (w(@E—=))~ 3| f (v) | dv
<O max If (@) 1.

Now we apply the scheme (1.8)—(1.15) fo problem (3.1)—(3.4), and gi
some useful estimates, For this case, equation (1.8) becomes
G 1 ys
a’t + P Vp;, f ) (3.]
where the term (2;V)% is dropped.
Lemma 10. If u, is the solution of problem (3. 17) 1.9)—(@1.15), then

G+1)k
wn(8) = ot 23 6704 [ 0 (3)d
=0 )

=0

[t -1 FGEHLR 1 Gk
—v(t-m)d - T
+ L, o L j‘k P'(I-8)f ()l dr

of, e 2 (OO p(a-oy@atas, @4
re/kk ¢ & Jonaw ' ’
where [ ] denoes the iniegral part of a number.

Proof We prove

wn(h—0) =e~Pug+ 3 oe-4 [ 07 () s
-1 @+ 1 ;
+8 [P L [V Pa-0)rOata @2
= Ja k Ja
by induction. (3.19) is obviously valid for =0. Now we assume  that (3.19) is va
for a oertain j. '
Applying P’ to equation (3.17) we get '
a';zk — ’ ¢
o Py (8.¢
Integrating it on interval [§k, (j-+1)%), and using initial condition (1.11), we
@1k
i ((G+ D=0 =ta(—0)+ [ Pf(x)ds.

Substituting it into equation (1.12) and initial conditial (1.15), we get

ou —]; e 1, . GOk
e -2 U=yt (I &) (w4 °)+L» Pf()ir),  (3.21)
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e (k) =0 (2 (55— 0)+f *p {OLOR (3.22)
pplying operator P’ to equatlon (8.21), we get ' T
Qs —y L P'(1-6)(w(§k~0) +j P’f(q.—)dz-). (3.23)

1 (P)2=P’, 6P’ =0, integra.tmg equation (3.23) on interval [k, ¢), and using

itial condition (8.22), we obtain

uy, (8) =g ¢4 < Ou,( yl, —-0) +J'(.:;+1)k Of(z) clr) '

t en 1 ', . (i 1Y% .
+[ eemetp a-0) (=0 -+ [ F a0y ).
ot w, (35 —0) € (H§(2))?N X, therefore Gu, (55 —0) =u,(§5—0), hence
| uy (8) =g ¢4 <u (35—0) +Iu+m Bf (%) ol*r:)
14 . .

+[ gremme L[ P’(I 0)F (1)L da.
I
Te substitubte (3.19) into it and obfain (3.18). Let —>(4+1) k—0, then (3.19). is
srified for 44 1. This completes the indution and (3.18) is poved ab the same time.

Lemma 11. If w€D{4) N (H*(Q))? 0<<s<3/2, then

I 75— 0) fora<O(ltsoflsss+ sup |f(#)}1), §=0, 1, -
- 0<7< ik L

Proof Wo estimate the terms in (8.19). Like the proof of Lema 9, take a

»sitive constant r, s—1<r<1/2, then the second term

2 6~u(f—i)kA J(k Dk @f (7) d’b’“

=0 1

GHLYE
[ eron]

1)/ 2 ~v—ikd Ar/2 I (;,H)M@f ( a‘) e "
§
<O F e [ a6r (o) ot
<0 sup |F 1S G (G-iyp-en-rr

it
<0 sup | f () Ilif (v (jh—7)) ~e+1-1/2gy
O<z<jk 0

<O sup If ()]s

'he egtimate of the third term is similar, and the first term has been estimated in
he proof of Lemma 9.
Lemma 12. If uo,€D(4) ﬂ (H*(2))3 0<s<3/2, u is the solution of prroblem
3.1)—(8.4), uy, Uy is the solution of problem (8.17) (1.9)-—(1.15), then -
max (u(t) ~0s(8) bosas 16C8) — () hopr) <Oob. (3.24)

