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MULTIPLE SOLUTICNS OF NONLINEAR
FREDHOLM INTEGRAL EQUATIONS
IN BANACH SPACES™

Guo Dasux (3R k4"

Abstract

In this paper, the anthor uses the topological degree theory to iavestigate the multiple
solutions of nonlinear Fredholm integral equations in Banach spaces. Two new theorems
‘are obtained and t{wo examples are given.

In [1], Vaughn established some existence theorems of the solubions an
maximal solutions for nonlinear Volterra integral equabions in a Banach spice b
means of the monotne technique. Now, in this paper, we shall use the topologice
degree theory to discuss the multiple solutions of nonlinear Fredholm integr:
equations in a Banach space, i.e,we congider the following intégra.l eqeation

1¢)) =L H(, s, o(s))ds, ¢
where I'={a, bland HECO[IXIXE, H], E isa real Banach space (i. o, H is
continuous mapping from I X I x K into K). '

_ Let P be a cone in E(see[4]), and consequently, P defines a partial ordering :
E. et P={z €0(I, E]|(¢)>0 for all t €I}, where U[I, E]denotes the Bana
space of all continuous mappings «:I—F with norm .

|z} =maz |=(®)|

and @ is the zero element of E 1% ig clear that P; is a cone of space O[I, O], and
it definesa partial ordermg in O[I, E]. Obviously, the normelity of P implies %
normality of P;.

Lemma 1. If P is solid(é. e. the imterior P#¢), then Py is also solid, and P,
{z€C[1, E]|z(t)>0 for aWl t € I},

Proof Let Q={w€O[I, E]|x(t)>0 for all ¢€I} and we need to prove P,=
If ©o € P;, then thede exifts an #>>0 such that :
' x€0[I, K], ||a;—~a;o|g<'r=):v€P,, i. e.m(t)>l9 for all t€ I, ‘ {
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or any s€ I and 2 € E with |z—ze(s) | <r, setting o (f) =z,(3) —2(s) +2 in(2), we
% @(8) =2o(3) —wo(s) +2=>0 for all :€I and, in parbicular, z=s(s)>0, henoe
\(s) €P. Since s is arbitrary in I, we obfain 2, € @ and consequently, P,cq.
Conversely, let 4,&Q. We choose a fixed uoEP. Then for any ¢’ €I thers exists
1 8’ =8'(¢") >0 such that
Yo (1) =26"u,. ' 3)
nee yo(?) is continuous in I, we can find an op2n interval
J@, )=0-9%,¢+¥)
tch thab
&'tuo+ [5o(3) —o(#) 16 for 1€ J (¥, &), 4)
. follows from (3) and (4) that
) yo(t)=>e'uy for tEJ (¥, &).
ow, using the Heine-Borel finite convering theorem, we see thab there exists a
aite collection {J (%;, 8,)}(¢4=1, 2, «--, m), which covers I, and
yo(t) =eme for $€J (4, 3), 4=1, 2, «, m,
here §,>0(i=1, 2, -, m) are congtants. Consequently,

Yo(t) =eouy for t€1, 6]
here go=min{s;, 8, *-1, 8m} >0. Since u, € P, there exists >0 suoch that
(eo/2)tuo+y(3) —yo(8) =0 for ¢€I (6)

henever y € O[I, K1 with
ly—golo=max |y (#) —go (&) | <=.
msgequently, frem (5) and(6) we get
y(3)=>(8o/2)ue>>8 for all ¢€I‘ and so yEP;

henever |y —yol¢<<m; this implies ¢o€ P;, and hence chg‘,. Therefore 1.’1=Q is
:oved,

Finally, letbing z(#) =u, for 1€ I, wefind € Q= P,, henoce P ¢and so P; is solid.