Proaf By (3.16) (3.18) we have
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[El-1 fG+Lk )
w@—wm@) = 3 [T (g 6f (v)ds
= ¢
4
v =)A= (-LE/kTOA
+ j t/kik (e ¢ ) @f <T) dv

j‘(tt/kl+1)k

6—v(t—[t/k]7‘)A@ T d"ﬂ'
t f (%)

[He1-1 J‘(i+1)k
=0

w8 [ Peema L[ p(1-6) () ~F @)l aw

4 I;/k]ke-u(:_ﬂ 4 % r:t/mnk P (I-0)(f(z)—f))dldw. (3.

‘We estimate the terms in (3.25). With regard to the first term
G+1)k
- |2 f (670~ _ g=rt-A)Qf (7)dry ,
7 Ji s+

/%1%

e A(s+1)/26_y(t—'v)4 (I _ e-w(t—ik)A) @f(,v.) aw “
0

Gk ik
I 4 (s43)/2g-v(t=)4 6 **4d(Of (q,-)cl'z'“ .
‘0 . o

We take a constant si, 8<<8;<¢8/2, then by Lemma 6 and (2.11)
G+Lk

Ii<

t—ie
AlHe-s)/2g-vit-1)4 J Y gmra gy Aerg f (7)d “
° 0

E+1Lk

<02J (t=my oo [ ) 40 000f (5) | od Ldw

£
! e\ 1+ (81-3)/2
<O max [6f (@) b [ (4—) dr.
By Lemma 3
I; <Ok max || f (%) | sz
O0<T<T

With regard to the fourth term, we take a positive constant s, s—1<r<1/2,
Lemma 6 and (2.12)

I,= ‘2 J’fi+1)'ln —y(t-7)d _]It_ }‘ :;+1)m P (T—8) (F(e)— £Vl n “sﬂ
[z e [T [ pa-or @i,

<ol3(;”

g 2 [ pr(r— @)f’(§)cl§dédr“

=C’“ f( +1)% AHIn/ 2p=v(t=T)A — 1 (+1)kJ‘ Ar/2P/<I @)f’(f)dg dZ dr“ .

By inequalities (2.9), (2.11)

1,<0S J; (v (=) ~#1nya 1 j‘“‘”" I““"‘ |P'(I—6) f' (%) | ¢ &L d.
By Lemma 5 '

1,<0 j (4= %)==/ g max j‘”‘u (T-0)f (&) | dE.
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Lemma 3
I,<Ck- max | f'(£) 1.
0<ésT

3 can estimate the rest terms in a similar way. Thus the estimate (3.24) for
i) —u () is obtained.
Now we estimate () —u;(£). Because  is sufficiently smooth,
' N (8) —u(6k) |osa<Cok
*t €[4k, (4+1)%). From equation (3.20) and using Lemma 5,
oaw (&) ~ 14z (%) Jaa
g REiCt
r initial condition (1.11)
oz (64) — tay (4%) No 2= |06 (8% — 0) —263, (55— 0) [ssa.
sing the triangls inequality, we get
N (8) — s (8) faga< | (5% — 0) — 14, (6% — 0) {341 -+ Ok
1en the estimate (3.24) for u(t) —u,(¢) follows.

t
<[ IPF () losade < OB+ max 17(5) Losas

§4. Some Estimates for Solutions of the Euler Equation

In this section we consider initial boundary ivalue problem of the Euler equation
rresponding to (1.1)—(1.4), that is

Lt @ Vu +%Vp=f, (4.1)
Veu=0, (4.2)

U peon="0, - (4.3)

%] o= (). (4.9)

5 was proved in [10] that (4.1)—(4.4) admits a unique solution provided the
ata are suitably regular, where the sense of uniqueness is the same as thab for
1.1)—(1.4). We assume as before that fanctions f, u, and solution  are sufficiently
nooth. By introdueing vorticity w and stream funoction s as section 3, we have

Lo tu-VouF=-YAf, (4.5)
—Alp=wr (4.6)

u= (VAT (4.7

¥loer,=0, ¥loer, =0y j=1, »+, N, v (4.8)

o io=wo=—V Ao, ‘ (4.9

(22, )t (@ W=, u) =0, j=1, =, N, (4.10)
(4] ¢a0—t0y uP)=0, j=1, «oe, N. ' '(4.11)

By Lemwmasa 4, we have unigque decomposition
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i —

- X -
u(®) =u(®) + 2 () u®, u () € X,. (4.12)
Lemma 13. There ewists a constat k>0 which depends only on the domain Q,
max Jo(8)[o and max | () [e
0<C<T‘_ o<i<T

such that N

N

Sum<2(ZnO+1) @)
for 0<<i<k,.

Proof Setting u'=u—u, multiplying (4.10) by A; (t), and ﬁndmg the s
with respect to j, we get

Q(_u_tﬂ )+(((u+u’) V) @) —f, ) =0,
We notioe that u is perpendlcula,r o «’, and
(((u+u) V)u, w) =0,
thus

L (w, )+ (o) V)i, ) =0

holds. Substitnte (4 12) into it and obtain

2 2 é 22(8) +;‘, FONORD> fu(t)m(t)x,(z) -0, (4.

where
& () = (@ V)u, u®) —(f, u®) == (@ V), @) — (1, u»),
£ (@) = ((u®+V)u' u?).
In virtue of the I® norm estimate of the solution of (2.8), we have
luli<Ojwle.
Therefore
1&@) |, 1@ | <Cu
where and hereafter O, is a generic constant which dépends only on the doamin {
max lo(® e and max 1Lf @) o

From (4.14) we have

;’t > xz(t)<01(2 A(E) + 1)

Henoe ,
N N it N
FHORS STHORNA j p>HOLEN
=1 =1 0i=1
Using Gronwall inequality we obtain
N N N
WHOPL (2 A3(0) +01t).
=1 = .
Taking %, small enough such that 6”%<2, Oio<1, We get (4.13),

Lemma 14. If 1<s<8/2 8&1=1+3/3, and if [voluyi<<My then there is a.
constant ko>0, which depends only on the domain Q, constants s, T M, gnd
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max | f () |as1,
o<t<T
h that
lulssa<Oa(Jtolns14-1), (4.15)

c 0<<i<Cko, where constant O, depends only on the domain Q, constants s, T and
maX | f (#) Jasa.
o<t<T

Proof In the following we always denote by O, a generic constan® which
egses the above property Integraltng equation (4.5) along charaocteristio curves,
obtain -

e, =0 O D+ 1), D @15
ere {(y, # v) satsfies
-aan(y, t; 7).=u_(§(% t;‘ ©), ),

| £ % 7) =y,
th y=(y1, ¥a2) €Q. Applying oparator V to if, we get an inifial value problem
isfied by Jacobean matrices which are the derivatives of £(y, # v) with respect to

B ) uE b ). D) % tiw)

2
o oy oz ay
(Y, wiv) _ 1
ay b
1ere % is 2% 2 Jacobian matrix, and 7 is the unit mabrix of second erder. Denote
U
M
o8 (y, &
n(y, 4 7= LLET),
» obtain by integrating
n(y, & 7)=e [lwewa oo, (4.17)
1 ¥

)plying operator V to (4.16), we get
Vo=Voo (@, 0 H)n(e 0 D+ VFE@ G 1), Onle t; N (4.18)

The usual notations 0™3(Q2) and | +|omea, ave used for the spaces of funchions
10se derivatives up to m~th order satisfy the Ho6lder condition, and the norms. As
result of the imbedding theorem,™ :

ollcr. '1--<D)<02"600||s,<02M1 - (4.19)
was proved in [10] that there are constants 03 and 5>0, depending only on the
domain Q, constants 5, T', |wolos nr@y and
_ (I,I:?ﬁ. 1 (@) | corsincan
guch thab o ’
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“w(t) " ora@ S Os. :
Taking note of inequality (4.19), in what follows we always denote by O; a generie
constant which depends only on the domain , constants s, 7', M;, and

max 1S () fovea-
One soes that the constant %, in Lemma 13 depends only on U;. By (2.8) and

Schauder’s estimate for elliptic equations™?®, we get
() lovoa <Os.
By Lemma 13 and decomposition (4.12),

' lu(@) | oramy<Os : _ | (4.
for 0<t<<h,. Reduce %, if necessary, such that Oghe<<1, then by (4.17)(4.20)
In(y, % )| <Ca. _ 4.