In the following, we define operator A by

Ax(t) =L H(, s, o(s))ds. )

Lemma 2. Let HEC[IX IX E, Elbe uniformly continuous and bounded on I x
x By for any R>0, where Bg= {2 € E||a| < R}. Suppose that there evists an L>0
ith L(b—a)<1/2 such that '
a(H(t, s, B))<La(B) for ¢, s€I and bounded B E, (8)
here o denotes the Kuratowské's measure of nONCOMPactness.
Then A:C[1, H]—~O[1, Elés a sirict set coniraction, 4. 6. there exists a constant
- <k<1 such that a(A(S))<ka(S) for any bounded ScO[I, E]. :
Proof By the uniform conbinuity of H and (8) (see[3], p. 23), we have -
Ca(HIXI% B))=132.§ «(H(t, s, B))<La(B) for bounded B<H. @
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Since H is uniformly continuous and bounded on IxIXxBj for any R>0, 4 is
continuous and bounded from J[I, E] into O[I, E]. Now, let ScO[I, H]be
bounded. Then we can find an R>>0 such that SCTz={zs €01, E], |»|¢<R}. By the
uniform continuity and boundness of H on IxIX By, it is easy to see that the
functions {4a{s €S} are uniformly bounded and equicontinuous, hence (see[2],
Lemma 1+4-1) ‘
' a(4(8)) =sup a(4(8@)), (10)

where

AB@))={4z() |z <8, © is fixed}.
Uging the formula,

(b—a)—l-frw(t)thE{w(t)|tEI} for s€0[I, E],

and observing (9), we get
a(A@®)) =a({[ B, 5, a)dsl2€ 5})

<(b—a)a(co{H(t, s, z(s)) |3, s€I, s€8})

=(b—a)a({H(, s, v(s))|t, s€EI, z€8})

<(b—a)a(H(Ix IxB))<(b—a)La(B), (1
where B={z(s)|s€I, €S} By For any given 8>0, there exists a partibic

8= L:I S; such that
=1

diam (8;) <a(S)+s, j=1, 2, «-, n, L
Choosing #,€8;(§=1, 2, +--, n) and a parbition
A=t <ty < oo <ty Ly oo L =D
guch thab ‘
fzs(3) —wi(s) | <& for j=1, 2, <+, 3 ¢, SEL=[bis, ], 8=1, 2, <=+, m, ¢!

Obviously, B=Q q B,;, where By;={z(s) |s€ I, s€8y}. For any two u, v&By;,
=] jae

have u=x(3), v=y(s) for some ¢, s€ I, and =, yE€S;. It follows from (12) and (L

that

bu—vl <|2(®) —as(®) [+ lo;(®) —25() [ + | 24(s) —y () |

<
<le—ajlo+e+ |z—ylo
<2diam(8S;) + s <2a(8) +3s.

Consequently,
diam(B;;) <2a(S) +3¢, 4=1, 2, <, m: j=1, 2, -, m,
and so
a(B) <2a(S) +3s,
Since & is arbitrary, we find
-a(B)<2a(S). (12)

It then follows from(19), (11)and (14)that a(A(8)) <ka(S) with k=2(b—a)L<1,
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"iis shows that A4 is a striot set contracfion.
Theorem 1. Let P be a normal soléd cone én the real Banach space E. Supposs
ail: : ‘
(a) HEOIX IX B, E] is uniformly continuous and bounded on I X I x By for any
>0 and there svists an L>0 with L(b—a)<1/2 such that

a(H(t, s, B))<La(B) fort, s€I and bounded BCH, (15)
@ g, s, 2)|/lel =0 asla] —0 uniformly in ¢, s€ I. (16)
(e) 1H@G, s, o)|/lz] >0 as |z] — oo uniformly in ¢, s€ I, an
(d) there exist xo € P and k €O[Ix I, R such that
H(, s, o) =k, 8)xo for s>z, (18)
p .
L]c(t, )ds>1 for s€1L. (19)

Then equation (1) has at least three different solutéons x, (t) (4=1, 2, 8)én O[I,
] such that 21 (3)=0@EI), 2a(t) > for all €T and x3(4) £ with x3(t) <wy for
me t €1,

Proof First, by Lemma 2, 4:C[1I, E]—>O[I, E]is a strict set contraction. It
clear from (16) and the continuity of H that H(3, s, 9) H(t $€T), and so
(#)=0 is the trivial solution of equation (1).