Then set p=2/(2—s1), by (4.18) (4.21)
([, 1volr @) <0 [ | Vas(é @, 0; $)) [2an)
+af ([ 1vF€@ 6o, Ola) . @

As a eonsequence of V.y=0, the map v — £ (s, {; t) is measure preserving, henoe

[ vonte(@ 0 )12 do=] |Van(s) 2ay.
In virbure of the imbedding theorem
kovoll 1, <Oalwo] - .
Another term in (4.22) can be treated in the same way, hence
IVolo.s<Ozllwols+Oat. »
On the analogy of this estiamate, using (4.16), we may estimate |w},,, therefor

lok1,s<O:fwolln+Ost. (4.
To obtain the egtimate of Jw|, we should estirnate™
I=(J J‘ IVO)(GU, t) Va)(a; t)lz clmdm’)lfﬂ. (4
\Jo/a [o—a'|>

We substitute (4.18) into (4.24) and begin with considering the first term, th:

to estimate '

11=q I | Vo (€@ 0; 1)) n(@, 0; ) — V(£ (@, 0; £))n(a, 0; ) |*
alo

|o—a'|*

1/
dz do’ )

Through some calculation, we can get

1/2
Li<Ox{laooks (3 [ Lokt slulEse. ) ], @

where p=2/(2—s1), ¢=2/(s1—1), o=s5—2/¢. In virtue of the 1mbeddmg theorer
n H1+cng<02" “2.97 “woﬂ1 p<02"wous, (4.
By Lemma 4 and the I norm estimate for the boundary value problem of elliptio:

s(uabiong®,
fudz, s <Osloli.a
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Lemma 13 and decomposition (4.12)
lit.s<0s (ool + 210 [ +1 ). (4.21)
substitute (4.12) into initial condition (4.11), then get
2(0) = (uo, u®),
) _
[2:(0) | <Clwolo. (4.23)
(4.23) (4.26)—(4.28) '
1) 14e,g<Os.
uce ko, if necessary, and let 1<k, then by (4.25) we getb
‘ I, <0s|wofe
The estimate associated with the second term of (4.18) is all the same, We gat
I<0;|wols,+Ost.
1bine it with (4.23), then the H* estimate
_ : lofe< O] wolls, + Ot
ows. By Lemma 4 and the estimate for the solutions of elliptic boundary value
blems ' '
“’E"s+1<02"‘00“5\+0275~
ally, (4.15) follows from decomposition (4.12), Lemma 13 and (4.28).

Now we consider problem (4.5) (4.9) in general terms, where « i assumed to be
arbitrary, suffiiciently smooth function and u(., $) €EX. Let € H?(Q) be the
vam funotion coprespohding 1o up and Yl,e r.=0. We consbruct characteristio
ves £(2, #; 7) like Lemma 14. Let T (¢) =T (£(y, 0; t)), 8= — AW, then we have

Lemma 15. If (%) ds the solution of (4.5)(4.9), and uoE€D(A), then

16(:) — () ls<Ostlwolo+ || IF (o) lods, (4.29)

we constant C, depends only on the domain Q and function u.
Proof By (4.17) it can be directly verified that™ .

— 40 (y) =wo(£(y, 0; £))+ Ry, (4.30)
ere )
S & _
Aﬂ_'a__y-]%"'}_ ayg » Y (yl' 1/2);

[ Rillo<Ost| ]2
the proof of Lemma 7
bl a<Oiflwoo-

IRlo<Oitloolo. - | (4.31)

From (4.16) and the properby of meagure preserving of mapping x> &(w, ; ¢); we

got
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fo(8) ~e(€C-, 0; )l
-|[ rec 6o, vac,

<[1FEC G0, Olodt = [ IFQ lodt-

By (4.30)

6 () =w(t) + Byt R,
where

Rubo< [ IF () o d. (4
Then (4. 29) follows from (4.31) (4.32), '

§5. Some Estimates for the Viscosity Splitting Methc

In’this section we give some estimates for bthe solutionos of schemo (1.
(1 15). We always denote by u, « the solution of ploblem 1.1)—(1.4), and b;
an the vortioity corresponding to u, U

Lemma 18. If 1<3<8/2, s,—=1+438/3, uo€D(A), and there is a constamt
such that

@) [1<M, 0<i<T, (
and there are constants O, k>0, such that
H0(8) fara< Oa( 4 (8K) o4 +1), SE<E<(64+1)F, 6=0, 1, +=, (
as 0<k<<ky, then
max () fua<Ma | (

ag 0<k<ko, where constant M, depencls only on the domain Q, constanis Gy, M,, !
v, and functions f, uo.
Proof We denote by U; a generic‘costa.nt depending only on the domai:
congtants O,, T, s, », and functions f, u,. Set h
F1(®) = f (x) = @ V)i,
then by Lemma 11

(35— 0) Inis <Ol + 51 122 1.
The norm of the nonlinear term has an upper bound
| (g V) fa <O (i3 5+ |l 0,e ]} ) -
We take a constant ¢, 1< g<Cs, then owing to the imbedding theorem
1@ < (@) L1+ O fela+ lnl ol uel ), .

and by the interpolation inequality™? .

TROIIN FIC) FRY eI Fauld 1A FARS ¥ el 70 K eald YA Fandd A 128
= 1) fa+ Ol el 2+ foa 32l ).
Hence :
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Ve (35— 0) Jas42<O5+05 sup il a2 lnliy) . (6.4

n assumption (5.2) of this lemma and initial condition (1.11) we obtain
[ (8) hosa <0+ O max ([l | Gallt + 1Tl [ 95) + O,

ing maximum value of tne right hand gide and using assumption (5.1) of this

ma, we gob

. Vi) o121 <Cs+ Os (MG nax Noaw |3+ M3 max [PAEAYEZ

n (5.3) follows. :
If we replace (u3-V) 4y in equation (1.8) by (u+V)w, then it becomes a linear

vhion

"Zk +_1-v§,,=f— (0 V). (8.5)

solutions of problem (5.5),(1.9)—(1.15) are denoted by u*, p*, &, u*, p* o*.
Lemma 12, for any 0<s'<3/2,

max (Ju(®) —u(#) foes Ju?) — (8 hos) <ok, - (5.6)
In the following from Lemma 17 to Lemma 23, we fix constant s, i<s< 3/2, and
me |uy}s41<M3, denobe by Uy a generic constant depending only on the domain
ongtants s, v, T, M, fanctions f, % and the solution % of (1.1)—(1.4).
Lemma 17. Asib<t<(4+1)k

i *(t) u,,(t)ﬁ1<06 max ﬂw"('r) a»c(’v') ||o+Os/v (6.7

Proof By Lemma 4, we have decomposﬂnqn ‘
(8) =i (®) = () + 2 1B, (5.8)
12 () 1 <015 () = u(8) fo- | (6.9)

m equation (4. 10) we have

(%Ma;‘r “m) + ((u-V)u—f, u®) =0,

~

| ( %k : u(i)>+ (> V)t — f, u) =0,
subtracbion,
( 3(?7’37:—1710)’, w® ) (((o— ) + V)t (U2 V) (u—10z), u®) =0,
stitube (5.8) into it and get
PO Jé% an()M(E) +gs(5) =0,

where-
aﬂ(t) = ((U(')'V)U",— (ﬂkuv)u(‘), u(f)),
9:(®) = (((u—u*+u) Vu+ (- V) (u—u*+u), u®),
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Lemmasa 19, <
U - @*~) (8 o<Cob__sup [5*(s) —u(m) Lot ).