Now, from (16) and (17) we can find two numbers s and R, such that

0<r< o] /N< Ry (20)
ud
VH(, s, 2)|<[20—a)1 ], %, s€Z, lal<r or |a|>Ro, (21)
here N denotes the normal constant of P, i. e, §<a<y implies |o|<N i[;y!l.
msequently,
| H(, s, o) |<[2(0—a)] =)+ M, ¢, s€EI, s € R, (22)
here '
M=sup {| H(t, s, x)| |¢, s€I, € Bz}.
1009

R>max {2M(b—a), Ro} (23)
d set Q={o€O[I, Bl||slo<r}, Q={s€CMI, El||slo<R}, Q:={z€C[Il
o] <R and (¢) >, for all €I}, Obviously, £, and Q, are open sets of space
(I, B]. By Lemma 1, Q;={s€C[I, E]||o| <R and s—zo € P;}, andso Q; is also
1 open get or space O[I, H]. It is olear that Q€ {z€CI[, E]||o|<r}, 2:={=E
I, B]||z| <R} and @, {s€C[I, E]||a|<R, o(t)>u, for all tEI}. Moreover,
om (20) we find o
' ' Qi Qs, 2 Q;, QN Q= 2. (24
Now, (21), (22) and (23)i mply that '
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o€ D= dnlo<max | [2(-a)] " |o(s) ds<|olo/2<r

e 5 EQ=> || A o< |z|o/2+M(b—a) <R/2+ M(b—a) <R,

hence '

A(Qy) 0y, A(R2)CQ,. (25)

For 5 € Q;, we have |z|o<R and ()=, for all €I, and so |4z|o<R, and, by
(18) and (19),

Az () >L k(t, 8)wods=710,
where

’)’=niinJ" k(t, s)ds>1,
ter JI

. which implies A% (%) >, for all € I, and therefore
AQ) Qs (
It follows from (25) and (26) that the fopological degree of the sfrict set contract
fields (seef4])
deg(id— 4, Q;, 9)=1(-=1, 2, 3), (
where id denotes the identical operator. Consequently, A4 has a fixed point =z, in
which satisfies x,(%) >, for all £€ 1. On the other hand, (27) implies
dog(id— 4, 2./ (@:UTy), 0) —deg(id—4, Q,, 6)
, —deg(id— A4, Q4, §) —deg(id— 4, Q;, §) = —1£0,
and 90 4 has a fixed point @5 in Q,/(2,U 3;), and our theorem is proved.
Remark 1. If F is finite dimensional, then any HEOI x [Ix E, E]sati
the condition (a) of Theorem 1. ' |

Hzample 1. Consider the system of nonlinear integral equations

21(®) = [ HaCt, 3, m2(9), (),

1
. ma(®) = [ Ha(t, 3, (5), 2(5))ds,
where :
Hi(t, s, a4, ©3) = (2+1s) w1+ 3y In (1 +af+a3),

_ (2—ts) \/a;la;z are tg2(w‘+w§)
H2(t s, ¥4, wz) 1_|_arctg2(wl+‘v)

Conclusmn System (28) has at least thres contimuous solutions {wy,(¢), @a(t
=1,2, 3) such that 11 (t) =0, x4 (#) =0) (O<t<1), w12(8) >1,

290 (%) >———-[2 In 2(1+ 1; )] -

(O<t<1)and a;13(t) <1 or
32

was(£) <_[2 In 2<1+ )]
Jor some € [0, 1].
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Proof Let I=[0, 1], E=R*, P={o=(zy, ) CR|2;>0, 2,50} and H(t, s,
)= (Hy(t, s, z1, wa), Ha(s, s, 21, @3)), @= (@1, #3). It is not hard %o see that all
mditions of Theorem 1 are satisfied with mo= (1, &), where