k<r<(i+1)k

Proof By the triangular ine  uility
10 — (u* — ) (ik) o< T 1+ T o
are
J1= U~ (@~ i) (€ (-, tk; (G+1)k), 5F) o,
a= | @ ~i) (€ (-, dk; (G+1)E), ik) — (" —~10) (8) Jo.
egrating along characteristic curves we get
(" — ) (€ (y, ok; (G+1)k), 6k) — (u*— ) (y, k)

(G 2V )

=—|, @B (@ 5 G+DE), Bdr

B —I:;+1)k 'a'(i——;;z@@(y, % (6+1)%), li,]g)_Zé_ &

1 5 . '
== [ 2 (¢4, 5 1+ DIB), WUEW, 7 GHDE), B
oe % is bounded and the mapping is measure preserving, we geb
J' G+13% a (IE* - &-’k) . 3 y
1<0s | |——5—"(( w5 G+1)E), k)| dv
ik oz o
<Ok sup [u*—us.

h<v<(i+1:k

Lemma 18 , ’
Ji+Ja<<Okh sup  |&*—ys.
k<T<(G+1)k
19 the conclusion follows from Lemma 17,
Lemma 20.
1U— (@ —4) (+1)F—0) [o<Ogk  sup |&" (%) —au(w) |o+k).
h<T<(@+1)k

Proof We apply the Helmholz projestion operaor P’ to equations (1.8) and
) and get

Dot e P(f ~ Gl Vi),

G P (- ).
refore '

(@) () = @ ) @) [ P (VY u— @ Vi)
the triangular inqeualily -

I (e V)u— (ﬁk'v)akllo
<N o 7) (i) o+ | ((u— ) s V) o< O ts— Tiae
inequalities (5.6) with s'=0 and (5.7)
(e VYu— (V) G
<0 sup 1!5* (7) - 51« (7) “0+1067‘7-

$h<T<@G+1)k
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P’ ig an orthogonal projection operator, hence
I @* — i) ((G+1) b —0) — (u"—~ux) (k) fo-
<Osk_ sup |w* () —wu(s)lo+k).

ik <T<(i+1)k
The desited inequality follows from Lemma 19.
Lemma 21.
(T —6) (u*—u) (G+1)k—0) |«
<O(U ~ (@*~w) ((3+1)k—~0) ],
+ 16— (@* —x) ((G+1)k—0) Jo.
Proof By Lemma 4, we have decomposition

U— (@ =) (G+1Dk—0) =ﬁ+,§1mw,

then _ _ o
luf1 <010 — (@*—wy) ((F-+1)E—0) |o.

Since (5.12) is an orthogonal projection, we have
M <IT= @~ ) (@+1DE—0) | j=1, -, N,
Using (5.12) angain, we geb

|7 - @ =) ((6+ DE—0) < Jils+ O Tl

By (5.14
y (6.14) U — @*—u) ((B+1)k—0) ||+

<[u)1+ U ~ @ —ue) ((G+1)E~0) Jo.
Since P is an orthogonal projection operator, we have
(I~ P) (@ —an) ((e+1)E—0) o
<|8—(&*— @) (E+1)E—0) |0
10— P (a"—au) ((G+1)E—0) o -
<2]0— (5'—§u) ((@-+1)5—0) .
18 (%" ~w) ((4+1)%—0) ~ Ul
<O|P(&"—an) ((B+1)k~0) — .
Then (5.11) follows from (6.13)(6.15)—(5.17).
Lemma 22,

thus

By Lemma 7

1 (Z—8) (u* — ) ((4+1)k—0) |1
<Oek _sup [o*(w)a@(v)lo+k).

k<T<($+1)k
Proof The following equations are similar to(4.5):

a"’n
7“’+u~vw=F,
B

ot

+§k-ng'.=F,

B —) 1V (= ) eV (5 ) — (i) Vi

G

5

G

(b

5

6]

(3

(5.18)
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r Lemma 15 o :
16— (o* ~ ) ((B+1)E—0) [0
<Ogh|w* (6%) — wx (3k) Jo

J‘“’”‘uu V(5 =) — (Ui - Vi |odr. (5.19)

e estimate the integrand. As ¢k<<¢<<(4+1)%, by inegnality (5.6) with '=1, we
tain - o :

|-V (0" — o) [o<Os|u" —u <06k,
- Holder inequality

I (u"ﬁk) Ve, I3
=Jal <u—"ﬁk) -Voj;,I”dm

~ 2/p ~ 2/

(] e ([ -

< l@ulf, sl — a3, or '
wore p=2/(2—s),.¢=2/(s—1). By the imbedding theorem

lonl 1., <Ofexls
“”"&kuo,q<o“u“‘17)»"1<0.(|W—“'“1+ “ﬁ*_"‘ TAPN

- inequalities (5.6) with s'=0 and (5.7)
e () — 2, () “0,q<aei(k1313§ Jo* (7) —w () lo+K).

nee :
l[u-V(a,,—w)—(u—ﬁk)‘vgk“o _ , ,
<0 max |&*(v) ~&u(z) lo-+4). - G20
(5.19) . ki<T<t . i

18— (&"— @) (G+1)—0) o
<Ok sup fJ&*'(z) —an(z) o+ k).

k<T<(i+ 1)k

on the desired inequality follows from Lemma 20 and Lemma 21.
Lemmaf3. If u,€ (Hi(Q))? and of |us]ssx<Ms as stated above, then
max (Ju() —us(® s |00 () 1) <Oob, O<E<T.
Proof Mulbiplying equation (5.18) with w"—dy, 1ntegra.tmg on domain g,

1 faking note of

(u-V(a*~an), @ —wk) =0,
oblain

1 d g~ ~p - e e n

?Et-"w —wnlla%(u-V(Q —w) — (U—uy) Vo, o —wy)
(5.20) <JusV(0* —0) — (u—t) +Vayfof &* — wrfo.
5. \

3 L5~ 5300 1 13 @) —Ga() o+ B 13t~ Bale

Therefere either |&*—a],=0 or

fow* — ] o <Oy ( max |w*(w) —awp(w) | +5),
dt fh<v<t
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Thanks to the Gronwall inequality, we obtain

1% (8) — @ () Josse®* (| & (4F) — oy (6k) o+ Ok?),  $h<E< (441) .

By Lemma 22
1(Z-6) @ —u) (G+1)k—0) |1
<Oek(Jw* (5k) ~an (k) | o+ ).
From (1.12)—(1.1B), u*—u; is the solution of
3(“;;”1«) +% V(P*“Pk_)
= A(u* —uy) -}—%(I—@) (@ =) ((G+1)E—0),
V. <U’*_uk) =O)
('M*_uk) jce?ﬂ=0r

(u* —wy) (5%) = O (u* — ) ((5+1)k—0). _
By Lemma 8

%ﬂw‘——w},ﬂ 2i-" (I—0) (@~ (G+1) k— O)l];

Substituting (5.22) into it, we get

SN = n i< Os (5" () — 5 (iF) 13+ B9).

Integrating on interval (4k, 1), we get
loo* (#) —en(®) i3
<[ " (k) — (k) I3
+ Ok (feo* (ik) — an, (38) |3+ 5%,  B<t< (5+1)F,
We may assume that Ug>1 in inequality (6.21). If
Jo* () — an (i) | o< D'k,

faor () — an (8) o< Oh.

then

By initial condition (1.15)
loo* (8k) — wx (35) Jo= | P (&* —an) ((6-+ 1)k~ 0) o
<@ =) (G+1)5—0) [0 <O4t,
Supstituting them into (5.23), we obtain
§ (@0 — ) ((B+1) E—0) | o<CGk.
Similarly if
lo* (3k) — an (3k) Jo>Osk
in inequality (5.21), then
| (@ — ) (5 1k —0) I3 (1-+ Osk) |5° (6) — 5 () I3

By inibial condition (1.11)

f (0" — @) ((6+1)k—0) Bo< (1+0eh) | (0" —a3) ($E—0) 2.
From (5.24) (5.25), we always have

508

(5.21)

(5.22)