21n o1 e
Eo= 64[ n ( +_)

or example, we verify condition(d). For z>>z,, i. e. z;>1, z.>8,, and ¢, s€ [0, 1],
¢ have
H(, s, 1,29)>21n 2,
S~ L L aa
onsequently, (d) is sabisfied for o= (1, go) and 4(¢, 5) =21n2(0<¢, s<<1). Henoe,
ar conclusion follows from Theorem 1. ‘

Theorem 2. Let P be a cone in the real Banach space B. suppose that condisions
?) and (n) of Theorem 1 are satisfied. Moreover, assume that
@) thea'e exist w9 € P\{0} and ¥ €O[I X I, R*]such thot

a H(, s, 5)=k(, 8)zo for a>>2, (29)

[ kG, $)ds>1 for tC 1. (30)

hon, equation(1) has at least ons solution o* (¥)in O[I, E] such that z*(%) >w° for all
=1.

Proof As in the proof of Theorem 1, (23) holds with Ry> |zo|. Choosing R such
bt (23) is satisfied and letting D= {z €O[I, E]||z]o<R and z(§) ==, for all t €I},
e see clearly that D is a bounded olosed convex set inO[I, E] and D+  since 2 € D,
here z(¢) =, for # € I. Similar o the proof of (26), we can get A(D) D, where A
- defined by (7), which is a strict set contraction from C[I, E]into O[I, E] by
emma 2, Henoce, by Sadovskii's fixed point theorem (see[4]), A has a fixed point "
v D,

‘Remark 2, Obvmusly, condition (d") is weaker than condition (d) and in
heorem 2 P may be any cone which is not necessary to be normal and solid.

Egample 2. Congider the infinite system of nonlinear integral equations

1
wﬂ(t)’__" [oHﬂ(t; s, wi(s):,wﬂ(s): "')ds (’""_"'-1) 2, 3: "')1 (31)
here v
Hﬂ(t: 8, &4, Tg, '")
=—3;—(2—'t8) NET TN ——-;1"- t?sgin ((+s5—,)
(n=11 2) 3! ‘..)’

Conclusion, Infinite system (81) has at least ons contimuous solution {w(t),
@3(3), o+, 2(2), ++} such that ©;(3)—>0 as n—>00 and 71 (H) =1, (1) >0 (n=2, 3, -+)

for all t€ [0, 1]. :
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Proof Let I=[0, 1], E=co={z= (21, s -

€
)
||a;“=su~p lw"!’ P= {q;.—_s (a;i’ Ta, -,
n

n te) lw,.~—>0} with norm

Ty, +++) eco]m,;ol n=1, 2, 8, .-}

and H(t, s, o) = (Hs(, 8, 1, @3, =), *++, Ha(t, s, z, Pa, +e0) ) where x=(z, |
@y, oo, T, f") - It is not difficult to showthat all conditions of Thesrem 2 are Satisﬁec)l
with 2o=(1, 0, 0, 0, ---). For example, (17) follows from, the inequalities

|ty 8, 21, 0, ) | <2 (2T 2] +1), (et 2, 3, ). 32

And, moreover, by virtue of (32) we can easily prove that the set H(t, 5, B)
relatively compaot in E=c¢, for any bounded BCE = 6o, b

and so (15) is satisfie
Finally, for >, i. 6. #:>>1, 2,>0(n=2, 3, ---), and t, $€ [0, 1], we have
- Hy(t, 8, @1, ®a, ++) >2—1t5—¢3
H. (¢, s, 21, @3, =)0 (n=2, 3, ).
Since

1
J— — ¥} =t —— — 2
‘0 (2' ts—1%) ds=2 5 (@+3)=>1 for ann t€ o, 1],
we see that condition (d') is satisfied for zo= (1, 0, 0, 0,

)and k(t, 8) =2—#s—¢
Consequently, our conolusion follows from Theorem 2,
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