(5.2

(5.2

' (6.25)
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| (@ ~ww) (G +1)5-0) |5 ‘
<max{(1-+0gk) | (0" — ) (5 —0) 3, Tof*}.
king note of w*(—0)=wuf —0), we can prove by induction thab
| ("~ 2) (55 —0) Jo<Coe .
" initial condition (1 11) '

I (@* — @) (5F) [o<Osk.
- (5.21) and (5.28)

[(o" ) ) o<Ceh, [ (0" — ) (8) |o<Tsh.
~ Lemma 17
Ju* (&) — 4 (8) |1 << Osk.
cause w*(2) —u, (1) € (HH(2))? by Lemma 7
lu” (2) — i (#) |1 <Ok
ing (6.6) again, we geb the desired desult.

Lemma 24, If |7y(t) fas1<Ma as 6h<t< (5+1)% for a certain 40 and 0<s<
2, then Ju,(t) |s+1<M4 on the seme interval, where constant M, depends only on the

A).
Proof By (1.12)—(1.15) and Lemma 9
o () o< O( Mz + 1 (T~ 0)n((6+ 1)k~ 0) ).

we (I —6)u=0,
| (I~ ©)u((6+1)k—0) |4

nain 2, constants v, s, T, M, functions f, uo. and the solution u of problem L.1DH—

(5.26).

<[ (I —6) @* ~t) (1) 5 —0) |1+ | (T~ 8) (u—75") (G+ 1)k —0) |5

(6.6), Lemma 3 and Lemma 22

T2~ @) a((+ 1)) s

<O; sup |5 (x) —ae(®) o k+1),

it<T<@E+1)%

re constant O; depends only on the domain Q, constants », s, ', M, functions f,

and the solution v of problem (1..1)—(1.4). we have

lon(7) o< U (o) fora <M.

1 the upper bound of |&*(z) | can be obtained fiom (5.6) and the upper bounc_i'

lu(3) §1. Thus (.26 gives the desired esyimate.

8§ 6. Proof of the Theorem
Leb sp=3s, s,=s,~1/3+1, I=1, 2, ---, wa danobe

H= ﬁo (Hsﬁl(g‘))z‘
1=
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It is the assumption of this theorem that u is suffioiently smooth,so we may assume
uo€ H. By Lemma 14 and Lemma 24. w,(¢) € H and 4, (}) €H.
Set

m=max |u(t) .
o<t<T

Lot My=2m. We determine constant O, according to Lemma 14, then determine
constant M, according to Lemma 16, then determine oonstant U5 according to (5.4).
and let

My =05+ 05 (M MY+ M3 MY*). . (6.
We determine constant b, according to Lemma 14, and let
M3=max(02.M1+Og, Mg). (6.

Then we determine constant Cs according to Lemma 23, reduce constant %,
necessary, such that Ogky<m.
‘We olaim that with the determined constants, if ¥<k, then
12 (8) Ja<Mo, ux(8) |1<Mo, U (8) |ss2<M, and
) —w(t) |1 <Ok, Juu(t) = (8) |1 <Ok (6
It is proved by induotion. Two cases are considered simultancously: (i) j-
(ii) >0 and the above assertion is valid for 0<¢<jk. If >0, then by (6.1) (5.
Nt (3% —0) | nya <M. 6
(6.4) also holds for j=0 evidently. By Lemma 14 and (6.2), |u3(t)[s1<<M3
dk<t< (§+1)k. By Lemma 23, (6.3) holds for all 0<i<(j+1)%, in virtue of
way by which we take &, f|ux(t) i< Mo and |ux(t) [1<M, on the same interval,
Lemma 14 and Lemma 16, |u;(4) |ss1<<M, on this interval. Thus the inductior
complete.
Using Lemma 24 we obtain the upper bund of fu,(#) |s+1 Therefore, inequali
(1.16) (1.17) are proved as k<<k,.
To prove the theorem, we should consider the case k>%,. But there are at 1
T/K, steps. By Lemma 14 and Lemma 24 we can geb the upper bound of |u;].41
ftixlls+1 Step by step. And (1.16), (1.17) always hold if we take M, M’ large enot
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